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Transverse impedance of a smooth flat taper
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Stupakov has used a perturbation method to estimate the transverse impedance at zero frequency of a
rectangular collimator having characteristic taper length ‘, half-width w, and average vertical half-
aperture b0, under the condition b0 � w� ‘. We use the boundary perturbation method to approximate
the transverse impedance of a flat, slowly tapered chamber in the complementary limit, w � 1.
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I. INTRODUCTION

Small gap undulators are a key element in the design of
modern high brightness synchrotron light sources. An
important design issue is the determination of the trans-
verse impedance of the tapered vacuum chambers for these
devices [1]. The geometric impedance of a slowly tapered
structure with circular cross section has been discussed by
Yokoya [2]. Further understanding was provided by
Stupakov [3] who showed that Yokoya’s results were valid
down to zero frequency. Stupakov [4,5] then presented an
analysis of a flat tapered structure, and found that the
impedance at low frequency can be significantly larger
than that of a chamber with circular cross section.

In order to study the transition between circular and flat
geometry, Podobedov and Krinsky [6] recently considered
the case of a tapered chamber with elliptical cross section.

Yokoya’s [2] result for the low frequency transverse
impedance of an axially symmetric tapered transition is
given by

Zround
? �k� �

jZ0

2�

Z 1
�1

dz
a0�z�2

a�z�2
; (1.1)

where k is the wave number of the perturbing field, Z0 is
the free space impedance, a�z� is the radius of the tapered
chamber, and the prime denotes derivative with respect to
the axial coordinate z. If the variation of the radius takes
place over a characteristic distance ‘, then Yokoya’s ap-
proximation holds under the conditions a0 � ‘ and ka2

0 �
‘, where a0 is the average radius.

Stupakov [4] has derived an approximation for the ver-
tical impedance of a flat rectangular chamber of constant
half-width w and varying half-gap b�z�,

Zflat
y �k� �

jZ0w
2

Z 1
�1

dz
b0�z�2

b�z�3
: (1.2)

If the variation of the gap takes place over a distance ‘, then
Stupakov’s approximation can be expected to hold under
the conditions b0 � w� ‘ and kw2 � ‘, where b0 is the
average half-gap. The impedance of the flat chamber (1.2)
has a form similar to Eq. (1.1) for a circular chamber, but is
larger by a factor ��w=b0. Within this approximation the
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impedance increases linearly with the chamber width. It is
intuitively clear that this linear rise cannot continue for-
ever, and one expects that the impedance will reach a
saturation value once the width is large compared to the
axial length scale ‘. This expected behavior is not exhib-
ited within Stupakov’s [4] first-order perturbation theory.

In order to achieve more insight into this problem, we
use the boundary perturbation method [7–10] to derive an
analytic approximation for the transverse impedance of a
flat tapered chamber of infinite width and slowly varying
vertical aperture. Our calculation is an extension from
circular to flat geometry of the approach developed by
Cooper, Krinsky, and Morton [9].
II. CIRCULAR CHAMBER

Let us review the results obtained for the transverse
impedance of an axially symmetric chamber with slowly
varying radius. The fractional deviation of the radius from
its average value a0 is denoted by S�z� and is expressed as a
Fourier integral

S�z� �
a�z� � a0

a0
�
Z 1
�1

dqA�q�ejqz: (2.1)

The approaches of Yokoya [2] and Stupakov [3–5] require
only that the derivative S0�z� be small, whereas the bound-
ary perturbation method [7–9] requires the additional re-
striction that S�z� also be small.

The work presented in Refs. [8,9] was carried out for a
structure that is periodic in the axial direction. Yokoya [2]
took the long period limit to obtain the impedance for a
nonperiodic structure and found

Z?�k� � 2jZ0

Z 1
�1

dqq2jA�q�j2
�

1

u2

�
�
uJ1

0�u�
J1�u�

	
J1�u�
uJ1

0�u�

��
u�a0

�����������������
k2��k�q�2
p : (2.2)

Expanding the Bessel functions in terms of their zeros, he
also wrote the impedance in the following form:
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FIG. 1. The imaginary (a) and real (b) parts of the transverse
impedance versus ka0, for g=a0 � 10, normalized by the
Yokoya value Z0��"�

