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A numerical model of the ion-hose instability for long-pulse electron linacs is presented, where the ion
motion is represented by fluid parameters. In order to gain extra numerical stability, the fluid behavior of
the ions is evolved via particle-in-cell (PIC) techniques. This methodology provides a much faster
simulation than a full PIC calculation, allowing for end-to-end simulations of the ion-hose instability in
actual linear accelerator configurations. After the description of the simulation model and some simple
test cases, the instability is analyzed for a variety of nominal accelerator transport conditions. Simulations
of the instability are provided for sections of the DARHT long-pulse accelerator that show different
growth regimes of the instability. We find that large-amplitude growth is possible in accelerator and
transport regions lacking uniform external focusing, for electron pulse lengths of 2 � sec and longer.
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I. INTRODUCTION

The ion-hose instability has been identified as a key
limiting factor in long-pulse electron induction linacs [1–
3]. This instability is well known, and has been studied in
detail for electron beams in induction linacs operating in
the ion-focusing regime (IFR). This instability is similar in
function to the resistive hose instability [4,5], and early
analyses of it were based on similar theory [6,7]. This
instability was first experimentally observed in 1986 at
the Naval Surface Warfare Center (White Oak) [8] and
later at Sandia National Laboratories in 1988 [9], and the
growth of this instability had been accurately measured in a
recirculating induction accelerator by 1990 [10]. Closely
related mechanisms have also been suggested as possible
limitations in future linear colliders, known as the fast ion-
beam instability [11,12], and observed in storage rings,
known there as the e-p instability [13,14].

The ion-hose instability arises when an electron beam
passes through the residual gas in a beam line. The electron
beam ionizes the gas and can interact with the resulting
ions electrostatically. For practical parameters, most, if not
all, of the electrons formed during the ionization process
(the ionization electrons) are expelled from the location of
the primary electron beam and do not cancel the electric
field of the ions. If the electron beam’s transverse centroid
does not vary in time, there is no net force on the centroid
from the ions. However, if the beam’s centroid varies in
time, the relative displacement with the ion distribution
will lead to a force deflecting the centroid. If the electron
pulse is long enough for several ion oscillations, a para-
metric resonance can develop and this mutual force can
lead to an exponential growth of the centroid offset. The
following model shows the basic mechanism.

This model is too simplistic to show many features of the
ion-hose instability, and does not include the primary
mechanism of the instability used in benchmarking the
algorithms in the next section. However, this model shares
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features with the key mechanism that dominates the insta-
bility for long-pulse electron machines. Consider an elec-
tron beam traversing a channel that also contains an ion
column, offset transversely. The electrons are attracted to
the ions as they move axially, and execute betatron oscil-
lations about the centroid of the ions. The ions are assumed
to be fixed axially, but are likewise attracted transversely to
the electrons. If the ions have infinite mass, the betatron
motion of the electrons will be periodic in axial position.
However, if the ion mass is sufficiently small (molecular
for times scales on the order of 1 � sec for kiloAmpere
beams), the betatron oscillation amplitude can increase
exponentially with distance.

For simplicity, we will assume that both the electron
beam and the ion channel have uniform density that is
axisymmetric about their transverse centroids, and that
the separation between their centroids is small compared
to their overall radii. The differential equation governing
the motion of the ion centroid xi�z; t� at an axial location z
is given by

d2

dt2
xi � �!2

i �xi � xb�; (1)

where !i is the ion oscillation frequency and xb�z; t� is the
centroid of the slice of the electron pulse at z at time t.
Likewise, the differential equation for the centroid of the
electron slice is given by

d2

dz2
xb � �

!2
b

v2 �xb � xi�; (2)

where v is the axial beam velocity.
We will look for solutions of the form

xb � �xbe
�t��z; xi � �xie

�t��z: (3)

This is not the only possible solution to these equations, but
has features relevant to the instability dominating long-
pulse electron beams. We will be looking for a steady-state
2-1 © 2005 The American Physical Society
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solution that grows exponentially along the axis. These
solutions lead to these equations

�x b�2 � �
!2
b

v2 � �xb � �xi�; �xi�2 � �!2
i � �xi � �xb�:

(4)

These equations have four unknowns— �xb and �xi are in
general complex with an unknown phase relation.
Eliminating �xb and �xi leads to

0 � �2�2 �
!2
b

v2 �2 � �2!2
i : (5)

Let us also assume that the beam is injected at z � 0 with a
sinusoidal variation, � � j!. This leads to the solution

�2 �
!2!2

b=v
2

!2
i �!

2 ; (6)

and the oscillation amplitude will grow exponentially if
!<!i, or if the oscillation frequency is less than the ion
oscillation period.

We will see similar behavior in detailed numerical simu-
lations of long-pulse electron accelerators. However, addi-
tional effects will lead to saturation of the instability which
are not included in the above simple analysis. Use of
multiple ion species will lead to damping by the mixing
of oscillation phases of the different species. Also, as the
particle oscillation magnitudes exceed the transverse radii
of the beam and ion distributions, the frequency of the
oscillations decreases and there is additional phase mixing.
For actual accelerators designed for low fractional ioniza-
tion, the electrons in the beam are confined by an external
magnetic field and the oscillations of the ions lead to
saturation of the instability as their oscillation amplitude
approaches the beam radius.

The ion-hose instability is an important possible limita-
tion to emerging, long-pulse electron induction linacs, such
as the 2-� sec long DARHT second-axis accelerator [15].
For these types of machines, analytic estimates are insuffi-
cient to determine the actual saturated amplitude of the
ion-hose instability. Particle-in-cell (PIC) calculations are
capable of solving this problem exactly, but simulations
over the entire linac, including acceleration and focusing,
are too cumbersome to be practical at this point, as moving
window frames [16] are irrelevant for long-pulse accelera-
tors, because the electron pulse fills the entire length of the
accelerator. Heroic PIC simulations of an accelerator with
a length of 50 m using the code LSP were done in [3], but
due to the coarseness of the grid, external focusing and
acceleration were smeared and details of the acceleration
were lost. The BUCKSHOT code [17] was written to study
this instability in the IFR. This code uses a gridless PIC
model with an analytic push for the amplitude growth.
BUCKSHOT does not include particle acceleration, and
even with its limited model, is not capable of modeling a
full accelerator design. In this paper, we introduce a new
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numerical model of this effect that is practical to use for
full accelerator designs, complete with acceleration and
arbitrary external focusing. It consists of a reduced hybrid-
fluid model for the ion motion, coupled with a slice model
for the electron beam, and is capable of calculating the
time evolution of the ion-hose instability. The algorithm
for simulating this instability in long-pulse electron linacs
runs quickly because (1) the fluid model requires the
minimum amount of calculations to determine the ion
distribution parameters driving the ion-hose instability,
(2) the fractional ionization is very small, thus the ion
motion only depends on the electric fields from the electron
slices and not their own self-fields, and (3) we assume that
each electron slice has essentially the same transverse
distribution (although with a possible offset), so we can
separate the centroid motion from the calculation of the
slice transverse distribution. This last approximation was
verified during the simulations reported in Refs. [3,18] for
parameters of interest for long-pulse accelerators.

