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We have performed 3D computing simulations to study the magnetic field distribution of the injection
chicane dipoles in the SNS accumulator ring. The simulations yield the performance characteristics of the
magnets and generate the magnetic field data in three dimensional grids for further beam tracking study.
Based on the simulation data, a 3D multipole expansion of the chicane dipole field, consisting of the
generalized gradients and their derivatives, has been made. The harmonic and pseudoharmonic compo-
nents in the expansion give much insight into the magnet physics and can fit directly into theoretical frame
work of beam optics. The expansion is quasianalytical by fitting numeric data into interpolation functions.
A 5th-order representation of the magnetic field is generated, and the effects of even higher-order terms on
the field representation are discussed.
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I. INTRODUCTION

In the Spallation Neutron Source (SNS) under construc-
tion at Oak Ridge National Laboratory (ORNL), a 1 GeV
H� beam from its linac is injected into an accumulator ring
to produce a proton beam by stripping off electrons in low
magnetic field. In the injection region there are four DC
magnetic dipoles (D1 to D4) in a chicane structure to
produce a horizontal orbit bump, as shown in Fig. 1. The
striping foil is located at the left edge of the second dipole
(D2), whose field is very critical to determine the stripping
efficiency, beam loss, and the trajectories of stripped elec-
trons and circulating beam. The dipoles D2 and D3 are the
C-shaped magnets designed with sophisticated pole tips to
achieve high field uniformity and good field quality in
order to minimize uncontrolled beam loss and to dump
stripped electrons to their collectors. The third dipole (D3)
is close to D2 and their fringe field overlaps. In addition,
D2 and D3 have complementary pole tip structures, result-
ing in significant cancellation of the integrated harmonics
through these two dipoles. In order to assess the effects of
the dipoles on the dynamics of the circulating beam and on
the striped electron trajectories, it is necessary to know the
detailed magnetic field distribution of the chicane dipoles,
especially D2 and D3.

The injection chicane dipoles were designed and devel-
oped at Brookhaven National Lab (BNL) [1]. Tremendous
efforts including 3D computing simulations were devoted
to these critical devices. In order to establish magnetic field
data files for beam dynamics analysis at ORNL, we ini-
tiated an independent simulation study of the D2 and D3
properties. Our simulations also yield performance char-
acteristics of the dipoles and generate magnetic field dis-
tribution in 3D grids for beam tracking study. However, the
data file occupies excessively large memory, and so man-
ress: jgwang@ornl.gov
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aging the data in subsequent work becomes difficult. More
importantly, discrete 3D data points do not provide any
insight into the magnet physics. They do not fit directly
into the existing frame work of beam optics [2], where it is
usually required that the magnetic field is given by the
components of multipoles. Therefore, we go further to
expand the chicane field into 3D multipoles based on the
simulation data. The 3D multipole expansion describes the
magnetic field in terms of harmonic and pseudoharmonic
components. The expansion is analytical in nature if we fit
a few generalized gradients of numerical data into inter-
polation functions. The field at any point within a cylin-
drical volume on the z axis of magnets can be computed by
approximate formulas such as a 5th-order representation
presented in this paper. Although the 3D multipole expan-
sion is illustrated with the chicane dipoles in this work, the
theory and techniques presented here can be equally ap-
plied to other accelerator magnets, such as quads, sextu-
poles, etc.

In Sec. II, we describe briefly 3D simulations of the
chicane dipoles D2 and D3. The field distribution and other
properties of the magnets are reported and compared with
that from the BNL simulation. Section III is devoted to the
3D multipole expansion of magnetic field from the simu-
lation data. The theory is briefly reviewed and the expan-
sion techniques in our work are described. The validity of
the expansion is demonstrated by the on-axis generalized
gradients and a 5th-order representation in comparison
with the simulation data. The effects on the magnetic field
representation by even higher-order terms up to the har-
monic number m � 10 in the expansion are discussed. A
short summary of this work is presented in Sec. IV.
II. 3D COMPUTING SIMULATIONS