2=�2�g�. Quantities plotted are dimension-
less.
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Z?�k� �
�2jZ0

a2
0

Z 1
�1

dqq2jA�q�j2



X1
n�1

�
1

��2
n � 1��kq� q2

2 �
�2
n

2a2
0
�
	

1

kq� q2

2 �
�2
n

2a2
0

�
;

(2.3)

where J1��n� � 0 and J01��n� � 0. If a�z� varies on the
length scale ‘, then A�q� will be small for q
 1=‘ . In this
case, we see that Eq. (2.3) reduces to Yokoya’s approxi-
mation (1.1) when a0 � ‘ and ka2

0 � ‘. Equation (2.3)
holds unambiguously for 0 � k < �1=a0, and the imped-
ance is seen to be positive imaginary in this region.

In order to find a useful expression for the impedance for
k > �1=a0, we rewrite Eq. (2.3) in a form suggested by the
work of Warnock [10]. Using

q2jA�q�j2 �
Z dz1

2�
dz2

2�
ejq�z1�z2�S0�z1�S

0�z2�; (2.5)

Eq. (2.3) implies

Z?�k� �
jZ0

�a2
0

X1
n�1

�
F�kn

0; k�

��2
n � 1���jkn

0�
	
F�kn; k�
��jkn�

�
; (2.6)

where

kn �

������������������
k2 �

�2
n

a2
0

s
and kn0 �

�����������������
k2 �

�2
n

a2
0

s
; (2.7)

F�p; k� �
Z 1
�1

dz1

Z 1
�1

dz2S0�z1�S0�z2�ejk�z1�z2�ejpjz1�z2j

� H�p; k� 	H�p;�k�;

(2.8)

H�p; k� �
Z 1
�1

dz1

Z z1

�1
dz2S

0�z1�S
0�z2�e

j�p	k��z1�z2�:

(2.9)

Since H��p; k� � H��p�;�k�, it follows that F�p; k� �
H�p; k� 	H���p�; k�. Hence, if k is small enough to
assure that all kn and kn0 are pure imaginary, then Z?�k�
is pure inductive. The square roots in Eq. (2.7) are chosen
to be positive imaginary for negative real argument and
negative real for positive real argument. This assures that
both ImZ?�k� and ReZ?�k� are positive for positive real k.
The impedance for negative k can be determined from
Z?��k� � �Z�?�k�. Equation (2.6) is a useful representa-
tion for numerical evaluation.

Let us now consider an explicit example [10] of a wall
perturbation:

S�z� � �" cos
�
�z
g

�
� g � z � g

� " jzj � g: (2.10)
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In this case,

A�q� � �
�" sinqg

q��2 � q2g2�
	 "��q�; (2.11)

where ��q� is the Dirac delta function and

H�g; p; k� � ��"�2
�

jg�k	 p�

g2�k	 p�2 � �2

	
�2�1� e2jg�k	p��

�g2�k	 p�2 � �2�2

�
: (2.12)

For g=a0 � 10, the real and imaginary parts of the trans-
verse impedance are plotted in Fig. 1. When k is in the
vicinity of the roots k��n=a0 and k� �n=a0 an apparent
singular behavior is observed. As discussed by Warnock
[10] in his paper on the longitudinal impedance, it is likely
that this is an artifact of the perturbation theory. In Fig. 1,
the singular behavior that occurs over a narrow range of k
is not apparent.
III. FLAT CHAMBER

To calculate the vertical impedance, we begin by con-
sidering the electromagnetic field generated by a vertical
dipole distribution at x � y � 0 situated between perfectly
conducting parallel plates separated by half-distance b0.
Assuming the electrons are highly relativistic ��! 1�, the
electromagnetic field can be written in the form (see
Appendix A)

B�0�y � E�0�x � �
@�
@x

; (3.1)

�B�0�x � E�0�y � �
@�
@y

; (3.2)

B�0�z � E�0�z � 0; (3.3)
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where all fields are multiplied by the factor ej!t�jkz. The
potential � is the sum of the contribution of the dipole at
the origin (with dipole moment � � 2e�) and the images
induced by the parallel plates,

� � �
X1

n��1

y	 2nb0

x2 	 �y	 2nb0�
2 : (3.4)

This can be rewritten in a form more useful for calculation,

� � �
�

2b0

sin��y=b0�

cosh��x=b0� � cos��y=b0�
: (3.5)

The vertical impedance is expressed in terms of the fields
via �Z0 � 4�=c�

Zy�k� �
jZ0

4�e�

Z 1
�1

dz�Ey 	 Bx�: (3.6)

It follows from Eq. (3.2) that the impedance vanishes for
constant separation between the plates.

