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Electrostatic deflectors and dispersion suppressors: Their formulation and application
to a storage ring
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A single particle dynamics in beam bending elements including electrostatic fields is formulated. A
general form of scalar potentials of electrostatic deflectors is obtained from solutions of the Maxwell
equation having axial symmetry. Equations of motion of a charged particle in various types of the
electrostatic deflectors are derived based on Hamiltonian formalism. The equation of motion in dispersion
suppressors, which are a combination of the electrostatic deflectors and dipole magnets, are also
formulated and generalized. Application of one of the dispersion suppressors to an existing heavy ion
storage ring S-LSR provides the better condition for generation of a multidimensional crystalline beam. It
is shown that this condition is achievable by real fabricated devices composed of a dipole magnet and an
electrostatic deflector equipped with intermediate electrodes. The effectiveness of this dispersion
suppressor for the real operation is shown by a particle tracking including the nonlinear field component.
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I. INTRODUCTION

In recent years, molecular dynamics (MD) studies
showed that when a beam circulating in a storage ring is
strongly cooled, the phase transition of the beam is ex-
pected [1,2]. The phase transition to a crystalline beam
state occurs, if the ring has operating points satisfying so-
called crystal formation and maintenance conditions [3,4],
and a strong three-dimensional cooling force [5,6] is ap-
plied. The formation condition is that the Lorentz factor of
the beam must below the transition energy �0 < �t. The
maintenance condition is that the ring must have operating
points below the betatron tune of the value N=2

���
2
p

, where
N is the superperiodicity of the ring. Many advanced MD
simulations have shown the creation of the crystalline
beams in realistic storage ring models [2–4,6–8], when
the above conditions are satisfied. On the other hand, it has
also been known that the creation of a crystalline beam
which has many particles is difficult without an ideal
tapered cooling force [9] because of the shear heating
induced by the dispersion [10]. It has been suggested that
a storage ring constructed by a bending element simulta-
neously using electric field and magnetic field can elimi-
nate the shear [11]. This element also can eliminate the
linear dispersion of the beam [12,13], together with the
shear [14]. Therefore such deflector is called a dispersion
suppressor. In a (linear) dispersion-free storage ring con-
structed with the dispersion suppressor, the stability of the
crystalline beam structure is thought to be greatly im-
proved, even if the cooling force is not tapered.

At S-LSR [15], laser cooling experiment of a 35 keV,
24Mg� beam is to be performed, aiming at the generation
of the ultimate-low-temperature beam, furthermore the
creation of crystalline beam is also to be studied.
The deflection elements of S-LSR are the dispersion
suppressors constructed with a dipole magnet and a cylin-
05=8(12)=124001(12) 12400
drical electrostatic deflector. S-LSR can operate as a con-
ventional magnetic storage ring and a (linear) dispersion-
free storage ring. S-LSR satisfies the formation and main-
tenance conditions for crystalline beams at the operation
which uses only the magnetic field, although it requires a
tapered cooling for the generation of multidimensional
crystalline beams. In Ref. [14], the condition for crystalline
beams in dispersion-free rings was investigated. It was
found that the formation condition is satisfied in any
dispersion-free storage ring, in principle. The maintenance
condition is thought to be satisfied in a dispersion-free
storage ring having the large number of lattice periods.
However, in the case of the dispersion-free mode of S-LSR
utilizing the cylindrical electrostatic deflector, there was no
operating point satisfying the maintenance condition. It
was found that the reason is the enhancement of the radial
focusing induced by the electric field.

In this paper, in order to overcome this problem we take
notice of the structure of the electrostatic deflector. Various
structure of electrostatic deflector is possible and they have
different focusing effects on beams in the deflector [16–
19]. In Ref. [11], it was suggested that the focusing effect
of the dispersion suppressor can be changed, if the field
distribution of the electrostatic deflector or bending magnet
is changed. The electrostatic potentials of the electrostatic
deflectors used to derive the equation of motion must be the
right solutions of Maxwell equation. Thus, in Sec. II, we
carefully derived the general form of electrostatic potential
from the Maxwell equation. Using this electrostatic poten-
tial, the linear equation of motion of a charged particle in
the electrostatic deflector is derived. Furthermore, disper-
sion suppressors having a uniform magnetic field and the
general electrostatic field are considered, and the single
particle equation of motion in the dispersion suppressors is
derived. In Sec. III, using the formula of Sec. II, the beam
dynamics at S-LSR is investigated. It is shown that the
1-1 © 2005 The American Physical Society

http://dx.doi.org/10.1103/PhysRevSTAB.8.124001


IKEGAMI et al. Phys. Rev. ST Accel. Beams 8, 124001 (2005)
beam dynamics at S-LSR is greatly changed, when a
different type of dispersion suppressor is introduced.
Especially, when a dispersion suppressor having an electric
field of the field index 0 is introduced, S-LSR becomes to
have operating points satisfying the maintenance condition
for crystalline beam. In Sec. IV, a practical method to
realize the electric field for such dispersion suppressor is
shown. From the third-order Hamiltonian, a second-order
transport equation [20] of dispersion suppressor for track-
ing charged particle is derived. A particle tracking includ-
ing the nonlinear field component of the dispersion
suppressor is performed and the dynamic aperture is cal-
culated. Using this result, the nonlinear effect on the crys-
talline beam, and the beam current needed for the
experiment generating multidimensional crystalline beam
are discussed.