We describe the numerical model in detail in the next
section. Next, we include simple test cases verifying cor-
rect dynamics for both the ions and the electrons. First, the
linear motion of the ions in the potential well of a uniform
electron beam is found. Next, the linear motion of the
electron beam in the potential well of a uniform ion chan-
nel is found. The mechanics in the code coupling the ion
motion to the electron slice motion is benchmarked against
the well-known short-pulse ion-hose instability mechanism
in the ion-focusing regime, which has both analytic and
numerical solutions.

Following that, we present simulations of the ion-hose
instability for various nominal accelerator transport con-
ditions to study the instability growth for the cases of both
axially uniform focusing and discrete focusing with short
solenoids. We confirm that the growth is suppressed by a
continuous axial magnetic field as demonstrated in [3], but
additionally see that large-amplitude growth can occur if
periodic focusing is used. In the final section, we simulate
the ion-hose instability for sections of the DARHT long-
pulse accelerator that have periodic focusing, using the
nominal vacuum specifications but with an alternative
focusing tune that encourages ion-hose growth. The ion-
hose instability is phenomenologically described for both
the upstream region near the injector and the downstream
region just after the last accelerating induction cell.
Considering only a single species of ions (H2O�), large-
amplitude growth is found by the end of the 2-� sec
electron pulse in these regions of periodic external focus-
ing. A larger transported beam size, decreased pressure in
the vacuum vessel, and multiple ion species would tend to
suppress the growth rate and saturated amplitude.
II. SIMULATION MODEL

In this section, we describe the ion-hose instability
simulation model. We use a reduced hybrid-fluid model
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for the ion motion in order to simplify the calculation and
to reduce the required simulation time for modeling prac-
tical accelerator designs.

An exact ion-hose calculation can be made in a straight-
forward manner using standard PIC techniques. However,
the storage and execution time requirements to implement
this technique for a full-length long-pulse accelerator de-
sign with the required resolution to resolve the beam
emittance evolution are prohibitive [3]. The electron
beam for a long-pulse accelerator will fill the entire length
of the accelerator, on the order of 50 m for the DARHT
long-pulse machine. In addition, this calculation is three-
dimensional. In order to simplify the simulation technique
so a reasonably accurate simulation can be made on a
personal computer with short execution times (on the order
of an hour on a 2 GHz personal computer), we will make
two important assumptions. First, we assume that we can
numerically separate the calculation of the transverse cen-
troid motion along the electron-beam pulse from the cal-
culation of the transverse beam distribution. Second, we
assume that the influence of the ions’ electric field is
negligible on their motion (it only contributes collectively
to the electron slices’ centroids) in comparison to the
electric field from the electrons. Also, we use the fact
that only the fluid values of the ions are needed to deter-
mine the electron centroid motion, and the full ion distri-
bution function does not need to be known.

The induced dipole force (leading to centroid motion) is
more sensitive to the ion density than the higher-order
radial force (leading to variations in the transverse distri-
bution), thus the first assumption is satisfied for sufficiently
small ion densities. It is reasonable to expect that we can
separate the effect of the collective ion space charge on the
beam slices into orders. The lowest order would be the
dipole force, the next order would be axisymmetric focus-
ing (azimuthal mode number m equaling zero), the next
order would be a single sinusoidal azimuthal variation in
focusing (m � 1), then m � 2, and so on. For small trans-
verse offsets, as one sees in induction linacs with external
focusing, only the first two orders are important. It should
be pointed out that the primary purpose for this type of
numerical model is to determine accelerator parameters
that have unacceptable ionization effects, which include
typically relatively small ion-hose amplitudes and emit-
tance growth ratios, so the coupling between orders will be
small. The lowest order will be described in detail in this
paper, and the m � 0 order has been recently described for
long-pulse electron linacs [19]. This is important, since we
only need to resolve the electric field from the ions at the
location of the electron slice centroids (which is a one-
dimensional calculation), and not everywhere (which is a
two-dimensional calculation, and much slower). Also, the
type of electron beams described here are all space-charge
dominated, and thus minor emittance growths will not have
appreciable effects on the electron-beam slice distribution.
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The second assumption is clearly valid for fractional
ionizations on the order of 10�3 and below. Finally, use
of the fluid model can be justified by considering the mo-
ments of the Vlasov equation [20]. The zero order moment
leads to the equation of continuity,

@n
@t
� ~r � �n ~u� � 0; (7)

and the first order moment leads to the fluid equation of
motion,

m
�
@ ~u
@t
� � ~u � ~r� ~u

�
� e� ~E� ~u� ~B�; (8)

where n is the real-space density function found from the
distribution function by

n �
Z
f� ~r; ~v�d ~v: (9)

Likewise,

~u �
Z
~vf�~r; ~v�d ~v (10)

is the average velocity at a point ~r in real space. These fluid
equations are exact moments of the Vlasov equation, and
since the ion space-charge field only depends on n (their
velocities are too small to create a significant magnetic
field), the fluid equations are sufficient to fully describe the
evolution of the ion space-charge field. This is an important
result, because it relieves us from explicitly knowing the
full ion distribution function and greatly simplifies the
numerical calculation.

One further step is made in the simulations reported
here. An instantaneous PIC model is used for finding the
evolution of the density and the average velocity instead of
directly evolving the continuity equation [Eq. (7)] and the
fluid equation for the flow of momentum [Eq. (8)] on a
finite-difference grid. This approach is still consistent—
the importance of Eqs. (7) and (8) is that they show that
only density and average velocity components are needed
to evolve the density accurately, and that indeed any two
distributions with the same discretized real-space densities
and average velocities will evolve the same. This is a
powerful concept, because it allows us to substitute any
specific distribution function at any time, as long as it has
the same density and average velocity profiles as the
original distribution function. So at each time step, we
will substitute a simple PIC distribution model with parti-
cles at the grid intersection points for the distribution
function, which allows us to numerically evolve the distri-
bution in an easy and straightforward manner. After evolv-
ing this distribution, new density and average velocity
components are found on the grid, providing the parame-
ters for the next time step. It should be pointed out that
because the fluid equations fully describe the beam density,
2-3
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the space-charge fields to any order in m can be found in
this manner.

Using these assumptions, we can create a simulation
model of an accelerator including features required for
including the ion-hose instability. We will numerically
model the long-pulse electron beam as a series of short
slices. We will evolve the transverse distribution of the first
slice, and assume the transverse distribution of all other
slices are the same. We will follow the centroid of each
slice individually. Numerically, this is done by stepping the
beam axially, and then evolving the interaction between the
ions and the electron-beam slices at that axial location,
finding the centroid of each electron slice and the ion
distribution as a function of time as the rest of the beam
passes that axial location.