Following the approach of Ref. [9], we consider a peri-
odic variation of the half-gap given by the Fourier expan-
sion

b�z� � b0

�
1	

X1
p��1

~Cpe
j�2�p=L�z

�
: (3.7)

The boundary conditions for a perfectly conducting wall
are that both parallel components of the electric field and
the normal component of the magnetic field vanish at y �
�b�z�. The perturbation technique [9] involves expanding
the fields in orders of the quantity ~Cp defined in Eq. (3.7),
e.g.,

Ey � E�0�y 	 E
�1�
y 	 E

�2�
y : (3.8)

The zeroth-order approximation consists of the fields that
would be found between parallel plates with constant
separation, 2b0. Order-by-order, the boundary conditions
at y � �b�z� are replaced [7] by appropriate boundary
conditions at y � �b0, as described in Appendix B.

To carry out the perturbation expansion, we first deter-
mine the zeroth-order vertical electric field on the plates,

E�0�y �x; b0� � �
�2

2b2
0

1

1	 cosh��x=b0�

� �
Z 1

0
d�

� cos�x
sinh�b0

; (3.9)

and the derivative with respect to the vertical coordinate of
the vertical magnetic field on the plates,

@B�0�y
@y
�x; b0� �

@E�0�x
@y
�x; b0� �

@E�0�y
@x
�x; b0�

� ��
Z 1

0
d�

�2 sin�x
sinh�b0

: (3.10)

The higher-order fields can be expressed in the form,
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f�x; y; z; t� �
Z 1
�1

dkejk�ct�z�
X1

p��1

ej�2�p=L�z



Z 1
�1

d�~f�y; k; p;��

8><>:
cos�x

or

sin�x

9>=>;; (3.11)

where

Ey; Ez; Bx / cos�x; Ex; By; Bz / sin�x: (3.12)

From the wave equation, it follows that�
��2 	

@2

@y2 � k
2
p 	 k2

�
~f � 0; (3.13)

with

kp �
2�p
L
� k: (3.14)

The curl equations (Appendix A) can then be used to show
that

By; Ex; Ez / sin�py; Bx; Bz; Ey / cos�py; (3.15)

where

�2
p � �2

p ��2; �2
p � k2 � k2

p: (3.16)

We now use the boundary conditions at y � �b0 to
express the first-order fields in terms of the zeroth-order
fields (see Appendix B), and find

~E �1�z �b0; k; p;�� � � ~E�0�y �b0; k; 0; ��b0
~Cp

2�pj
L

� �b0
~Cp

2�pj
L

�
�

sinh�b0
; (3.17)

~B �1�y �b0; k; p;�� � �
@ ~B�0�y
@y
�b0; k; 0; ��b0

~Cp

� b0
~Cp�

�2

sinh�b0
; (3.18)

~E �1�x �b0; k; p;�� � �
@ ~E�0�x
@y
�b0; k; 0; ��b0

~Cp

� b0
~Cp�

�2

sinh�b0
� ~B�1�y �b0; k; p;��:

(3.19)

From the curl equations, one can show

@ ~B�1�z
@y

� jkp ~B�1�y 	 jk ~E�1�x � j�kp 	 k� ~B
�1�
y � j

2�p
L

~B�1�y :

(3.20)

It then follows from Eqs. (3.15) and (3.17) that
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~E �1�z �y; k; p;�� � Dp���
sin�py

sin�pb0
(3.21)

and from Eqs. (3.15) and (3.20) that

~B �1�z �y; k; p;�� � �Dp���
cos�py

�p sin�pb0
; (3.22)

where we have defined

Dp��� � ��b0
~Cp

2�pj
L

�
sinh�b0

: (3.23)

Having determined the first-order fields, we can now use
the second-order boundary condition to show that
(Appendix B)

~E �2�z �b0; k; 0; �� � �
X
q

�
@ ~E�1�z
@y

�
q
b0

~C�q

�
X
q

� ~E�1�y �qb0
~C�q

2�j��q�
L

: (3.24)

The curl equations imply (see Appendix A)

�2
p

~E�1�y � jkp
@ ~E�1�z
@y
	 jk

@ ~B�1�z
@x

: (3.25)