II. ELECTROSTATIC DEFLECTORS AND
DISPERSION SUPPRESSORS

A. Scalar potential of electrostatic deflectors

A strict formula of the scalar potential of electrostatic
deflectors is derived in order to formulate the single parti-
cle dynamics in deflection elements including electrostatic
fields. In accelerator physics, the Frenet-Serret coordinate
system is usually used [21]. In this coordinate system, x
and y describe the horizontal and the vertical position
12400
deviations from the reference orbit, s is the arc length
measured along the reference orbit from the reference
initial point. The radius of the curvature of the reference
orbit is denoted as �0. In the electrostatic deflector, the
scalar potential is supposed to satisfy the following con-
ditions. The first condition is the electrostatic potential has
no s dependence. This means the reference particle is not
accelerated in the direction of the movement. The electro-
static deflectors used in actual electrostatic storage rings,
such as cylindrical and spherical electrostatic deflector
[17–19,22,23], satisfy this condition. This condition sim-
plifies the treatment of the electrostatic deflector in the
optics calculation, since the kinetic energy of the reference
particle conserves. The second condition is that the electro-
static potential should be symmetric about y. This condi-
tion means the electrostatic deflector has a structure
symmetric about the median plane.

When the scalar potential is expressed in a power series
of particle coordinates [24,25],

�D �
X
i;j>0

Aij
xi

i!
yj

j!
; (1)

the coefficients are decided from the Laplace equation and
the above conditions. Substituting Eq. (1) into the Laplace
equation, and imposing the symmetry condition, the scalar
potential of electrostatic deflectors becomes
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The electric field component on the reference orbit is
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Therefore, A10 decides the strength of the bending effect. In the following, the coefficients of Eq. (2) are supposed to be
A00 � 0, A10 � V0=�0, An0 � Kn�1V0=�n0 .

Furthermore, we define the field index of the bending electric field by

n � �
�0
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: (4)

When these coefficients are substituted to Eq. (2), the potential becomes
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This form is useful to derive the equation of motion approximated in finite order.
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If one needs a complete solution, not expanded form,
one can obtain it by solving the Maxwell equation directly
(see Appendix A). This method leads the complete form of
the electrostatic potentials for the spherical, cylindrical,
and hyperboloidal electrostatic deflector, etc. Of course,
the power expansions of these electrostatic potentials be-
come the form of Eq. (5).

B. Single particle dynamics in electrostatic
deflectors

In this section, the single particle dynamics in electro-
static deflectors is formulated by using the general electro-
static potential [Eq. (5)]. The Frenet-Serret coordinate
system used in the previous section is utilized. The charged
particle is supposed to be bent with the bending radius �0.
Since the electric field strength is V0=�0 along the design
orbit, the equilibrium reference momentum becomes

p0 �
qV0

�0c
; (6)

where�0 is the velocity of the reference particle divided by
light speed c.

When the path length s is selected as the independent
variable, the relativistic Hamiltonian which governs the
motion of a charged particle in a bending electric field
and a magnetic field is given by [26]

H � �
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x
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� ���������������������������������������������������������������������
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2
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2
y

s

� q
�

1�
x
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�
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where m and q are the rest mass and charge state of
particles, respectively, �D is the scalar potential of the
electrostatic deflector, As is the s component of the vector
potentials of bending magnets, pt is the canonical momen-
tum conjugate to time t. pt relates to the energy of the
particle by a relation pt � �E. When the canonical mo-
mentum is redefined by

�E
cp0

�
E
cp0
�

1

�0
; (8)

using the relative time �c�t � ct0 � ct and the
Hamiltonian is divided by the reference momentum p0, it
is transformed to
TABLE 1. Field index of

Structure of electrostatic deflector Spheri

Value of n 2
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where the first term of the right-hand side has arisen since
the canonical variables �t; pt� have been changed to
��c�t;�E=cp0� (see Appendix B). The Hamiltonian has
been divided by p0, and the transverse momenta have been
normalized to be dimensionless; namely, ~px�y� � px�y�=p0.
In the case of the electrostatic deflectors, As � 0.
Substitution of the scalar potential Eq. (5) and the equilib-
rium condition Eq. (6), expansion of the square root, and
leaving up to second-order terms of the canonical variables
leads the approximated Hamiltonian of the electrostatic
deflectors
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where �0 is the Lorentz factor of the reference particle;

�0 � �
���������������
1� �2

0

q
��1, the constant term has been neglected.