The simulation environment used in this work is
OPERA3D/TOSCA [3]. We first simulate D2 and D3 sepa-
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FIG. 1. (Color) Injection straight in the SNS ring.
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rately and then combine the two dipoles together in the
final model, as shown in Fig. 2. The simulation models are
built by the OPERA package ‘‘MODELLER,’’ rather than by
‘‘Pre-Processor’’ as was done at BNL. The MODELLER

makes it easier to simulate two or more magnets together.
The mechanical dimensions of the dipoles are taken from
the BNL design drawings and parameters [4]. Both the
dipoles D2 and D3 have a nominal gap height of
24.7904 cm, pole width of 50.038 cm, and 14 turns per
coil. The nominal pole length is 70.104 cm for D2 and
47.9552 cm for D3. The distance between the D2 gap
center and the D3 gap center is 181.4068 cm. The origin
of the coordinates in the simulations of the two dipoles
together is located at the D2 gap center. In the model, the
FIG. 2. (Color) D2 (right) an
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dipoles D2 and D3 are energized at 2140 and 1690 A,
respectively. These currents should be close to the opera-
tion values for a 1 GeV proton beam.

The magnetic field on the z axis from the simulation is
plotted in Fig. 3. The dominant component is the dipole
field By, which has a minimum at z � 93:87 cm between
D2 and D3. The axial field Bz is also rather large, as plotted
by the dashed red curve. This is an indication of significant
fringe fields produced by the dipoles. The integrated field
and the integrated harmonic contents are analyzed by a
rotating Cartesian patch, similar to an unbucked winding in
a Halbach search coil in accelerator magnet measurements
[5]. Figure 4 shows the integrated harmonic distribution
evaluated with a reference radius of 8 cm. The integrated
d D3 simulation model.
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FIG. 3. (Color) Magnetic field distribution along the z axis.
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harmonic amplitudes are expressed in units with one unit
as 1E-4 of the integrated dipole field. Note that the vertical
axis is in logarithmic scale. The blue and green bars are
calculated for the D2 region and D3 region, respectively,
with a separation point at z � 93:87 cm. The red bars are
computed for the entire length of both D2 and D3. It is clear
that the overall integrated strength of the quadrupole,
sextupole, and octupole terms through the two dipoles is
FIG. 4. (Color) Integrated harmonic amp
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much smaller than that in each individual dipole. This is
due to opposite phases of these harmonics in the two
dipoles as produced by the complementary pole tips.

The stripping foil is located at x � 0, y � 2 cm and z �
30:7 cm (note that the origin of the coordinates is at the
center of the D2 gap), which is around the left edge of D2
in Fig. 2. It is important to know the field in the stripping
foil area since the motion of stripped electrons is deter-
litude of chicane dipoles D2 and D3.
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TABLE I. Field distribution around stripping foil from simulations.

ORNL simulation BNL simulation

D2 Current (A) 2140 2168
D3 Current (A) 1690 1716
By (kG) 2.5244 2.50
Bz (kG) �0:5256 �0:532
Btotal (kG) 2.5785 2.556
tan�1 (Bz=By) (rad) �0:2053 �0:2
By integral (G-cm) (from minus infinity to foil) 241 463.53 237 997
By integral (G-cm) (from foil to plus infinity) 263 163.88 261 751
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mined by the magnetic field lines in that region. In Table I
we list these parameters and compare the simulation results
between ORNL and BNL [6]. The agreement looks good.

From the D2 and D3 simulation we have generated the
magnetic field distribution in 3D grids. The data file stores
the magnetic field within a rectangular bar, which has a
cross section of 20� 20 cm2 and a length from z �
�200 cm to z � 400 cm. The step size is 0.5 cm in all
dimensions. Thus, the file contains more than 2� 106

space points, each of which is specified by 3 Cartesian
coordinates (x; y; z) and 3 field components (Bx, By, Bz).
The file size is about 250 MB. If a step size of 0.25 cm is
desired, it would produce a data file of more than 2 GB.
This would be very difficult to handle in subsequent appli-
cations. More importantly, the existing frame work of
beam optics usually requires the expansion of all the
physical parameters including the magnetic field into vari-
ous orders. The discrete 3D magnetic data on grids do not
satisfy this requirement. These issues have motivated us to
develop the 3D multipole expansion as described below.
III. 3D MULTIPOLE EXPANSION

A. Review of theory

The fundamental theory of the 3D multipole expansion
of the magnetic field in cylindrical coordinates has long
been established [7]. Some early work on this topic in
accelerator magnet analyses and measurements can be
found in Refs. [8–11]. A more recent and comprehensive
treatment of the subject, based on magnetic field data
obtained through measurement or computation, was com-
pleted by Venturini [12,13]. In this brief review, we follow
his approach and limit our discussion to the 3D multipole
expansion of the magnetic scalar potential, rather than the
vector potential.