An additional important consideration for using this
procedure is understanding the behavior of the ionized
electrons in the presence of an external axial magnetic
field that may be present in order to confine the electron
beam. This field has the potential of also restricting the
electrons’ transport to the beam pipe wall, and may de-
crease the net ionization. We can study the motion of the
ionized electrons by numerically integrating their nonrela-
tivistic equation of motion

m
d
dt
� _x; _y; _z� �

eI

2�c"0a2 �x; y; 0� � e� _x; _y; _z� � �0; 0; B0�

(11)
FIG. 1. One cyclotron orbit of electrons originated at 15 evenly sp
for the parameters of (a) beam current 2 kA, focusing field 0.2 T, bea
radius 1 mm, and (c) beam current 0.2 A, focusing field 0.02 T, beam
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inside the electron beam and

m
d
dt
� _x; _y; _z� �

eI

2�c"0�x
2 � y2�

�x; y; 0� � e� _x; _y; _z�

� �0; 0; B0� (12)

outside the beam, where I is the beam current, a is the
beam edge radius, and B0 is the applied external axial field,
for a uniform density, space-charge dominated beam.
Inspection of these equations of motion show that the
normalized trajectories r=a scale as I=�a2B2

0�. To verify
this scaling, we plot in Fig. 1 trajectories for ionized
electrons, created at 15 evenly spaced positions in the drive
beam, for a beam current, external field, and beam radius of
(a) 2 kA, 0.2 T, 1 cm, (b) 20 A, 0.2 T, 1 mm, and (c) 0.2 A,
0.02 T, 1 mm, respectively. All cases have the same value
of I=�a2B2

0�, and show the same normalized trajectories.
The trajectories are plotted for one cyclotron period, which
varies for the different trajectories and between cases. Note
that the cyclotron periods are short relative to long-pulse
electron beams (� sec time scales), and since the ionized
particles are created continuously, we can consider the
density of these trajectories in a time-averaged sense.
Averaged over time, 48% of the ionized electrons are out-
side the drive beam for all three cases, so we can assume
that the effective ionization of the gas is only 52% of the
total ionization. (This is somewhat of an underestimate
because additionally as the ion channel moves transversely,
aced different initial locations within the primary electron beam
m radius 1 cm, (b) beam current 20 A, focusing field 0.2 T, beam
radius 1 mm. On average, 48% of the current is outside the beam.
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more of the ionization electrons will be lost, but this is a
good estimate for small ion centroid displacements.)

In Fig. 2, we plot the fraction of the ionization electrons
outside the uniform density, space-charge limited beam, as
a function of the scaling parameter I=�a2B2

0�. As the field
vanishes (and the ionization electrons are not bound), the
fraction of ionization electrons that stay within the primary
beam vanishes, as expected. For values of I=�a2B2

0� greater
than 10, the error in the net ionization from simply using
the ionization rate equation is 10% or less. The final
assumption of this model is that the scaling parameter
I=�a2B2

0� is relatively large (at least a few, and typically
greater than ten), which is valid for typical cases of interest,
which we will verify for the test cases.

A. Specific simulation mechanism

The accelerator simulations were performed by the code
SLICE [21]. The SLICE code self-consistently pushes parti-
cles in a single axial slice of the beam using the Lorentz
force equation, including the beam’s self-radial electric,
axial magnetic, and azimuthal magnetic fields and all
external fields to fourth order in radius. The code uses
the long-beam approximation, in which Gauss’s law is
used for the radial electric field and Ampere’s law is
used for the azimuthal and axial magnetic fields. A collec-
tion of particles (typically 4000 in these simulations) is
used to describe the beam at each axial position. As a
group, these particles are stepped axially, with a 1 mm
step size.

With the separation assumption, the transverse distribu-
tion only needs to be calculated for one axial slice of the
beam pulse, but the centroid position needs to be calculated
along the entire beam pulse at every axial location. To do
this, the electron-beam pulse is divided into separate slices.
The total transverse distribution is calculated for the first
slice, and is assumed to be the same (except for centroid
position) for all the following slices. Ions are produced
FIG. 2. Fraction of ionization electrons outside primary beam,
as a function of the scaling parameter I=�a2B2

0�.
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from each slice from primary impact ionization, given by
the rate equation [22]:

dni
dt
� ngne�v; (13)

where ni is the ion density, ng is the initial gas density
(assumed to be uniform over radial distances), ne is the
electron bunch density (which is a function of time at a
given axial and radial position), � is the cross section, and
v is the velocity of the electron beam (which we will
assume to be the speed of light, c). Numerically, the cross
section can be modified to account for a loss of ionization
caused by a relatively small scaling factor I=�a2B2

0�. For an
electron-beam slice of temporal length �, the increase in
the fractional ionization is then given by

�ni
ne
� ng�v� � ���sec�Pg�torr�9:783�1026� cm�2

(14)

where Pg is the gas pressure in torr.
The numerical procedure is to first step the beam axially,

and then to perform the ion-related calculations for all
beam slices at that axial location. The ions generated by
primary impact ionization are assumed to be axially fixed,
but transversely mobile. The ion distribution is calculated
after each slice, on a transverse grid of typical size 51 by 51
grid lines. Only the ion density and average velocity is kept
at each grid intersection point, as these parameters fully
define the ion fluid. For the first slice, there is no ambiguity.
Ion density is assigned to each node in accordance with the
rate equation [Eq. (13)] and the local electron-beam den-
sity. An ion velocity of zero is assigned to each grid
intersection point. Next, the force on the slice centroid
from this ion density is calculated. (For the first slice, there
is no net dipole force as SLICE assumes each slice is
axisymmetric about its centroid position.) Finally, the ion
distribution is evolved under the influence of that electron-
beam slice’s electric field. For the ions just from the first
slice, this force is axisymmetric, and the ion centroid does
not move. The fluid density and velocity can be evolved
using standard finite-difference techniques, using the con-
vective form of the Lorentz force law [Eq. (8)] to evolve
the fluid velocity and the continuity equation [Eq. (7)] to
evolve the fluid density. However, the electron-beam den-
sity is often hard edged, leading to a discontinuity in the
ion distribution. In order to add extra stability, the fluid
model parameters are evolved in a PIC manner instead, as
was described above. At each grid intersection point, we
assign a superion with the total ion density corresponding
to all the ion density within a grid square centered at that
intersection point, and with velocity equal to the fluid
velocity at that point. We let these superions move for
the time period corresponding to the slice length, and
afterwards assign new ion densities and average velocities
to the grid intersection points. This procedure is then
2-5



FIG. 3. (Color) Initial electron-beam centroid offsets, versus
slice number. The red line is the horizontal offset and the blue
line is the vertical offset.
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followed for all the successive electron pulse slices. For the
additional ionization due to new electron slices, additional
ion density is assigned to the grid intersection points while
keeping the total ion momentum constant. For successive
slices, the ion and slice centroids will diverge, leading to
both slice and ion dipole forces.

This procedure greatly simplifies the calculation.
Because each electron slice itself stays axisymmetric about
its centroid, the resulting force on each ion is simple to find
(it is essentially a one-dimensional calculation and scales
linearly with the number of electrons followed in the
simulation). Though the ion distribution can become very
distorted, the calculation of the force on only the electron
slice centroids also scales linearly with the number of grid
intersection points, and is likewise very fast. With the fluid
model for the ions, the number of ions that are needed to
use in both the ion evolution step and the slice centroid
evolution step is equal to the total number of grid inter-
section points, and never increases. Without the fluid
model, the number of ions followed would linearly in-
crease with the slices, and this calculation would become
prohibitively slow. Likewise, without the assumption of
separating the electron transverse distribution from the
centroid positions, calculating the ion motion would re-
quire a complex two-dimensional field solver, with execu-
tion time scaling more than linear with the number of
electrons followed in the simulation.