From this Hamiltonian, the linear equations of motion for a
set of canonical variables �x; ~px; y; ~py;�c�t;�E=cp0� are
obtained. Especially, the horizontal and the vertical equa-
tions of motion are
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d2y

ds2 � ��n� 1�
y
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0

: (11b)

From theses equations, it is found that the focusing strength
of the electrostatic deflectors is decided by the field index
n. The field indices of the spherical, cylindrical, and hyper-
boloidal electrostatic deflector are listed in Table I. The
possible value of the field index is an arbitrary real number.
Various field indices are realized by the electrostatic po-
tentials obtained from the Maxwell equation (see
Appendix A) and their linear combinations. In nonrelativ-
istic limit �0 ! 1, the second term of the right-hand side of
Eq. (11a) becomes 1=�0 � �W=W0, whereW0 is the kinetic
electrostatic deflectors.

cal Cylindrical Hyperboloidal

1 �1
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energy of the reference particle, �W is the energy differ-
ence including the potential energy.

C. Single particle dynamics in dispersion suppressors

In this section, single particle dynamics in dispersion
suppressors of the combination of a uniform magnetic field
and the general electric field obtained in Sec. II A is
investigated. The uniform magnetic field is generated by
a flat pole dipole magnet. Then, the vector potential has the
form

As � �
By
2
��0 � x�; (12)

where By is the magnetic flux density of the dipole magnet,
the other components are 0 �Ax � Ay � 0�. The direction
of the electric field is the reverse to the case of electrostatic
deflectors, in order to compensate the dispersion.
Therefore, the scalar potential has a reverse sign to
Eq. (5). Then, the condition of the equilibrium orbit is
given by the relation

p0 � qBy�0 �
qV0

�0c
: (13)

By the same way of the previous section, Hamiltonian (9)
is expanded, and the vector potential Eq. (12), the scalar
potential, and the equilibrium condition Eq. (13) are sub-
stituted. Finally, leaving up to second-order terms of the
canonical variables and neglecting the constant term, the
Hamiltonian becomes
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Then the transverse equations of motion are
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The last term of Eq. (15a) is the origin of the linear
dispersion. Therefore, if the relation qV0=�2

0�
2
0E0 � 1 is

satisfied, the linear dispersion is canceled out. From this
relation and the condition of equilibrium orbit Eq. (13), the
relation �1� 1=�2

0�Ex�0; 0� � �0cBy is obtained, where
Ex�0; 0� is the strength of the bending electric field on the
reference orbit, i.e., Ex�0; 0� � V0=�0. This condition is
completely the same as the dispersion-free condition
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shown in Ref. [14]. When the dispersion-free condition
qV0=�

2
0�

2
0E0 � 1 is imposed, the equations of motion

become
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III. DISPERSION-FREE STORAGE RING

A. Deflectors for a dispersion-free storage ring

The dispersion-free storage ring can eliminate the shear,
and it has a possibility to generate a crystalline beam which
has finite horizontal extent, by a conventional cooling
force. In this section, we choose the lattice parameters of
S-LSR for the example of this paper.

We reported the beam dynamics in a dispersion-free
storage ring S-LSR constructed with the cylindrical dis-
persion suppressor of the field index 1 [14]. The result is
that S-LSR cannot operate satisfying the maintenance
condition for crystalline beam due to the strong radial
focusing of the cylindrical dispersion suppressor. This
dispersion suppressor has the focusing effect only in the
horizontal (radial) directions. On the other hand, Eqs. (16)
show the dispersion suppressor has the focusing effect in
both directions, if the field index n is selected to the value
between �1=�2

0 to 1. Especially, if the field index n is
selected to n � 0, the deflector has almost the same focus-
ing strength in both directions in the nonrelativistic limit.
In this case, the radial focusing is suppressed compared
with the cylindrical case. Since the radial focusing is sup-
pressed, it is expected that the betatron tune is reduced
without changing the basic structure of the lattice.

B. Transfer matrix calculation

The betatron tune of the dispersion-free mode of S-LSR
is investigated when the dispersion suppressor which has a
focusing effect in both horizontal and vertical directions is
introduced. In this section, the value of the field index is
supposed to be�1=�2

0 < n< 1. The lattice parameters are
obtained by the transfer matrix calculation, by the same
way as Ref. [14]. The transfer matrix acts on the phase
space coordinates �x; ~px; y; ~py;�c�t;�E=cp0� [27].
When the following notation

kx �

�����������������
1� n�2

0

q
�0

ky �
�0

������������
1� n
p

�0
Cx � coskxL

Sx � sinkxL Cy � coskyL Sy � sinkyL (17)

is introduced, the linear transfer matrix of the dispersion
suppressor becomes
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FIG. 1. The structure of the lattice period of S-LSR. The
deflector can be used as both a dipole magnet and a dispersion
suppressor. k1 and k2 are the values of the field gradient of the
quadrupole magnets.