It is well known that in a current-free region the mag-
netic scalar potential �m satisfies the Laplace equation

r2�m � 0: (1)

In cylindrical coordinates (r; �; z) the solution of Eq. (1)
can be expanded in terms of the eigenfunctions of the
operator @2=@�2 as
01240
�m �
X1
m�0

�m;s�r; z� sin�m�� ��m;c�r; z� cos�m��; (2a)

where

�m;s�r; z� �
1�������
2�
p

Z 1
�1

dk exp�ikz�Im�kr�bm�k�; (2b)

�m;c�r; z� �
1�������
2�
p

Z 1
�1

dk exp�ikz�Im�kr�am�k�: (2c)

Equation (2a) is usually referred to as the 3D multipole
expansion for the magnetic scalar potential. The ‘‘sine-
like’’ and ‘‘cosinelike’’ terms are the normal and skew
components. The integer m is the order of the multipoles.
For example,m � 0 corresponds to a pure solenoid,m � 1
to a dipole, andm � 2 to a quadrupole, etc. The solenoidal
field is described by the cosinelike term only, i.e.,
�0;c�r; z�. The physical meaning of the functions bm�k�
and am�k� in Eqs. (2b) and (2c) will become clear later.
Im is the modified Bessel function of the first kind of order
m, which can be expressed by a Taylor expansion

Im�x� �
X1
‘�0

1

‘!�m� ‘�!

�
x
2

�
2‘�m

: (3)

With the help of Eq. (3), we can rewrite Eqs. (2b) and (2c)
as

�m;��r; z� �
X1
‘�0

��1�‘
m!

22‘‘!�‘�m�!
C�2‘�m;��z�r2‘�m; (4)

where � � s or c, and the functions C�2‘�m;��z�are defined as

C�2‘�m;s �z� �
��1�‘

2mm!

1�������
2�
p

Z 1
�1

dk exp�ikz�k2‘�mbm�k�; (5a)

C�2‘�m;c �z� �
��1�‘

2mm!

1�������
2�
p

Z 1
�1

dk exp�ikz�k2‘�mam�k�: (5b)

It is easy to verify that C�2‘�2�
m;� �z� � d2

dz2 C
�2‘�
m;��z�.

Therefore, if C�0�m;��z� 	 Cm;��z� is known, all the expan-
sion coefficients in Eq. (4) can be found by successive
differentiation. The functions Cm;��z� are called the gen-
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eralized gradients. Their derivatives constitute the so-
called pseudoharmonics.

The magnetic field can be found by the gradients of the
magnetic scalar potential: ~B � r�m. The convention here
is to use a � sign. The field components in cylindrical
coordinates are

Br �
X
m�0

X1
‘�0

��1�‘
m!�2‘�m�

22‘‘!�‘�m�!

� C�2‘�m;��z�r2‘�m�1

�
sin�m��
cos�m��

�
; (6a)

B� �
X
m�0

X1
‘�0

��1�‘
m!m

22‘‘!�‘�m�!

� C�2‘�m;��z�r2‘�m�1

�
cos�m��
� sin�m��

�
; (6b)

Bz �
X
m�0

X1
‘�0

��1�‘
m!

22‘‘!�‘�m�!