Inserting this into Eq. (3.24), we find

~E�2�z �b0; k; 0; �� � �
X
q

b0
~C�q

�2
q 	

2�q
L kq

�2
q

�
@ ~E�1�z
@y

�
q

�
X
q

b0
~C�q

2�q
L k

�2
q

�
@ eBz
@x

�
q
: (3.26)

Equations (3.21), (3.22), and (3.23) together with (3.26)
imply

~E�2�z �b0; k; 0; �� � j�kb2
0

�
sinh�b0

X
q

j ~Cqj
2

�
2�q
L

�
2



cos�qb0

�q sin�qb0
: (3.27)

The vertical impedance per period is given by

Zy�k� �
jZ0

4�e�

Z L=2

�L=2
dz�Ey 	 Bx�: (3.28)

From the curl equations (Appendix A), we see that

@ ~Ez
@y
� �jk� ~Ey 	 ~Bx� for p � 0: (3.29)

Using this in Eq. (3.28), yields
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Zy�k� �
jZ0

4�e�
L
j
k
@Êz
@y
�y � 0; k; p � 0; x � 0�; (3.30)

where

Ê z�y; k; p � 0; x� �
Z 1
�1

d�
sinh�y
sinh�b0

~Ez�b0; k; p

� 0; �� cos�x: (3.31)

From Eqs. (3.21), (3.30), and (3.31), it follows that there is
no first-order contribution to the transverse impedance.
Using Eqs. (3.27), (3.30), and (3.31), the second-order
contribution is found to be

Zy�k� �
�jZ0

2�
Lb2

0

Z 1
�1

d�
�

�
sinh�b0

�
2X
q

j ~Cqj
2

�
2�q
L

�
2



cos�qb0

�q sin�qb0
: (3.32)

Now let us consider the limit of long period length,
L! 1. We define

Q �
2�q
L

and �2 � 2Qk�Q2 ��2; (3.33)

and introduce A�q� via

b�z� � b0

b0

�
X
q

L�Q
2�

~C�Q�ejQz !
Z 1
�1

dQA�Q�ejQz:

(3.34)

It then follows from Eq. (3.32) that

Zy�k� � �jZ0b2
0

Z 1
�1

d�
�

�
sinh�b0

�
2



Z 1
�1

dQjA�Q�j2Q2 cot���Q;�; k�b0�

��Q;�; k�
: (3.35)

Exchanging the order of integration, it is seen that

Zy�k� � jZ0

Z 1
�1

dQjA�Q�j2Q2f�Qb0; kb0�; (3.36)

where

f�	; 
� �
Z 1
�1

d�
�

�
sinh�

�
2 coth

���������������������������������
	2 	 �2 � 2	


p���������������������������������
	2 	 �2 � 2	


p :

(3.37)

IV. DISCUSSION OF RESULTS

Let us first consider the impedance at zero frequency,

Zy�0� � jZ0

Z 1
�1

dQjA�Q�j2Q2f�Qb0; 0�: (4.1)

Suppose b�z� varies on the axial length scale ‘
 b0, then
A�Q� will be small for Q
 1=‘. In this case we can use
the small argument approximation (see Appendix C),
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f�	; 0� �
�
j	j
� 1 �	! 0�: (4.2)

Employing Eq. (4.2) in (4.1), we find

Zflat
y �0� �

j�Z0

b0

Z 1
�1

dQjA�Q�j2jQj: (4.3)

This can be compared with Yokoya’s [2] result (1.1) for the
circular case,

Zround
? �0� � jZ0

Z 1
�1

dQjA�Q�j2Q2 � jZ0

Z 1
�1

dz
2�

S0�z�2:

(4.4)

For a slow taper, the flat impedance is larger than the round
impedance by a factor ��‘=b0. Equation (4.3) indicates
why Stupakov’s perturbation approach is not applicable for
plates of infinite width. In this case the impedance is not
expressible simply in terms of the derivative of S�z�.