4
(νx, νy)=(2.072, 2.072)

ELECTROSTATIC DEFLECTORS AND DISPERSION . . . Phys. Rev. ST Accel. Beams 8, 124001 (2005)
Rij �

Cx Sx=kx 0 0 0 0
�kxSx Cx 0 0 0 0

0 0 Cy Sy=ky 0 0
0 0 �kySy Cy 0 0
0 0 0 0 1 L

�2
0�

2
0

0 0 0 0 0 1

0BBBBBBBB@

1CCCCCCCCA
;

(18)

under the dispersion-free condition, where L is the orbit
length of the reference particle in the deflector. From the
linear transfer matrix, the lattice parameters of S-LSR can
be calculated. In the following we select the field index to
0. The specifications of S-LSR are shown in Table II, the
structure of the lattice period is shown in Fig. 1.

For the lattice of S-LSR utilizing the dispersion suppres-
sor of the field index 0, the stable region of the betatron
oscillation becomes as shown in Fig. 2. The characteristic
of this stable region is that the beam can be circulated
stably without quadrupole magnet. This is the result from
that the deflection element has the focusing effect in both
directions. This lattice enables us to operate the ring,
satisfying the maintenance condition for crystalline beams.
For example, the betatron tune of the value ��x; �y� �
�2:072; 2:072� is possible and the strength of the quadru-
pole magnets to realize this tune value is �k1; k2� �
�0:78	m�2
;�1:24	m�2
�. In this operating point, the
strength of the quadrupole magnets is very weak compared
to the case using the cylindrical electric field [14], since the
focusing force of the deflector is dominant. The beta
functions in the lattice period become as shown in Fig. 3.
Since this operating point satisfies the maintenance condi-
tion; max��x; �y�<N=2

���
2
p

, if an adequate strong three-
dimensional cooling force induced by a coupling cavity
[5,7] is available, beam crystallization is expected to be
realized at the dispersion-free mode of S-LSR.
-2

0
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]
IV. EVALUATION FOR THE REAL OPERATION

A. Generation of an actual electric field

From Eq. (5), on the median plane, the electric field of
the dispersion suppressor is described as
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(19)
TABLE 2. Main parameters of S-LSR (Storage of 24Mg�)

Quantity Value

Cooled ion species 24Mg�

Kinetic beam energy 35 keV
Ring circumference 22.557 m
Radius of curvature at the bending section 1.05 m
Number of lattice periods 6
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Note that the direction of the electric field is reversed to the
case of electrostatic deflector. It is found that the electric
field of the field index n � 0 has approximately radially
uniform field distribution near the reference orbit �x=�0 �
1�. One of the methods to generate such an electric field is
to use the electrostatic potential which is the linear combi-
nation of the cylindrical (n � 1) and the hyperboloidal
(n � �1) electrostatic potential. The electrostatic deflec-
tor will be constructed with two electrodes placed in the
different two equal potential surfaces (see Appendix A).
However, this method needs electrodes having a complex
shape. At S-LSR, cylindrical electrostatic deflectors
equipped with intermediate electrodes are introduced
[28]. The intermediate electrodes were introduced for the
purpose maintaining the field strength and distribution in
the aperture (Fig. 4). Furthermore, the intermediate elec-
-4
-4 -2 0 2 4

k2[m-2]

FIG. 2. Stable region of the linear betatron oscillation. The
field gradient of two quadrupole magnets k1 and k2 are selected
as the parameter. The minus sign of the field gradient means that
the quadrupole magnet has a defocusing effect in the horizontal
direction. The tune values at the operating point �k1; k2� �
�0:78	m�2
;�1:24	m�2
� are ��x; �y� � �2:072; 2:072�.
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FIG. 4. Cross section around the electrostatic deflector of S-
LSR. The height of the electrostatic deflector is limited by the
gap size of the dipole magnet and the vacuum vessel. The
electrostatic deflector is constructed with a pair of main elec-
trodes and four pairs of intermediate electrodes. The voltage
applied to the intermediate electrodes strongly dominates the
electric field distribution in the electrostatic deflector. Therefore,
various field distributions can be realized approximately by
changing the applied voltage to the intermediate electrodes.