� C�2‘�1�
m;� �z�r2‘�m

�
sin�m��
cos�m��

�
: (6c)

Note that the solenoidal field (m � 0) does not contribute
to the azimuthal field B�, although we keep the formulas in
the same format. Recall that in a 2D multipole expansion
the radial dependence of the transverse field harmonics of
orderm is rm�1. However, in a 3D multipole expansion this
applies only to the terms associated with the generalized
gradients Cm;��z� (‘ � 0). There are still many more terms
of the pseudoharmonics that vary radially as r2‘�m�1 (‘ is
not equal to 0). For example, in a quadrupole (m � 2) the
component C�2�2;�r

3 (‘ � 1) is called a pseudooctupole since
its azimuthal variation follows a quadrupole field while its
radial dependence resembles an octupole. The pseudohar-
monics are produced by the fringe field. If the field is
uniform in the z direction, then the derivatives of the
generalized gradients vanish and the pseudoharmonics
disappear, and therefore we recover the 2D multipoles.

According to the uniqueness theorem, the magnetic field
in a volume of current-free region is uniquely determined
by the boundary conditions. If the magnetic field is known
on the surface of a very long cylinder coaxial with the
magnet z axis, we should be able to find the field at any
point within the cylinder by the method of the 3D multi-
pole expansion. Suppose the radial field Br on a cylindrical
surface of radius R is found from simulation or experiment,
we first analyze the field via Fourier expansion to obtain

Br�R; �; z� �
X1
m�0

Bm�R; z� sin�m�� �Am�R; z� cos�m��;

(7)

where Bm�R; z� and Am�R; z� are the amplitudes of the
normal and skew components of Br�R; �; z� harmonics of
order m. By comparison of Br obtained from Eqs. (2a) and
(7), we find
01240
bm�k� �
1�������
2�
p

Z 1
�1

dz exp��ikz�
Bm�R; z�
kIm0�kR�

; (8a)

am�k� �
1�������
2�
p

Z 1
�1

dz exp��ikz�
Am�R; z�
kIm0�kR�

: (8b)

This shows that the functions bm�k� and am�k� in the
multipole expansion, Eqs. (2b) and (2c), are the Fourier
transforms of Bm�R; z� and Am�R; z� weighted by a func-
tion 1=kIm0�kR�. Inserting Eq. (8) into Eq. (5) yields the
generalized gradients

Cm;s�z� �
1

2mm!

1�������
2�
p

Z 1
�1

dk exp�ikz�
km�1

Im
0�kR�

~Bm�R; k�;

(9a)

Cm;c�z� �
1

2mm!

1�������
2�
p

Z 1
�1

dk exp�ikz�
km�1

Im
0�kR�

~Am�R; k�;

(9b)

Here ~Bm�R; k� and ~Am�R; k� are the Fourier transforms
of Bm�R; z� and Am�R; z�

~Bm�R; k� �
1�������
2�
p

Z 1
�1

dz exp��ikz�Bm�R; z�; (10a)

~Am�R; k� �
1�������
2�
p

Z 1
�1

dz exp��ikz�Am�R; z�: (10b)

In summary, a 3D multipole expansion of the magnetic
field starts with the field data on a cylindrical surface, e.g.
Br�R; z� from simulation in our discussion. We then de-
compose Br�R; z� into its Fourier components Bm�R; z� and
Am�R; z�, as indicated in Eq. (7). The next step is to obtain
~Bm�R; k� and ~Am�R; k� by the Fourier transforms (10a)
and (10b). The inverse Fourier transforms of ~Bm�R; k� and
~Am�R; k�, weighted by a function km�1=I0m�kR�, yield the

generalized gradients Cm;��z� according to Eq. (9). Finally,
the magnetic field can be obtained by Eq. (6).

B. Expansion techniques

We first need to calculate the surface field using OPERA.
There are two basic field calculation methods in OPERA3D

post processor: nodal interpolation and integration. The
former, which is more commonly used, offers fast compu-
tation but less accuracy. The latter is slow but should give
an order of magnitude improvement in accuracy, since it
evaluates the iron magnetizations from the solution and
then computes the field by integration of r� � ~M�
r�1=r�� [14].