To compare with Stupakov’s [4] result for a flat taper of
finite half-width w, let us assume b0 � w� ‘ and intro-
duce a low wave number cutoff, �b0=w, in the integral
defining f�	; 0� in Eq. (3.37),

fw�	; 0� � 2
Z 1
�b0=w

d�
�2

sinh2�

cosh
�����������������
�2 	 	2

p�����������������
�2 	 	2

p
sinh

�����������������
�2 	 	2

p
(4.5)

where � is an unknown constant. Since �b0=w is small, it
follows from the analysis of Appendix C that

fw�0; 0� �
2w
�b0
� 1; (4.6)

so

Zy�0� � jZ0
2w
�b0

Z 1
�1

dQjA�Q�j2Q2

� jZ0
2w
�b0

Z 1
�1

dz
2�

S0�z�2: (4.7)

This has the same form as Stupakov’s result [4], which we
expect to be correct for b0 � w� g, and we can get
agreement with Stupakov [4] by taking � � 2=�. In the
case w
 g
 b0, we expect Zy�0� will saturate at the
value given in Eq. (4.3).

We can write the impedance in a form analogous to
Eq. (2.7) which we derived for circular cross section. We
use Eq. (2.5) and the identity.

cos�b0

� sin�b0
�
X1
n�0

�nb0

��b0�
2 � �n��2

�n � 1 for n � 0

�n � 2 for n > 0

 ! (4.8)

in Eq. (3.35) to derive
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Zy�k� �
jZ0

2�b0

Z 1
�1

d�
�2

sinh2�

X1
n�0

�nF�kn; k�
2��jkn�b0

; (4.9)

where

knb0 �
�������������������������������������������
�kb0�

2 � �2 � �n��2
q

; (4.10)

F�p; k� � H�p; k� 	H�p;�k�; (4.11)

H�p; k� �
Z 1
�1

dz1

Z z1

�1
dz2S

0�z1�S
0�z2�e

i�p	k��z1�z2�:

(4.12)

This form is convenient for numerical evaluation.
Let us again consider the example [Eq. (2.10)]

S�z� �
b�z� � b0

b0
� �" cos

�z
g

��g < z < g�

� " �jzj> g�: (4.13)

In this case,

Q2jA�Q�j2 �
�2"2sin2�gQ�

��2 � g2Q2�2
; (4.14)

so Eq. (3.36) becomes

Zy�k� �
2jZ0

b0
��"�2

Z 1
0
d	

sin2�g	=b0�

��2 � g2	2=b2
0�

2 f�	; kb0�:

(4.15)

For b0 � g, we can use the small argument approximation
(4.2) for f�	; 0� to show that

Zy�0� �
2jZ0

b0
��"�2

�
0:111�

b0

4�g

�
: (4.16)

More generally, we expect Eq. (4.16) will hold under the
condition, b0 � g� w.

For S�z� as specified in Eq. (4.13), the function H
defined in Eq. (4.12) is

H�g; p; k� � ��"�2
�

jg�k	 p�

g2�k	 p�2 � �2

	
�2�1� e2jg�k	p��

�g2�k	 p�2 � �2�2

�
: (4.17)

Using Eqs. (4.11) and (4.17) in the representation of the
impedance given in Eq. (4.9), we numerically evaluate the
impedance as a function of k. The results are plotted in
Fig. 2. To obtain the plots shown in Fig. 2, we have given k
a small imaginary part�10�3 in order to smooth out some
singular behavior occurring when the quantity in the square
root in Eq. (4.10) vanishes. As discussed by Warnock [10]
for the longitudinal impedance, we believe this singular
behavior is an artifact of perturbation theory.
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FIG. 2. The real and imaginary parts of the vertical impedance for the flat taper of infinite width �g=b0 � 10 and 5�. The impedance
is normalized by the approximate value at zero frequency, ImZy�0� � �0:222Z0=b0���"�

2. Quantities plotted are dimensionless.
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The value of the ImZy is seen to fall from its maximum
value over a wave number range of �k� 1=g: The
‘‘trapped mode’’ resonance observed in simulations by
Blednykh and Wang [11] is not found within the approx-
imations we have made.
V. CONCLUDING REMARKS

The work of Stupakov [4,5] demonstrated that the im-
pedance of flat tapered structures can be significantly
larger than that of tapers with circular cross section. In
fact, he showed that in the regime b0 � w� ‘ and
kw2 � ‘, ImZy is expected to increase linearly with the
width w. His analysis does not cover the regime of larger
widths for which the linear increase must saturate. In this
paper, we take a first step toward providing an analytic
description of wide tapers by determining the impedance
of a flat taper of infinite width using the boundary pertur-
bation method employed successfully by Cooper, Krinsky,
and Morton [9] in the case of axially symmetric structures.
The validity of this approximation requires not only that
the taper be slow, but also that the total gap variation be
restricted. In future work, it is hoped that the method of
Stupakov can be extended to cover wide tapers whose
width w is on the order of or larger than the taper length
‘. Such a result would not restrict gap variation of the total
taper.