IKEGAMI et al. Phys. Rev. ST Accel. Beams 8, 124001 (2005)
trodes create a new possibility which realizes various field
distributions in the electrostatic deflector. The voltage
applied to the intermediate electrodes strongly dominates
the electric field distribution in the electrostatic deflector.
By using a field calculation code POISSON, we have con-
firmed that the field distributions of the field indices 1 and 0
can be generated near the reference orbit by adjusting the
applied voltages to the intermediate electrodes [29].
Comparing the field distribution on the median plane ob-
tained from the field calculation and Eq. (19), it was found
that the coefficient of the higher-order term has a consid-
erably large value. In the case of S-LSR, it is difficult to
suppress the size of the coefficients of the higher-order
term, because the height of the electrostatic deflector has
been limited (Fig. 4) [30]. Therefore, strong nonlinearity is
expected in the motion of particles passing through such
electric field. In the next section, the nonlinearity of such
dispersion suppressor is investigated.

B. Dynamic aperture calculation

1. Particle tracking including nonlinear effects

In the previous section, it has been suggested that vari-
ous field indices of the electrostatic deflector are realized
by a cylindrical electrostatic deflector equipped with the
intermediate electrodes. However, this method may induce
strong nonlinearity in the particle motion, for the case of S-
LSR.

In order to investigate the nonlinear effects, particle
tracking is performed by using the second-order transport
equation [20]. For a phase space vector at the position s0

vi�s0� � �x; ~px; y; ~py;�c�t;�E=cp0�, this equation gives
a new phase space vector at the position s1 by the following
transformation
12400
vi�s1� �
X6

j�1

Rijvj�s0� �
X6

j�1

X6

k�1

Tijkvj�s0�vk�s0�: (20)

The first term of the right-hand side is the linear trans-
formation by the transfer matrix Rij, the second term gives
the transformation by the nonlinear terms. The coefficients
of the nonlinear terms Tijk are given by the third-order Lie
transformation obtained from the third-order Hamiltonian
[20]. The third-order Hamiltonian, the derivation method
of Lie transformation, and Tijk for the dispersion suppres-
sor are shown in Appendix C. In this section, the filed index
of the dispersion suppressor is selected to 0, and the
coefficient of the higher-order component of the electric
field K2 is estimated to be the order of 10 from the 2D field
calculation by POISSON. The particle orbit is tracked during
3000 turns in the lattice of the dispersion-free mode of S-
LSR including nonlinear effects.

2. Selection of the operating point

It is expected that the dynamic aperture of the dispersion
suppressor of S-LSR is limited, since this includes non-
linear fields. It is well known that the dynamic aperture
depends on the betatron tune. Thus, we investigate the tune
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dependence of the dynamic aperture. When a strong non-
linear field exists in the storage ring, the betatron tune
depends on the amplitude of the betatron oscillation. This
means the tunes of the particles in the beam are not
identical. Therefore, in this paper, we select the linear
tune (design tune) as the standard of the betatron motion.
The design tune is uniquely determined by the lattice
structure. When S-LSR is operated to generate crystalline
beams, the design tune has to be below ��x; �y� �
�2:12; 2:12� from the requirement of the maintenance con-
dition. On the other hand, it is expected that the beam
cannot circulate stably near the integer tune ��x; �y� �
�2:0; 2:0�. It has been found that the lower limit of the
betatron tune is about ��x; �y� � �2:0; 2:0� from the analy-
ses of the linear betatron motion. Thus, the region to search
an operating point having maximum dynamic aperture is
limited to the range 2:04< �x�y� < 2:12. The tune depen-
dence of the on-momentum dynamic aperture at the center
of the dispersion suppressor is plotted in the ��x; �y� plane
(Fig. 5).

A dissipative force such as a laser cooling force acts on
only one direction. In order to generate an ultimate-low-
temperature beam, a three-dimensional cooling using a
resonance coupling method [5,6] is essential. The reso-
nance condition is given by the relation �x � �s � integer,
�x � �y � integer, where �s is the synchrotron tune. Thus,
it is better that the operating point place on the line �x �
�y. On this line, dynamic aperture becomes large as the
betatron tune approaches ��x; �y� � �2:12; 2:12�. However,
in order to suppress the blocking of the beam cooling
induced by second-order coherent resonances which origi-
nate in the machine lattice [31], it is better that the tune
value is as low as possible. Thus, the operating point
should be apart from ��x; �y� � �2:12; 2:12� as far as pos-
sible. Eventually, we select the operating point ��x; �y� �
�2:072; 2:072�, since this operating point has an adequate
dynamic aperture, and is far from both the integer tune and
the limit of the maintenance condition. The detailed con-
figuration of the on-momentum dynamic aperture in the
x-y plane at the operating point ��x; �y� � �2:072; 2:072� is
shown in Fig. 6.