In the 3D multipole expansion of the D2 and D3 field,
we calculate the radial field Br on the surface of a cylinder
of radius R � 10 cm, starting from z � �240 cm and
ending at z � 420 cm in a step size of 0.25 cm. There
are a total of 2641 data points in the z direction. At each
z position, Br is computed along a circle of radius R �
1-5



FIG. 5. (Color) Dominant component B1 of the surface field Br.
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10 cm at a step of 0:5
 , which yields 720 data points for
the Fourier decomposition. The Br harmonic components
up tom � 10 (20th pole) are computed. Figure 5 shows the
dominant term B1 versus z, which is the normal term for
m � 1. To some extent, B1 resembles the dipole field
component By on the z axis as shown in Fig. 3. However,
it contains highly nonlinear terms, i.e., the pseudohar-
monics, since it is evaluated at R � 10 cm. The other
two important components of the Br harmonics are the
skew term A1 for m � 1 and the solenoidal term A0 as
plotted in Figs. 6 and 7. The former resembles Bx on the
z axis while the latter has connection with Bz on the z axis,
which will be made clearer in the next subsection.

The next step is to perform Fourier transforms of
Bm�R; z� and Am�R; z� to arrive at ~Bm;��R; k� and
~Am;��R; k� as described in Eq. (10). Because of their
FIG. 6. (Color) Component A
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complex nature, the Fourier transforms produce two terms
for each harmonic component of Br�R; �; z�: one associ-
ated with the sine term and the other with the cosine term.
The wave number k is chosen from 0 to 2 (1=cm) in 4000
steps. The transforms yield spectrumlike distributions of
the fields. The dominant terms ~B1;s�R; k� and ~B1;c�R; k� are
plotted in Fig. 8 and the other two components ~A1;��R; k�
and ~A0;��R; k� are shown in Figs. 9 and 10. Having done
this, the generalized gradients can be computed using the
inverse Fourier transforms of ~Bm;��R; k� and ~Am;��R; k�,
weighted by a function km�1=Im0�kR� as expressed in
Eq. (9). Note that Eq. (9) has a singularity at k � 0 form �
0, which is the case of a solenoidal field. There are three
options to avoid this problem. First, we can make k suffi-
ciently close but not equal to zero. The magnitude of the
resulting C0�z� � C0;c�z� depends on the minimum k
1 of the surface field Br.
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FIG. 7. (Color) Component A0 of the surface field Br.

FIG. 8. (Color) ~B1;��R; k� versus k.

FIG. 9. (Color) ~A1;��R; k� versus k.
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FIG. 10. (Color) ~A0;��R; k� versus k.
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chosen, but its first derivative C0
0�z� remains approxi-

mately the same. As will be explained later, it is C0
0�z�

rather than C0�z� that has physical meaning. Second, we
can calculate C0

00�z� in the inverse Fourier transform and
then to get C0

0�z� via numerical integration. This will be
described in the next paragraph. Some errors will still
occur in numerical integration. The third option is an
easy method in practice and will be described in Sec. III C.

With the generalized gradients calculated above, the
remaining work is to perform successive differentiation
to obtain the desired pseudoharmonics. This has been
done by a MATHEMATICA program [15], which first fits
the numerical data of Cm;��z� into interpolation functions
of a certain order. Although numerical differentiation in
MATHEMATICA is straightforward, numerical errors are al-
ways introduced and numerical oscillations from higher-
order differentiation are often large enough to invalidate
the results. Away to remedy this problem is to calculate the
even derivatives Cm;��2‘��z� according to
C�2‘�m;s �z� �
1

2mm!

1�������
2�
p

Z 1
�1

dk exp�ikz�

�
��1�2‘km�2‘�1

Im
0�kR�

~Bm�R; k�; (11a)

C�2‘�m;c �z� �
1

2mm!

1�������
2�
p

Z 1
�1

dk exp�ikz�

�
��1�2‘km�2‘�1

Im
0�kR�

~Am�R; k�: (11b)
Similarly, we can obtain the odd derivatives Cm;��2‘�1��z�
by
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C�2‘�1�
m;s �z� �

1

2mm!

1�������
2�
p

Z 1
�1

dk exp�ikz�

�
i��1�2‘km�2‘

Im0�kR�
~Bm�R; k�; (11c)

C�2‘�1�
m;c �z� �

1

2mm!