Another important assumption is that the secondary
electrons do not appreciably effect the ionization. This is
not obvious, because they are transversely accelerated by
the primary beam up to (and then beyond) the peak value of
the ionization cross section as a function of electron en-
ergy. To estimate this effect, we use the ionization formula
[Eq. (13)], with a nominal maximum cross section of 3�
�10�20� m2 (see, for example, Ref. [23] for argon) at an
energy of 100 eV (velocity of 0.02 c), and a time of
1 � sec . Note that the electron density ne is equal to the
ion density ni times a coupling factor �, which cannot
exceed unity (and which is typically about 0.1 from
Fig. 1). This leads to a fractional increase in the ionization
from secondary impact of about �ni=ni � �5:6�10�4�
over a time of 1 � sec , which is negligible. Note that
even if the secondary electron velocity is increased to c,
the fractional ionization increase is about 2%, even ne-
glecting the drop in ionization cross section at higher
electron energy. We can conclude that the secondary ion-
ization from the secondary electrons is negligible.

Comparing the speed of the hybrid calculation with a
mulitparticle PIC simulation, the hybrid model can simu-
late a 50-m long accelerator with a 2 � sec -long electron
with an axial resolution of 1 mm in about an hour, whereas
a mulitparticle PIC simulation requires on the order of 10 h
for an equivalent geometry (including acceleration and a
realistic magnetic field profile), but with only a 5-cm axial
resolution. Overall with similar resolution, the hybrid
11420
model yields a calculation well over 2 orders of magnitude
faster. The cost in accuracy of this faster calculation is the
approximation that all electron slices in the primary beam
have the same transverse distribution (although potentially
offset), but which has been verified to be a minor effect for
the types of simulations we are interested [18].
III. TEST CASES

At this point it is important to simulate some simple test
cases to verify the operation of this ion-hose model. The
two algorithms that we want to validate are the centroid
evolution algorithm and the ion evolution algorithm. For
these tests, we start with a 60 nsec electron pulse separated
into 30 slices of 2 nsec apiece. We assume that the cent-
roids of all slices are offset only along the vertical axis, in a
half sinusoid, shown in Fig. 3. The maximum vertical
offset is 1 cm. The electron-beam current is 4 kA, with
an edge radius of 3 cm. The magnetic field required to
obtain balanced flow at 2 MeV is about 0.037 T. We assign
an initial horizontal velocity to the centroids given by

vx;cent �
ycenteB
m�

; (15)

which will balance the focusing magnetic force with the
centrifugal force. The evolution of the horizontal and
vertical centroid positions is shown in Fig. 4, and the total
radius of the centroids is shown in Fig. 5, as a function of
axial position, which is numerically stable (the ripple is
due to a slight mismatch in the applied magnetic field).

The next test case will be for the ion density oscillating
in the potential well of the electron distribution. For this
case, the electron slice centroids are assumed to be per-
fectly aligned, and an initial ion distribution is established
offset 1 cm vertically. The ionization process is turned off
so we can see the ion centroid evolution in the field from
2-6



FIG. 6. (Color) Ion centroid motion in the electron beam’s
potential well. The red line is the horizontal offset and the
blue line is the vertical offset.

FIG. 4. (Color) Electron-beam centroid position for corkscrew-
ing case. The red line is the horizontal offset and the blue line is
the vertical offset.
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the electron beam. We see the ion centroid does execute
sinusoidal motion in Fig. 6.

The transverse ion motion obeys this harmonic equation

�x ion � �xion
eI

mi2"0c�a2 ; (16)

which, for these parameters, leads to an oscillation period
of 40 nsec for hydrogen ions. With 2 nsec per slice, this is
in excellent agreement with Fig. 6.

The next test case we will look at is the evolution of an
electron slice centroid initially offset 1 cm horizontally, in
a uniform ion channel centered about the origin. The
centroid should obey this equation

�x cent � �xcent
eI

me�2"0c�a2 �cng�; (17)

where the ion channel was created by primary impact
ionization from a slice of the beam of length � into a
FIG. 5. . Electron centroid position for corkscrewing case,
showing total radial offset.
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residual gas. For a slice beam current of 4 mA (in order
to turn off the focusing magnetic field) and length 2 nsec,
and a pressure of 10�7 torr and cross section of 8�
10�9 m2, this leads to a betatron wavelength of 1.54 m,
again in excellent agreement with the calculation, shown in
Fig. 7. It should be pointed out that an absurdly high cross
section was needed in order to get a reasonable betatron
period for the case of such a low current and short ioniza-
tion time.

The final test case we will present will be for short-pulse,
high-fractional ionization. This instability has been studied
in great detail for short-pulse transport in the ion-focusing
regime (IFR) [22,24]. The instability has an analytic de-
scription in this regime and several analytic and numerical
checks can be made. We will benchmark our routine
against the simplest analytic test case, that of an
electron-beam offset to an initially preionized channel,
with equal charge density as that of the beam. The electron
FIG. 7. (Color) Electron-beam slice centroid betatron motion in
an ion channel. The red line is the horizontal offset and the blue
line is the vertical offset.
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FIG. 8. (Color) Evolution of both the ion centroid and rms
radius, for the test case using only the electrons’ space charge
to check the ion distribution calculation. The red line is for the
ion centroid and the blue line is for the ion rms radius.
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beam and ion channel are of uniform density and of equal
radii, and the offset is a small fraction of the beam and ion
channel radii.

The initial electron slices in the beam will oscillate in
the ion channel with simple betatron motion (as shown in
Fig. 7), because the relatively heavy ions will take time to
move. Since all electron slices follow nearly the same path,
the ions at each axial location will be accelerated with
essentially uniform force toward the betatron oscillation
position at that axial location. The deformed ion channel
will have the same betatron period as the slice centroid,
with lesser amplitude.

For this case, we will assume that the fractional ioniza-
tion is unity. The following simple model will describe the
key instability mechanism for this regime. The net force on
the electron slice centroid obeys this second-order differ-
ential equation:

�x b �
eI

me�2"0c�a2 �xi � xb�: (18)

With the assumption that xi � "xb where " is a (complex)
scalar, this has solution

xb � x0e
jk�1�"�1=2z; (19)

where k2 � eI
me�2"0c�a2 .

Note that this solution has a longer betatron period than
without the ion motion, since " is mostly positive real.

Because of inertia, the ion channel cannot increase its
oscillation period as fast as the electron slices, and the
effective ion oscillation period is shorter than that for the
slices. This implies

" � "r � j"i; (20)

where "r and "i are both real and positive. Expanding the
solution for the slice centroid, we find

xb � x0e
jk�1�"r�1=2zek"iz=2�1�"r�: (21)

Since "i is real, there is exponential growth in the magni-
tude of the betatron oscillations.

There are two key elements leading to this amplitude
growth. First, the ion centroid oscillation increases the
electron slice centroid betatron period. Once the electron
slices fall behind in phase relative to the ion centroids, the
amplitude of their betatron oscillations increases
exponentially.