C. Discussion for the experiment

We can estimate the maximum accumulable beam cur-
rent from the result of the dynamic aperture calculation and
the twiss parameters obtained from the transfer matrix
calculation in Sec. III B. Using these parameters, the ring
acceptance is estimated to be 3:31 � mm mrad in the
horizontal direction, and 2:71� mm mrad in the vertical
direction. The 35 keV, 24Mg� beam pulled out from the ion
source is injected to the ring during one turn by using an
electric inflector. The maximum current of the beam which
can be extracted from the ion source is estimated to be
more than 0.4 mA, and its emittance is 40:5� mm mrad in
12400
both the horizontal and vertical directions. The small emit-
tance part of the beam is selected by a x-y slit and injected
to the ring. From the above parameters, the maximum
current which can be accumulated in the ring is estimated
to be 2:45 �A.

Next, the beam current needed for the experiment gen-
erating crystalline beams is estimated. The line density of
1-7
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the crystalline beams in storage rings can be approximately
predicted from a Hasse-Schiffer’s uniform confining field
model [32]. As discussed in Sec. III, the focusing force of
the dispersion-free mode of S-LSR is dominated by the
dispersion suppressor, and its focusing force is almost
equal in the horizontal and the vertical direction at the
operating point ��x; �y� � �2:072; 2:072�. Therefore, the
lattice structure of S-LSR is similar to this model. When
the lattice of S-LSR is approximated with a smooth ap-
proximation, it is estimated that the crystalline beam struc-
ture changes to 2D state at the line density of
1:56� 104	m�1
, and at the line density of 2:13�
104	m�1
, the structure changes to 3D state. In the case
of 35 keV, 24Mg� beam, these line densities correspond to
the beam currents of 1.31 and 1.79 nA, respectively.
Therefore, the ring can accumulate an enough current
needed for the generation of multidimensional crystalline
beam.

If the beam reaches to the crystalline state, the order of
the beam size can be predicted from the Hasse-Schiffer’s
model. According to this model, the average volume which
is occupied by a particle in crystalline beams is indicated
by Wigner-Seitz radius. The Wigner-Seitz radius is de-
cided by the strength of the confining field. In our case,
this radius can approximately be obtained using the smooth
approximation. The Wigner-Seitz radius at the operating
point ��x; �y� � �2:072; 2:072� is 4:53� 10�5	m
. For ex-
ample, if a one-helix crystalline beam can be formed in the
lattice of S-LSR, the radius of the helix is estimated to be
0.05 [mm]. Furthermore, if a 6-shell crystalline beam can
be formed, the radius of the shell is estimated to be 0.38
[mm].

A dynamic aperture indicates the beam size where the
nonlinear effect becomes dominant. Since the estimated
sizes of the crystalline beams are far smaller compared to
the size of the dynamic aperture, the effect of the nonlinear
filed component of the dispersion suppressor described in
the previous section is considered to be negligible when the
beams reach to crystalline state.

V. CONCLUSIONS

The beam dynamics in a dispersion-free storage ring has
been investigated by using the general formula of deflec-
tion elements including electric fields. The dispersion sup-
pressor of the field index 0 provides better focusing force
for the operation of S-LSR aiming at the generation of
crystalline beam. When such a dispersion suppressor is
introduced, S-LSR can operate satisfying the maintenance
condition for the crystalline beam, in addition to the state
free from the shear heating induced by dispersion. As the
practical method to realize the dispersion suppressor in-
cluding the electric field of the field index 0, we have
suggested using a cylindrical electrostatic deflector
equipped with intermediate electrodes. The electric field
distribution of the field index 0 has been realized approxi-
12400
mately by adjusting the applied voltage to the intermediate
electrodes. It has been shown that the ring can accumulate
an adequate beam current for the experiment generating
the crystalline beams at the operating point ��x; �y� �
�2:072; 2:072�, although the nonlinearity of the dispersion
suppressor limits the dynamic aperture. It has been esti-
mated that the size of the beam becomes far smaller
compared to the dynamic aperture in the final state of the
cooling. When the line density of the beam is low, it is
thought that the beam reaches the crystalline state, at the
operating point ��x; �y� � �2:072; 2:072� of S-LSR. Once
the crystalline beam is formed, the structure is thought to
be maintained stably since this operating point satisfies the
maintenance condition and nonlinear effects are negligible.
However, as the line density of the beam increases, in the
cooling process, the blocking of the emittance reduction
induced by the second-order coherent resonance which
originates in the lattice structure becomes remarkable
[31]. The search of the maximum crystalline structure
which can crystallize will be the main subject of our next
investigation. This will be studied by a molecular dynam-
ics simulation and experiments in the ‘‘dispersion-free
storage ring S-LSR.’’
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APPENDIX A: SOLUTIONS OF THE MAXWELL
EQUATION

In the space between the deflection electrodes, the scalar
potential of the electric field� has to be the solutions of the
Laplace equation.