1�������
2�
p

Z 1
�1

dk exp�ikz�

�
i��1�2‘km�2‘

Im0�kR�
~Am�R; k�: (11d)

This method is very effective in eliminating numerical
oscillations and has been proven to work well for all the
trials up to 2‘ � 10 in this practice. The second option to
calculate C0

0�z� in the previous paragraph follows this
technique.

C. On-axis gradients

The generalized gradients C0
0�z�, C1;s�z�, and C1;c�z�

have special physical meanings. They express the on-axis
magnetic field components Bz�z�, By�z�, and Bx�z� at x �
y � 0, respectively. Since these gradients are obtained via
a number of mathematical manipulations, it would be
interesting to know if they agree with the on-axis field
data directly computed from the OPERA3D simulation.
This is a way to verify the theory and check all the
procedures of the mathematical calculations. In
Fig. 11(a) we compare the generalized gradient C1;s�z�
with the field data By�z� at x � y � 0 obtained directly
from OPERA3D. The agreement looks remarkably good. In
order to see the discrepancies of the two sets of data more
clearly, we plot their differences in Fig. 11(b). The maxi-
mum difference is about 0.017 G out of a total field range
of 3009.36 G. This corresponds to a relative error in 10�6
1-8



FIG. 11. (Color) (a) By at x � y � 0 versus z; (b) Difference in By between multipole expansion and simulation data.
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level, which is attributed to numerical errors. Indeed, the
generalized gradient C1;s�z� is an accurate representation
of the dipole field By�z� on the z axis. Figure 12 compares
the generalized gradient C0

0�z� and the OPERA3D data Bz�z�
at x � y � 0, and Fig. 13 compares the generalized gra-
dient C1;c�z� and the OPERA3D data Bx�z� at x � y � 0.
Again, the agreements are excellent. In principle, the 3D
multipole expansion is insensitive to the raw data errors
produced in simulations or experiments. This is due to a
basic property of the solutions of the Laplace equation: the
value of the magnetic scalar potential �m at some interior
point is an appropriately weighted average of its values
over any surrounding boundary.

The above results suggest that we can in fact obtain the
generalized gradients C0

0�z�, C1;s�z�, and C1;c�z� by the on-
01240
axis field components Bz�z�, By�z�, and Bx�z� at x � y � 0
directly from the 3D simulation data rather than using
complicated expansion procedures. This method is easier,
faster, and more accurate. This is especially true for C0

0�z�
since the other two options involve more numerical errors.

D. A 5th-order representation

To calculate the field at any point off the z axis within the
cylinder, Eq. (6) has to be used. In practice, a cut to a
certain order of the azimuthal harmonic number m and the
radial power number l has to be made. A 5th-order repre-
sentation of the magnetic field covers the multipoles up to
the regular dodecapoles and pseudododecapoles. In this
case, a total of 13 generalized gradients are required and
1-9
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they can be stored in the computer as interpolation functions for subsequent calculations. In this way much less memory is
required and the field calculations become quasianalytical. The explicit expressions for this representation are given below:

Br �
�
�

1

2
C�2�0 r�

1

16
C�4�0 r

3 �
1

384
C�6�0 r

5 � . . .
�

�

�
C1;s �

3

8
C�2�1;sr

2 �
5

192
C�4�1;sr

4 � . . .
�

sin��� �
�
C1;c �

3

8
C�2�1;cr

2 �
5

192
C�4�1;cr

4 � . . .
�

cos���

�

�
2C2;sr�

1

3
C�2�2;sr

3 �
1

64
C�4�2;sr

5 � . . .
�

sin�2�� �
�

2C2;cr�
1

3
C�2�2;cr

3 �
1

64
C�4�2;cr

5 � . . .
�

cos�2��

�

�
3C3;sr

2 �
5

16
C�2�3;sr

4 � . . .
�

sin�3�� �
�

3C3;cr
2 �

5

16
C�2�3;cr

4 � . . .
�

cos�3��

�

�
4C4;sr

3 �
3

10
C�2�4;sr

5 � . . .
�

sin�4�� �
�

4C4;cr
3 �

3

10
C�2�4;cr

5 � . . .
�

cos�4��

� �5C5;sr4 � . . .� sin�5�� � �5C5;cr4 � . . .� cos�5��

� �6C6;sr
5 � . . .� sin�6�� � �6C6;cr

5 � . . .� cos�6��

� . . . : (12a)