Let us note that the impedance at zero frequency found
in Eq. (4.3) is not easily expressible in the form expected
from Stupakov’s perturbation theory. This indicates that in
order to apply Stupakov’s approach [4,5] a significant
modification of the method of solution will be required.
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APPENDIX A: CURL EQUATIONS

The Maxwell curl equations are

@By
@x
�
@Bx
@y
� jkEz

@Bx
@z
�
@Bz
@x
� jkEy

@Bz
@y
�
@By
@z
� jkEx

@Ey
@x
�
@Ex
@y
� �jkBz

@Ex
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@Ez
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@Ez
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@Ey
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Using these it follows that
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	 jkEy
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@Ez
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where
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�2
p � k2 � k2

p kp �
2�p
L
� k:

When Ez � 0; Bz � 0; kp � �k�p � 0�, the curl equa-
tions reduce to

@By
@x
�
@Bx
@y
� Z0Jz

�
Z0 �

4�
c

�
� jkBx � jkEy

jkBy � jkEx
@Ey
@x
�
@Ex
@y
� 0

� jkEx � �jkBy

jkEy � �jkBx:

It is now easily seen that in this case the fields are expres-
sible in terms of a scalar potential via

� Bx � Ey � �
@�
@y

By � Ex � �
@�
@x

@2�

@x2 	
@2�

@y2 � �Z0Jz:
APPENDIX B: BOUNDARY CONDITIONS

The boundary conditions for the perfectly conducting
wall are that both the parallel components of the electric
field and the normal component of the magnetic field
vanish at y � �b�z�.�

Ez 	
db
dz
Ey

�
y��b�z�

� 0; (B1)

�Ex�y��b�z� � 0; (B2)

�
By �

db
dz
Bz

�
y��b�z�

� 0: (B3)

We can expand the field components in a Taylor series such
as

�Ez�b�z� � �Ez�b0
	

�
@Ez
@y

�
b0

�b�z� � b0� 	
1

2

�
@2Ez
@y2

�
b0


 �b�z� � b0�
2: (B4)

For example combining Eqs. (B1) and (B4), we obtain the
constraint at y � b0,
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�Ez�b0
� �

�
@Ez
@y
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�b� b0� �

�
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�b� b0�
2

2

� �Ey�b0

db
dz
�

�@Ey
@y

�
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�b� b0�
db
dz
: (B5)

Introducing the Fourier transform as described in
Eq. (3.12), the constraint in (B5) becomes (all quantities
are evaluated at y � b0)

� ~Ez�p � �
X
q

�
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�
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~Cp�q
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~Cn

�
X
q

�@ ~Ey
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�
q
b0

~Cp�q�nb0
~Cn

2�nj
L

: (B6)

The field components are now expanded in orders of ~Cp,
e.g.

~E y � ~E�0�y 	 ~E�1�y 	 ~E�2�y ; (B7)

where ~E�0�y is the solution for a constant radius b0, the term
~E�1�y is linear and the term ~E�2�y quadratic in the coefficients
~Cp.

We recall that E�0�z � B�0�z � 0, and that the zeroth-order
field components, e.g., � ~E�0�y �p, are only nonvanishing for
p � 0. Then to first order, we obtain the constraints

~E �1�z �b0; k; p;�� � � ~E�0�y �b0; k; 0; ��b0
~Cp

2�pj
L

; (B8)

~B �1�y �b0; k; p;�� � �
@ ~B�0�y
@y
�b0; k; 0; ��b0

~Cp; (B9)

~E �1�x �b0; k; p;�� � �
@ ~E�0�x
@y
�b0; k; 0; ��b0

~Cp: (B10)

We can also derive the second-order constraint,

~E �2�z �b0; k; 0; �� � �
X
q

�
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@y
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q
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X
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~C�q
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L

�
X
n

�
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�
0
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2�nj
L

;

(B11)

where the last term vanishes since the summand is odd in n.
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APPENDIX C: DERIVATION OF EQ. (4.2)
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