�� � 0: (A1)

In a polar coordinate system (�; �; ’), the elemental solu-
tions of the Laplace equation are represented as

���; �; ’� � aml�mYlm��; ’�;

���; �; ’� �
bml
�m�1 Y

l
m��; ’�;

(A2)

wherem is zero or a positive integer, Ylm��; ’� is a spherical
harmonic, l � �m;�m� 1; . . .m� 1; m, and aml, bml are
constants. The usable electrostatic potential for electro-
static deflectors must have axial symmetry, at least.
Therefore, the solutions must not have ’ dependence.
When the axial symmetry condition is imposed, the solu-
tions become
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���; �; ’� � am�
mPm�cos��;

���; �; ’� �
bm
�m�1 Pm�cos��;

(A3)

where Pm is the Legendre polynomial.
Next, we transform the solutions Eq. (A3), to a cylin-

drical coordinate system. The relations between the polar
coordinates and cylindrical coordinates (r; ’; z) are given
by

� �
���������������
r2 � z2

p
’ � ’ cos� �

z���������������
r2 � z2

p : (A4)

Then, for m � 0; 1; 2 . . . we obtain the following solutions

m � 0 ��r; ’; z� � a0; (A5)

��r; ’; z� �
b0���������������

r2 � z2
p ; (A6)

m � 1 ��r; ’; z� � a1z; (A7)

��r; ’; z� �
b1z

�r2 � z2�3=2
; (A8)

m � 2 ��r; ’; z� � a2�r
2 � 2z2�; (A9)

��r; ’; z� �
b2�r2 � 2z2�

�r2 � z2�5=2
:

. . .

(A10)

The usable electric field as the bending electrostatic de-
flector must have a radial component (r component), and
must not have vertical component (z component) on the
median plane, and the electrostatic potential should be
symmetric about z. Therefore, Eqs. (A7) and (A8) cannot
be used as the bending electrostatic deflectors. Eventually,
only the electrostatic potentials of even numbers of m can
be used. In addition to the above solutions, a solution
satisfying the condition for electrostatic deflector exists.
That is a cylindrical electrostatic potential.

��r; ’; z� � a � ln�r�: (A11)

This solution can be obtained easily in the cylindrical
coordinate system, under axial symmetry.

The linear combinations of the above solutions are also
the solutions of the Laplace equation, and generate the
usable electrostatic field.

When a circle of the radius �0 in the cylindrical coor-
dinate system is selected as the reference orbit of the
Frenet-Serret coordinate system, the relations between
the cylindrical coordinates and the Frenet-Serret coordi-
nates are given by
12400
�0 � x � r s � �0’ y � z: (A12)

When these notations are used, for example, the linear
combinations of the solutions Eq. (A5) and Eqs. (A6),
(A9), and (A11) are represented as

�2D�x; y; s� � V0

�
1�

1�����������������������������������������������
�1� x=�0�

2 � �y=�0�
2

p �
; (A13)

�1D�x; y; s� � V0 ln
�
1�

x
�0

�
; (A14)

��1D�x; y; s� �
V0

2

��
1�

x
�0

�
2
� 2

�
y
�0

�
2
� 1

�
; (A15)

where the constant terms have been selected so that the
electrostatic potential is 0 and the strength of the electric
field is V0=�0, on the reference orbit. These are spherical,
cylindrical and hyperboloidal electrostatic potential. The
field indices of these electric fields are 2, 1, and �1,
respectively. The electric fields which have larger field
indices are realized, when the value of m in Eq. (A3) is
selected to larger integer. An arbitrary real number field
index is created by the linear combination of the above
linearly independent electrostatic potentials. If an arbitrary
electrostatic potential composed of the linear combination
of the above electrostatic potentials are expanded in power
series of x and y, it always becomes to the form of Eq. (5).

As an example, we show the shape of the electrodes
generating electric fields which have the field index of the
1-9
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value between 2 and �1 (Fig. 7). The shape of the elec-
trode is decided by equal potential surface. Toroidal elec-
trostatic deflectors can generate various field distributions
[16]. They give the same linear focusing as the deflectors
shown in Fig. 7 under the paraxial approximation.
APPENDIX B: TRANSFORMATION OF
VARIABLES

A canonical transformation from �x; ~px; y; ~py; t; pt=p0�

to �x; ~px; y; ~py;�c�t;�E=cp0� is considered. When the
Hamiltonian Eq. (7) is divided by the reference momentum
p0, the canonical equations for �t; pt=p0� become

dt
ds
�
@Ĥ
@p̂t

; (B1)

dp̂t
ds
� �

@Ĥ
@t
; (B2)

where p̂t � pt=p0; Ĥ � H=p0.
Using the relation pt � �E, Eq. (B1) is rewritten to

d�ct�
ds

� �
@Ĥ

@�E=cp0�
: (B3)