B� �
�
C1;s �

1

8
C�2�1;sr

2 �
1

192
C�4�1;sr

4 � . . .
�

cos��� �
�
C1;c �

1

8
C�2�1;cr

2 �
1

192
C�4�1;cr

4 � . . .
�

sin���

�

�
2C2;sr�

1

6
C�2�2;sr

3 �
1

192
C�4�2;sr

5 � . . .
�

cos�2�� �
�
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1

6
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3 �
1
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C�4�2;cr

5 � . . .
�

sin�2��

�

�
3C3;sr2 �

3

16
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�
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�
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3

16
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�
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�

�
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3 �
1
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�

cos�4�� �
�
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3 �

1

5
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5 � . . .
�

sin�4��

� �5C5;sr4 � . . .� cos�5�� � �5C5;cr4 � . . .� sin�5��

� �6C6;sr
5 � . . .� cos�6�� � �6C6;cr
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� . . . : (12b)
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5 � . . .
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cos���

�
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2 �
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�

sin�2�� �
�
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2 �
1
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4 � . . .
�

cos�2��

�

�
C�1�3;sr

3 �
1
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5 � . . .
�

sin�3�� �
�
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3 �
1
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C�3�3;cr

5 � . . .
�

cos�3��

� �C�1�4;sr
4 � . . .� sin�4�� � �C�1�4;cr

4 � . . .� cos�4��

� �C�1�5;sr
5 � . . .� sin�5�� � �C�1�5;cr

5 � . . .� cos�5��

� . . . : (12c)
We verify these equations by comparing their
results with the field data obtained directly in the
OPERA3D simulation. Figures 14 and 15 plot the field
components By versus y at x � z � 0, and Bx versus x
at y � z � 0, respectively. The agreement is very good.
In Figs. 16 and 17 we plot By versus x at y � z � 0, and
Bx versus y at x � z � 0. Again, we see good agreement
in general between the 5th-order representation and the
012401
simulation data, especially in the near-axis region.
The deviation between the two becomes large far
away from the axis. This is due to the cut off of
higher-order terms. A 9th-order (up to 20th pole) approxi-
mation can yield much better agreement, as shown by
the green curves in Figs. 16 and 17. This higher-order
effect will be explained in more detail in the next
subsection.
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FIG. 13. (Color) Bx at x � y � 0 versus z.

FIG. 12. (Color) Bz at x � y � 0 versus z.

FIG. 14. (Color) By versus y at x � z � 0.
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FIG. 15. (Color) Bx versus x at y � z � 0.

FIG. 16. (Color) By versus x at y � z � 0.

FIG. 17. (Color) Bx versus y at x � z � 0.
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E. Higher-order effects

Figrues 16 and 17 reveal that the results calculated from
the 5th-order representation deviate more from the simu-
lation data when space points are far away from the magnet
axis. This is caused by cutting off higher-order terms (m>
TABLE II. Contributions of multipole

By@x � 10 cm;
Multipole expansion

m � 1 m � 2 m � 3 m � 4 m � 5 m

r0 3009.360
r1 1.049
r2 1.792 8.950
r3 0.015 0.868
r4 �0:466 0.700 2.619
r5 0.004 �0:012 0.3
r6 0.056 �0:106 0.056
r7 0.003 �0:009 0.0
r8 �0:002 0.004 �0:001
r9 0.001 �0:005 0.0
Sum:
5th 3010.687 1.067 9.650 0.857 2.619 0.3
7th 3010.743 1.070 9.544 0.848 2.675 0.3
9th 3010.741 1.071 9.548 0.842 2.674 0.3

012401
6 and beyond r5) and can be corrected. In order to see this
more clearly, we write down explicitly a 9th-order formula
for By at y � z � 0 versus x when x is on the positive
axis:
By �
�
C1;s�0� �

1

8
C�2�1;s�0�x

2 �
1

192
C�4�1;s�0�x

4 �
1

9216
C�6�1;s�0�x

6 �
1

737 280
C�8�1;s�0�x

8

�

�

�
2C2;s�0�x�

1

6
C�2�2;s�0�x

3 �
1

192
C�4�2;s�0�x

5 �
1

11 520
C�6�2;s�0�x

7 �
1

1 105 920
C�8�2;s�0�x

9

�

�

�
3C3;s�0�x

2 �
3

16
C�2�3;s�0�x

4 �
3

640
C�4�3;s�0�x

6 �
1

15 360
C�6�3;s�0�x

8

�

�

�
4C4;s�0�x3 �

1

5
C�2�4;s�0�x

5 �
1

240
C�4�4;s�0�x

7 �
1

20 160
C�6�4;s�0�x

9

�

�

�
5C5;s�0�x

4 �
5

24
C�2�5;s�0�x

6 �
5

1344
C�4�5;s�0�x

8

�

�

�
6C6;s�0�x5 �

3

14
C�2�6;s�0�x

7 �
3

896
C�4�6;s�0�x

9

�

�

�
7C7;s�0�x6 �

7

32
C�2�7;s�0�x

8

�

�

�
8C8;s�0�x

7 �
4

9
C�2�8;s�0�x

9

�

� 9C9;s�0�x
8 � 10C10;s�0�x

9: (13)
The green curve for x > 0 in Fig. 16 is generated by
Eq. (13), which agrees with the simulation data very well.
It would be interesting to know the contributions to By
from each harmonic term up to m � 10. This is listed in
Table II for point A, which is indicated by a cross at x �
10 cm in Fig. 16. The summations on the rightmost column
give the contributions from different orders in r, while the
summations on the bottom rows give the contributions
from different harmonic number m for three different
orders in r. A full 9th-order representation yields By �
3023:23 G at x � 10 cm and y � z � 0. As compared to
the simulation data of 3023.13 G at the same point, the
difference is only 30 ppm. Therefore, we have demon-
strated that we can approximate the simulation data to
terms to By@x � 10 cm, y � z � 0.

y � z � 0

� 6 m � 7 m � 8 m � 9 m � 10 Sum

3009.360
1.049

10.742
0.883
2.853

02 0.294
�1:250 �1:243

23 �0:106 �0:089
�0:001 �0:664 �0:665

13 �0:011 0.042 0.041

02 0.000 0.000 0.000 0.000 3025.18
25 �1:250 �0:106 0.000 0.000 3023.85
38 �1:251 �0:117 �0:664 0.042 3023.23

Simulation data: By � 3023:13 G
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very high accuracy by higher and higher-order representa-
tions in the expansion.

In summary, the results from the 3D multipole expan-
sion are very good and achieve the level of accuracy
desired. In general, a 5th-order approximation can make
a fairly accurate analytical representation of the real field
distribution. The accuracy can be improved even more for
the field points far away from the axis by adding higher-
order terms of m> 6.

IV. SUMMARY

3D computing simulations with OPERA3D/TOSCA have
been performed to study the magnetic field of the injection
chicane dipoles D2 and D3 in the SNS ring. The simula-
tions have produced the field distribution in 3D grids that
can be used for further beam tracking study. The simula-
tions have also provided other useful information on the
performance characteristics of the magnets.

Based on the simulated radial field on the surface of a
long cylinder coaxial with the magnet z axis, the magnetic
field inside the cylinder has been expanded into the 3D
multipoles, consisting of the generalized gradients and
their derivatives. The 3D multipole expansion has given
much insight into the magnet physics in terms of harmon-
ics and pseudoharmonics. The 3D multipole expansion is
analytical in nature when one fits the generalized gradients
of numerical data into interpolation functions. This feature
will prove to be very useful in further beam dynamics
study. A 5th-order representation of the chicane dipole
field from the 3D multipole expansion has been presented.
The effects of even higher-order terms on the field are
discussed. Overall, the agreements between the expansion
data and the simulation results are very good. The theory
and techniques presented in this paper can be equally
applied to experimental data on a cylindrical surface, as
well as to other accelerator magnets, such as quads, sextu-
poles, octupoles, etc.
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