Because of the large electric field from the ions (full
fractional ionization), this effect can only be modeled by
SLICE with an additional feature added. With full fractional
ionization, both the electrons and ions are mostly in elec-
trostatic equilibrium relative to their rms radii. For the
electrons, we simulate this by only doing a one-
dimensional push (in the axial direction), ensuring that
the original transverse electron distribution is kept.
Calculating the true electrostatic self-fields from the ions
is two-dimensional, and very time consuming. Instead, we
11420
assume that the ion distribution is axisymmetric and uni-
form about its centroid, and add in an analytic approxima-
tion for its own self-field based only on the actual ion
distribution rms radius. In the following simulations, the
first electron slice will provide an ionized channel centered
about x � 2 mm, with no additional ionization from suc-
cessive electron slices. All successive electron slices will
be injected on axis. The 1-kA electron beam is 2 cm in
radius, with an energy of 3.6 MeV. The nominal ion mass
used these calculations is 1=10 that of helium (in order to
reduce the overall evolution time required in these simu-
lations). Specifically, two methods for determining the
centroid motion with fractional ionization will be em-
ployed. In both methods, the ions’ self-fields will be in-
cluded with the analytic form described above for the
electric field from an axisymmetric and uniform distribu-
tion. To check the validity of this approximation, the force
on the electron slices’ centroids will be found by (1)
assuming the same analytic form for the electric field
from the ion distribution and comparing that to (2) the
electric field found by exact grid calculation. This com-
parison is a good check on the analytic form, since both
methods should give essentially the same result.

Without introducing the additional electric field from the
ion themselves, the ion distribution focuses over time. In
Fig. 8 we see this effect, over the first 10 nsec of the beam
(each electron slice corresponds to 1=3 nsec). Note that
without the fractional ionization, the ion rms radius de-
creases at exactly the same rate that the centroid moves, as
it should. For this simulation, the grid spacing is 0.16 mm
and the beam radius crosses two grid lines as it compresses.
Although this simulation is nonphysical because it does not
include the fractional ionization, it is useful since it dem-
onstrates that the rms radius is being modeled very accu-
2-8



FIG. 11. (Color) Ion-hose calculation in the IFR using method 2.
The red line shows the electron slice centroid and the blue line
shows the ion centroid.

FIG. 9. (Color) Ion-hose calculation in the IFR using method 1.
The red line shows the electron slice centroid and the blue line
shows the ion centroid.
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rately with the fluid model, even as particles are clearly
crossing through grid intersection points.

With the fractional ionization included by method 1, the
electron slice and corresponding ion distribution centroid
at 10 nsec into the pulse as a function of axial location is
shown in Fig. 9. The electric field inside the ion distribution
is assumed to be Er � �Ir=2"0�c�b2, where b is the ion
distribution rms radius. The electron centroid is oscillating
about the ion column centered at x � 2 cm, and the ion
distribution is executing smaller oscillations. The electron
oscillation betatron wavelength has increased due to the
ion oscillations as predicted, and there is a corresponding
exponential growth in the electron centroid oscillation
amplitude. The growth rate is very close to the analytic
solution [24].

In Fig. 10 we compare the horizontal electric field
calculated by the fluid model to that found from the ana-
FIG. 10. (Color) Comparison of the electron centroid grid and
analytic electric fields, using method 1. The solid red line shows
the electric field calculated on the simulation grid, the dashed
blue line shows the electric field calculated by the analytic
model, and the dashed green line shows the rms ion size.
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lytic solution for a uniform distribution, that the electron
slice centroid sees. The small hash is noise from the grid,
but the overall agreement is also very good. In addition, the
growth rate is in good agreement with analytic estimates
[22,24].

In the next two figures, Figs. 11 and 12, we redo the
calculation using method 2 to calculate the electron cen-
troid motion. Here, the analytic form is used to describe the
ions’ self-fields, but an exact grid calculation is used for the
electron slice centroids. Essentially the same results occur,
however there is some additional oscillations in both the
ions’ and electron slice’s centroids. This oscillation is due
to the long-term transverse plasma oscillations of the ions
(leading to slight periodic nonuniformities in the distribu-
tion), but does not appreciably change the results. Because
these plasma oscillations are physical, method 2 is also
FIG. 12. (Color) Comparison of the electron centroid grid and
analytic electric fields, using method 2. The solid red line shows
the electric field calculated on the simulation grid, the dashed
blue line shows the electric field calculated by the analytic
model, and the dashed green line shows the rms ion size.
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FIG. 13. (Color) Ion-hose calculation in the IFR using method 2,
without fractional ionization. The red line shows the electron
slice centroid and the blue line shows the ion centroid.
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considered to be an accurate way of representing fractional
ionization for simulations in this regime.

The previous figures provide some important physical
insight into the mechanism. The key feature leading to the
instability growth is the increase in the electron’s betatron
period. However, without full fractional ionization, the rms
ion distribution radius decreases (Fig. 8), and in fact the
electron’s betatron period will decrease. This phase rela-
tion between the electron and ion oscillations will lead to
attenuation of the electron centroid oscillation amplitude,
as predicted in Eq. (21). In Figs. 13 and 14 we show the ion
and electron centroids and the calculated electric fields, for
the case where the fractional ionization is not included. We
see the attenuation of the oscillations, and also the same
centroid wandering as seen in Fig. 11, due to plasma
oscillations in the ion distribution. For this case, the in-
creased electric field as the ion distribution pinches ac-
FIG. 14. (Color) Comparison of the electron centroid grid and
analytic electric fields, using method 2, without fractional ion-
ization. The solid red line shows the electric field calculated on
the simulation grid and the dashed blue line shows the electric
field calculated by the analytic model.
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tually shortens the electron betatron period, and the
betatron amplitude then attenuates, also in agreement
with the simple model presented above.

IV. NOMINAL ACCELERATOR TRANSPORT
CASES

In this section, we will use the hybrid-fluid model to
simulate some nominal long-pulse beam transport cases. In
particular, we will model the ion-hose instability for vari-
ous beam and transport parameters, for 5-meter long trans-
port channels. The goal of these simulations is to identify
key features of the instability, especially growth rates and
saturation mechanisms. These insights will in turn be used
to help interpret long-pulse simulations of the DARHT
second-axis beam line, discussed in the following section.

For these cases, we will use a 4 kA beam at 20 MeV.
We will assume that the gas pressure is 5� �10�7� torr
and the cross section for releasing hydrogen ions is 4�
�10�23� m2. Hydrogen is used for these simulations be-
cause its light weight will lead to the shortest ion oscilla-
tion period and greatest growth rate.

The ion-hose instability has a complicated functional
dependency on axial position and time. It is felt that plots
of both ion and electron centroid motion at various axial
locations as a function of time are the most illustrative of
the physical mechanism, and will be the primary tool for
this discussion and the one in the following section.

We will consider four 20 MeV cases, with initial primary
beam sinusoidal offset amplitudes of 0.1 to 1 mm. First, we
consider the case where the beam is matched in a uniform
magnetic field with an edge radius of 3 mm. The ion
oscillation period for this case is 4 nsec. We will drive
this instability with a sinusoidal electron-beam centroid
offset (with a maximum of 0.1 mm) also with a period of
4 nsec. Following that, we will observe the ion-hose stabil-
ity for the case where the beam is focused to about 3 mm
edge radius with periodic thin solenoids. Next, we consider
the same beam, but with a 3 cm edge radius, and with an
initial centroid offset period of 40 nsec. The final simula-
tion will be the same as the 3 mm case with solenoidal
focusing, but with an electron-beam centroid offset period
of 8 nsec to observe nonresonant excitation.