When the relation �E=cp0 � E=cp0 � 1=�0 is used, the
Hamiltonian becomes

Ĥ��
�
1�

x
�0

�

�

�������������������������������������������������������������������������������������������������
1�

2

�0

�
�E�q�D

cp0

�
�

�
�E�q�D

cp0

�
2
� ~p2

x� ~p2
y

s

�

�
1�

x
�0

�
qAs
p0

: (B4)

Since the Hamiltonian does not depend on the time t
explicitly, from Eq. (B2), the following relation is ob-
tained:

d
ds

�
�E
cp0

�
� 0: (B5)

Furthermore, when the relations s � c�0t0, �t � t� t0
and

@
@��E=cp0�

Ĥ�x; ~px; y; ~py;�c�t;�E=cp0�

�
@

@�E=cp0�
Ĥ�x; ~px; y; ~py; t;�E=p0� (B6)
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are used, Eq. (B3) becomes

d��c�t�
ds

�
1

�0
�
d�ct�
ds
�

1

�0
�

@Ĥ
@��E=cp0�

�
@

@��E=cp0�

�
Ĥ �

1

�0

�E
cp0

�
: (B7)

Therefore, for the canonical variables ��c�t;�E=cp0�,
the Hamiltonian is rewritten as

~H � Ĥ�
1

�0

�E
cp0

: (B8)

The above transformation can be summarized by a canoni-
cal transformation

�c�t �
s
�0
� ct

�E
cp0
�

E
cp0
�

1

�0
; (B9)

which is generated by the following generating function:

W�x; �px; y; �py; t;�E=cp0� �

�
s
�0
� ct

�
�E
cp0
�
ct
�0

� �pxx� �pyy: (B10)

The transformation of �x; ~px; y; ~py� is an identical trans-
formation. This generating function is equivalent to the
generating function defined in Ref. [27]. It is obtained by
the same way as the method shown in Ref. [33].
APPENDIX C: THIRD-ORDER HAMILTONIAN,
LIE TRANSFORMATION, AND THE

COEFFICIENTS OF SECOND-ORDER
TRANSPORT EQUATION

In this appendix, the canonical variable �E=cp0 is
replaced by 	, in order to simplify the notation.

When the Hamiltonian Eq. (9) is expanded up to
the third order of the canonical variables vi �
�x; ~px; y; ~py;�c�t; 	�, the second-order terms are

~H2�vi� �
1

2�2
0

�
	
�0

�
2
�

~p2
x � ~p2

y

2
�
	
�0

x
�0

�
1�

qV0

�2
0�

2
0E0

�

�
1

2

�
1� �1� n�

qV0

�2
0E0

�
1

�2
0

�
qV0

�2
0E0

�
2
��
x
�0

�
2

�
1

2
�1� n�

qV0

�2
0E0

�
y
�0

�
2

(C1)

and the third-order terms are
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~H3�vi� � �
1

2

�
	
�0

��
~p2
x � ~p2

y �
1

�2
0

�
	
�0

�
2
�
�

1

2

�
x
�0

�
3
��
n�

K2

3

�
qV0

�2
0E0

�
1

�2
0

�1� n�
�
qV0

�2
0E0

�
2
�

1

�2
0

�
qV0

�2
0E0

�
3
�

�
1

2�2
0

�
x
�0

�
2
�
	
�0

��
�2� n�

qV0

�2
0E0

� 3
�
qV0

�2
0E0

�
2
�
�

1

2�2
0

�
y
�0

�
2
�
	
�0

��
qV0

�2
0E0

�
�n� 1� �

x
�0

�
~p2
x � ~p2

y

2

�
1�

qV0

�2
0E0

�

�
1

2�2
0

�
1� 3

qV0

�2
0E0

��
	
�0

�
2
�

1

2

�
y
�0

�
2
�
qV0

�2
0E0

��
K2 � 2n� �n� 1�

1

�2
0

qV0

�2
0E0

��
: (C2)
In Ref. [34] it is shown that the third-order Lie polynomial
is given by

F3 � �
X6

k�1

Z L

0

~H3	R�1
ik �s�vk
ds

�
X6

i�1

X6

j�1

X6

k�1

Fijkvivjvk=3! (C3)

where R�1
ik is the component of the inverse matrix of the

transfer matrix.
The coefficients of this polynomial have the following

symmetry:

Fijk � Fikj � Fjik � Fjki � Fkji � Fkij: (C4)

By using the coefficients of the Lie polynomial, the coef-
ficients of the second-order transport equation Tijk are
obtained from the following formula :

Tijk �
��1�i

2

X6

m�1

X6

n�1

F�i���1�i�1�mnRmjRnk: (C5)
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