A. 20-MeV electron-beam, 3-mm edge radius

In this case, we will consider a 20-MeV, 4-kA beam,
with a 3-mm radius, with a maximum offset amplitude of
0.1 mm with a resonant period of 4 nsec. The beam is
matched in a solenoidal field of 0.125 T. With these pa-
rameters, the scaling factor I=�a2B2

0� is about 28 (so the
ionization model used is very accurate). In Fig. 15 we see
the evolution of the ion centroid as a function of time at
different axial locations. The electron-beam centroid evo-
lution is shown in Fig. 16. Each electron slice in these
simulations corresponds to 0.4 nsec, for a total pulse length
of 200 nsec. For these parameters, the ion oscillation
-10



FIG. 15. (Color) Ion centroid evolution for 20-MeV, 3-mm, resonant beam case at different axial positions. Each slice is 0.4 nsec long.
The red line is for the horizontal offset and the blue line is for the vertical offset. (a) z � 0:625 m, (b) z � 1:25 m, and (c) z � 2:5 m,
and (d) z � 5 m.

FIG. 16. (Color) Electron-beam centroid evolution for 20-MeV, 3-mm, resonant beam case at different axial positions. Each slice is
0.4 nsec long. The red line is for the horizontal offset and the blue line is for the vertical offset. (a) z � 0:625 m, (b) z � 1:25 m, and
(c) z � 2:5 m, and (d) z � 5 m.
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period is about 4 nsec. The ion centroid amplitude reaches
a couple of millimeters, but the axial magnetic field re-
stricts the electron-beam centroid offset to about 0.2 mm.
The ion centroid oscillations saturate once the ions move
out of the potential well of the electron beam. The electron
centroid growth does not saturate for this pulse length at
0.625 m, is close to saturating at 1.25 m, and saturates at
2.5 m and beyond. This saturation is also reflected in the
ion centroid evolutions. At 2.5 and 5 m, the ion centroid
evolution shows that the ions lose coherence with the
electrons, causing the saturation. The electron centroid
amplitude is suppressed by the confining axial magnetic
field to about one tenth that of the ions.

B. 20-MeV electron beam, 3-mm edge radius with
periodic focusing

In this case, we will consider a 20-MeV, 4-kA beam,
with a 3-mm radius, also with a maximum centroid offset
of 0.1 mm. The beam is matched with a periodic lattice of
10-cm long solenoids, spaced 1 m apart. Here, the scaling
factor I=�a2B2

0� is about 3 in the solenoids and infinite
between them. Since the solenoids constitute a small por-
tion of the transport, we anticipate the simulation model
will be quite accurate. The rms beam radius evolution over
the transport distance is shown in Fig. 17. As in the
previous case, 0.4 nsec slices are used. However, the in-
stability did not saturate in 200 nsec, so a total of 2500
slices was used, for a total electron pulse length of 1 � sec .
In Fig. 18 we see the evolution of the ion centroid as a
function of time at different axial locations. The electron-
beam centroid evolution is shown in Fig. 19. The plots of
the ion centroid and electron centroid evolutions are at the
locations of the periodic solenoids. We see that the ion
centroids have a similar amplitude to the previous case
with uniform focusing (about 2 mm), and now the electron
centroids have comparable amplitudes, a factor of 5 greater
than the previous case. A major difference introduced in
FIG. 17. Beam edge radius versus transport distance, for the
period focusing case. 10-cm long solenoids are located at meter
intervals, with strengths of 0.41 T.
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this case relative to the uniform focusing cases is that here
the electron and ion centroids will hunt for a resonance,
which is clearly seen in the electron centroid plots at 3, 4,
and 5 m where a new period is established and in the ion
centroid plots where the ion centroids lose coherence. We
see that at axial distances of 3 m and beyond, the period of
the ion and electron centroid oscillations change dramati-
cally. This shift is seen clearly in Fig. 19(f).

C. 20-MeV electron beam, 3-cm edge radius

In this case, we will consider a 20 MeV, 4 kA beam, with
a 3 cm radius. A very low axial magnetic field is used to
match the rms beam radius, leading to a very large scaling
factor I=�a2B2

0�. For this beam radius, the ion period is
40 nsec, and in this simulation the electron centroid offset
period is also 40 nsec to resonantly excite the instability
(with an initial maximum amplitude of 1 mm). In Fig. 20
we see the evolution of the ion centroid as a function of
time at different axial locations. The electron-beam cen-
troid evolution is shown in Fig. 21. Ion amplitude satura-
tion again occurs for radii above 2 cm, and the electron
amplitude does not show saturation either over the 5 m or
over the 2 �sec pulse length. The total amplitude of the
instability is about the same as the case with a 3-mm radius,
but the relative effect is smaller, because of the larger beam
size.

D. 20-MeV electron beam, 3-mm edge radius,
nonresonant oscillations

In this case, we will consider a 20-MeV, 4-kA beam,
with a 3-mm radius. The beam is matched in a solenoidal
field of 0.125 T. The difference between this case and the
first case is that the initial beam centroid offset has a period
of 8 nsec, which is not resonant with the ion oscillation
period of 4 nsec. Ths slices in this case are each 0.8 nsec
long, with a total simulation pulse length of 400 nsec. In
Fig. 22 we see the evolution of the ion centroid as a
function of time at different axial locations. The electron-
beam centroid evolution is shown in Fig. 23. The saturated
amplitudes are similar to those seen for the resonantly
driven case (about 0.2 mm), and by 1.25 m, the ion centroid
oscillation has a dominant period of 4 nsec. In addition, the
electron centroids show a dominant oscillation of 4 nsec by
5 m. It appears that resonant excitation is not needed,
although nonresonant excitation will delay saturation
both in terms of axial location and time within the pulse
itself.

E. Discussion

The results of the previous cases can be summarized by
the following statements. Application of a uniform external
magnetic field will suppress the amplitude of the electron
centroid oscillations, as described in [3]. The ion oscilla-
tions are limited by the size of the electron-beam potential
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FIG. 18. (Color) Ion centroid evolution for 20-MeV, 3-mm, periodic-focusing beam case at different axial positions. Each slice is
0.4 nsec long. The red line is for the horizontal offset and the blue line is for the vertical offset. (a) z � 1 m, (b) z � 2 m, (c) z � 3 m,
(d) z � 4 m, (e) z � 5 m, (f) blowup of first 500 slices at z � 5 m, and (g) blowup of last 500 slices at z � 5 m.
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well. Nonresonant excitation shows roughly equivalent
results to resonant excitation. Periodic focusing reduces
the suppression of the electron centroids and lead to greater
saturated amplitudes, although the initial growth rate is
about the same. The ion and electron centroids are allowed
to hunt for resonances with periodic focusing. Larger beam
sizes will decrease the relative effect of the instability.
114202
V. DARHT BEAM LINE ION-HOSE SIMULATIONS

The DARHT second-axis accelerator is a long-pulse
accelerator, designed for a 2- � sec electron pulse.
The accelerator has more-or-less continuous focusing
along it, with long sections with reduced or no field
only in the early part and in the downstream transport
-13



FIG. 19. (Color) Electron-beam centroid evolution for 20-MeV, 3-mm, periodic-focusing beam case at different axial positions. Each
slice is 0.4 nsec long. The red line is for the horizontal offset and the blue line is for the vertical offset. (a) z � 1 m, (b) z � 2 m, (c)
z � 3 m, (d) z � 4 m, (e) z � 5 m, (f) blowup of first 500 slices at z � 5 m, and (g) blowup of last 500 slices at z � 5 m.
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after the last accelerating cell. The downstream transport
after the accelerator is intended to match the electron
beam into a kicker section which transforms the beam
into a series of 50 to 100 nsec pulses. The accelerator
is intended to eventually produce a 18.4-MeV, 2-kA elec-
tron beam for fast radiography (initially a 1.4-kA beam
114202
will be produced). The accelerator layout is shown in
Fig. 24. The ion-hose instability can be suppressed for
this accelerator with proper tuning. In this section, we
will study the instability in an upstream section with dis-
crete magnetic focusing and for an alternative tuning in the
downstream transport where it can become significant
-14



FIG. 20. (Color) Ion centroid evolution for 20-MeV, 3-cm beam case at different axial positions. Each slice is 4 nsec long. The red line
is for the horizontal offset and the blue line is for the vertical offset. (a) z � 1:25 m, (b) z � 2 m, and (c) z � 5 m.
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(basically transporting a smaller electron-beam radius). We
will use a gas pressure in the beam pipe of 2� �10�7� torr
and cross section for water ions of 2��10�22� m2. Water
ions (H2O�) are considered the most likely candidate for
FIG. 21. (Color) Electron-beam centroid evolution for 20-MeV, 3-cm
The red line is for the horizontal offset and the blue line is for the
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ionization from impact ionization by the primary drive
beam. A full analysis of the instability for the DARHT
accelerator is beyond the scope of this paper. However,
these examples can be used with the cases in the previous
beam case at different axial positions. Each slice is 4 nsec long.
vertical offset. (a) z � 1:25 m, (b) z � 2:5 m, and (c) z � 5 m.
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FIG. 22. (Color) Ion centroid evolution for 20-MeV, 3-mm, nonresonant beam case at different axial positions. Each slice is 0.8 nsec
long. The red line is for the horizontal offset and the blue line is for the vertical offset. (a) z � 0:2 m, (b) z � 0:625 m, and (c)
z � 1:25 m, and (d) z � 5 m.
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section to build insight into the instability mechanism. In
particular, the widely spaced focusing will encourage the
instability, and the varying beam size will provide a very
wide resonance.
FIG. 23. (Color) Electron-beam centroid evolution for 20-MeV, 3-m
is 0.8 nsec long. The red line is for the horizontal offset and the b
0:625 m, and (c) z � 1:25 m, and (d) z � 5 m.
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A. Commissioning geometry

For the early part of the DARHT accelerator, we use the
nominal commissioning tune, with beam radius, applied
magnetic field, and beam emittance evolution shown in
m, nonresonant beam case at different axial positions. Each slice
lue dashed line is for the vertical offset. (a) z � 0:2 m, (b) z �
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FIG. 24. (Color) Schematic of the DARHT second-axis accel-
erator, showing the layout of the injector, beam head clean-up
zone, accelerator cells, and downstream transport.
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Fig. 25. The commissioning geometry is slightly different
than the upstream geometry for the final accelerator con-
figuration, because additional solenoids are installed in the
axial region from 9 to 12.5 m for better matching into the
injector commissioning diagnostics. The beam energy
grows from 2.6 MeV to 4.0 MeV in this section, with a
FIG. 25. Commissioning tune: (a) rms beam radius evolution, (b
evolution.
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beam current of 1410 A. There are 8 accelerator cells, each
with 175 kV, centered at axial positions of 2.1, 2.6, 3.1, 3.6,
4.2, 4.7, 5.2, and 5.7 m. The beam radius, injected from a
diode, starts at about 7 cm and is focused to about 2 cm. A
region of the transport intended to scrape off the beam
head, called the beam cleanup zone (BCUZ), is from about
6 to about 9 m, followed by special solenoids used only for
the injector commissioning. The BCUZ will also be part of
the final accelerator configuration. For the commissioning
tune, the solenoids in the BCUZ are detuned to provide
smooth transport, instead of a series of waists. We see the
magnetic field holes due to the discrete location of the
solenoids in this section, in Fig. 25(b). The emittance
evolution, shown in Fig. 25(c) is dominated by transverse
plasma oscillations and other nonthermal effects, and is
well understood [25]. For these parameters, the normalized
scaling factor I=�a2B2

0� is typically about 50, and the
assumption in numerical model neglecting the ionization
electrons should be quite accurate.

The electron centroid evolution at the end of the com-
missioning geometry (12.5 m) is shown in Fig. 26, for
various initial offset periods, ranging from about 100 to
600 nsec. For this analysis, an 8 � sec electron beam was
used in the simulations, because the instability will not
saturate in 2 � sec , for any of the initial offset periods. For
all cases, the maximum initial centroid offset was 0.1 mm,
and 1000 electron slices of 8 nsec apiece were used. We see
a relatively narrow resonance, peaked at a drive frequency
of about 2.3 MHz (440 nsec period), with a bandwidth of
) applied external magnetic field, and (c) rms beam emittance
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FIG. 26. (Color) Electron centroids at 12.5 m for an 8 � sec beam (2 � sec has elapsed by the 250th slice). The red line is for the
horizontal offset and the blue line is for the vertical offset. (a) period of 96 nsec, (b) period of 200 nsec, (c) period of 200 nsec on
different vertical scale, showing same envelope as the 96 nsec case, (d) period of 304 nsec, (e) period of 352 nsec, (f) period of
400 nsec, (g) period of 440 nsec, (h) period of 480 nsec, (i) period of 520 nsec, and (j) period of 600 nsec.
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FIG. 27. (Color) Centroid of slice 800 (6:4 � sec into pulse)
versus distance for the commissioning geometry. The red line
is for the horizontal centroid and the blue line is for the vertical
centroid.
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about 0.8 MHz. At resonance [Fig. 26(g)], we see clean,
single frequency, growth of the ion-hose instability, with
no frequency hopping. Off resonance, we see beating and
frequency hopping. Note that the resonance is very one-
sided, and the response quickly drops off as the driving
frequency is decreased. In Fig. 26(a), we see the signature
of driving the ion-hose instability far off resonance. No
amplitude growth is seen. At a period of 200 nsec
[Figs. 26(b) and 26(c)], the same low amplitude signature
is seen, until late in the pulse when frequency hopping is
made to approximately the second subharmonic and reso-
FIG. 28. (Color) Ion centroids at (a) 5 m, (b) 7.5 m, (c) 8.75 m, and (
an initial offset period of 440 nsec. The red line is for the horizonta
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nance is found. At resonance [Fig. 26(g)], the growth of the
electron-beam centroid oscillations reaches 3 cm after
8 � sec . The maximum growth after 2 � sec (the
DARHT pulse length) is less than 5 mm.

In Fig. 27, we plot the axial evolution of the centroid of
the 800th electron slice, to verify that the majority of the
exponential growth does in fact happen in the region of the
periodic solenoids.

In Figs. 28 and 29, we plot the ion and electron evolu-
tions for an excitation frequency of 2.3 MHz, at axial
distances of 5, 7.5, 8.75, and 10 m. The drive frequency
is off resonance at the local condition at 5 m, and very little
ion oscillations are seen, and no growth in the electron
amplitudes are seen. At 7.5 m, some limited growth is seen,
but both the ion and electron centroids appear to saturate at
a low level. Both centroids start seeing exponential growth
at 8.75 m, and have large growth rates at 10 m. A key
insight into the mechanism is that by 10 m, the amplitude
of the electron centroids is comparable to that of the ion
centroids, suggesting that the mechanism damping effect
from the confinement of the electrons from the external
magnetic field is failing for the periodic field structure. The
drive frequency stays in resonance over the range from 5 to
10 m because there is very little change in the beam radius.

B. Downstream transport

After the last DARHT accelerating cell is a region called
the downstream transport. We will use a modified focusing
tune where the 19-MeV, 1.41-kA electron beam is about
2 mm at the end of the accelerator section just preceding
d) 10 m, for an 8 �sec beam in the commissioning geometry, for
l offset and the blue line is for the vertical offset.
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FIG. 29. (Color) Electron centroids at (a) 5 m, (b) 7.5 m, (c) 8.75 m, and (d) 10 m, for an 8 msec beam in the commissioning geometry,
for an initial offset period of 440 nsec. The red line is for the horizontal offset and the blue line is for the vertical offset.
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this section, and evolves to about 5.3 mm at the end of this
section. Focusing solenoids are located at about 1.8 and
7.6 m. The beam rms radius, external focusing magnetic
field, and beam emittance are shown in Fig. 30. For this
FIG. 30. Downstream tune: (a) rms beam radius evolution, (b) appli
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simulation, hard-edged solenoidal fields were assumed.
The normalized scaling factor I=�a2B2

0� is about 2 in the
solenoids but infinite between them. Since the solenoid
lengths are short and we know the growth of the instability
ed external magnetic field, and (c) rms beam emittance evolution.
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FIG. 31. (Color) Electron centroids at 13 m (a) 26 nsec period, (b) 50 nsec period, (c) 100 nsec period, and (d) 200 nsec period, for a
2 msec beam in the downstream transport. The red line is for the horizontal offset and the blue line is for the vertical offset.

FIG. 32. (Color) Centroid of slice 800 (1.6 msec into pulse)
versus distance for the commissioning geometry. The red line is
for the horizontal centroid and the blue line is for the vertical
centroid.
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is suppressed by high axial fields anyway, the error in the
solenoids is not significant.

For this case, the smaller beam radius leads to a much
shorter ion oscillation period, and the simulations are for a
total electron beam pulse length of 2 � sec , using 1000
slices of 2 nsec apiece. In Fig. 31, we plot the electron
centroid offset at 13 m (the end of this transport section),
for the case of an initial offset maximum of 0.1 mm, for
offset periods ranging from 26 to 200 nsec. In direct
contrast to the previous case (the commissioning geome-
try), we now see an extremely wide resonance, essentially
equally driven at all frequencies. The resonance is domi-
nated by an oscillation with a 80 nsec period, for all cases.
Note that the large change in beam radius (from 2 to 15 mm
at its maximum) allows a large range of drive frequencies
to couple into the instability. In Fig. 32, we plot the axial
evolution of the electron centroid of the 800th slice, at
1:6 � sec into the electron pulse. The centroid definitely
increases after the second solenoid, at about 7.6 m. This
large magnification of the centroid offset is caused by the
large zero-current phase advance of the solenoid. The
magnification of the centroid offset from periodic focusing
is a form of the common thin-lens instability which occurs
if the focal length of the lenses is less than one quarter of
the lens separation.

In Fig. 33, we plot the ion centroid evolution at 2.5, 5,
7.5, and 10 m, for an initial offset period of 200 nsec. In
Fig. 34, we plot the electron centroid evolution at the same
locations. The ion centroid contains a strong 50 nsec com-
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ponent by 2.5 m. This oscillation period increases to about
100 nsec by 7.5 m, indicating the that oscillations are
staying in phase with the local resonance of the ions due
to the local beam size. The electron centroid oscillations
contain all previous frequency components, and are rich in
various components after 2.5 m. As shown in the periodic
case in Sec. IV, the centroids are allowed to find, and drive,
the local resonances. The second solenoid acts as a
lens magnifying the magnitude of these oscillations.
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FIG. 33. (Color) Ion centroids at (a) 2.5 m, (b) 5 m, (c) 7.5 m, and (d) 10 m for a 2 msec beam in the downstream transport, for an
initial offset period of 200 nsec. The red line is for the horizontal offset and the blue line is for the vertical offset.
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Comparing this case with the one for the commissioning
geometry, we find that the instability at the higher energy
beam has a larger growth rate. This is surprising, consid-
ering the higher energy beam has a larger inertia and that
FIG. 34. (Color) Electron centroids at (a) 2.5 m, (b) 5 m, (c) 7.5 m, an
initial offset period of 200 nsec. The red line is for the horizontal o
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the large-scale changing of the beam radius must be detun-
ing the instability somewhat. We can conclude that the
closely spaced periodic focusing in the commissioning
geometry still provides some suppression of the ion-hose
d (d) 10 m for a 2 msec beam in the downstream transport, for an
ffset and the blue line is for the vertical offset.
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instability that is absent in the downstream configuration. It
is important to point out that a focusing tune with larger
beam sizes will suppress the instability growth amplitude
to an acceptable level.

C. Discussion

With these simulations, we have demonstrated modeling
of the ion-hose instability for actual accelerator configura-
tions, over sizable distances (over 10 m) with relatively fine
step sizes (on the order of millimeters), including details of
acceleration and external focusing. We have used the
hybrid-fluid model to phenomologically describe the onset
and development of the instability in regions of interest in
the DARHT long-pulse accelerator.

Continuous, uniform focusing will tend to suppress the
growth of the instability, by restricting the amplitude of the
electron motion. The ion centroid amplitude is tied to the
electron motion, because the ions fall out of resonance
once the ions leave the potential well of the electrons and
the external field restricts the ability of the electron slices
to follow the collective ion motion. If the focusing is not
continuous, but the gaps between solenoids are small,
narrow resonances appear. These narrow resonances
probably depends on both the rms focusing strength and
its first derivative, and the resonances can be moved around
by changing the focusing. Periodic focusing does not re-
strict as much the electron tendency to follow, and thus
drive, the collective ion motion, and very large-amplitude
motion can result. If few solenoids are used with long
distances in between, wider resonance appear, with greatly
increased growth rates. These wide resonances can be
found by the electrons either by direct amplification or
by harmonic amplification. The amplitude of the centroid
oscillations may be augmented by overfocusing from the
solenoids, with excessive zero-current phase advance be-
tween the solenoids. For this case, the electron centroid
motion will tend to follow the local ion resonances, and the
growth rate and saturated amplitude will be relatively
insensitive to both tuning and beam initial conditions.
Use of multiple ion species may lead to some damping.
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