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No monochromatic (�!x=!x < 1%), high peak brightness [> 1020 photons=�mm2 �mrad2 � s�
0:1% bandwidth�], tunable light sources currently exist above 100 keV. Important applications that would
benefit from such new hard x-ray and �-ray sources include the following: nuclear resonance fluorescence
spectroscopy and isotopic imaging, time-resolved positron annihilation spectroscopy, and MeV
flash radiography. In this paper, the peak brightness of Compton scattering light sources is derived
for head-on collisions and found to scale quadratically with the normalized energy, �; inversely with
the electron beam duration, ��, and the square of its normalized emittance, "; and linearly with the
bunch charge, eNe, and the number of photons in the laser pulse, N�: B̂x / �2NeN�="

2��. This �2

scaling shows that for low normalized emittance electron beams (1 nC, 1 mm �mrad, <1 ps,
>100 MeV), and tabletop laser systems (1–10 J, 5 ps) the x-ray peak brightness can exceed
1023 photons=�mm2 �mrad2 � s� 0:1% bandwidth� near "!x � 1 MeV; this is confirmed by three-
dimensional codes that have been benchmarked against Compton scattering experiments performed at
Lawrence Livermore National Laboratory. The interaction geometry under consideration is head-on
collisions, where the x-ray flash duration is shown to be equal to that of the electron bunch, and which
produce the highest peak brightness for compressed electron beams. Important nonlinear effects,
including spectral broadening, are also taken into account in our analysis; they show that there is an
optimum laser pulse duration in this geometry, of the order of a few picoseconds, in sharp contrast with the
initial approach to laser-driven Compton scattering sources where femtosecond laser systems were
thought to be mandatory. The analytical expression for the peak on-axis brightness derived here is a
powerful tool to efficiently explore the 12-dimensional parameter space corresponding to the phase spaces
of both the electron and incident laser beams and to determine optimum conditions for producing high-
brightness x rays.
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I. INTRODUCTION
No monochromatic (�!x=!x < 1%), high peak bright-

ness [>1020photons=�mm2�mrad2�s�0:1%bandwidth�],
tunable light sources currently exist above 100 keV; yet a
wide array of important applications would greatly benefit
from such novel hard x-ray and gamma-ray sources, in-
cluding nuclear fluorescence spectroscopy and isotopic
imaging, time-resolved positron annihilation spectroscopy
(PAS), and MeV flash radiography. Indeed, the critical
energy for third-generation synchrotron light sources are
generally of the order of a few tens of keV, and their output
above 100 keV falls off exponentially; fourth-generation
light sources such as the planned Linac Coherent Light
Source (LCLS) [1,2] are intrinsically lower photon energy
machines, as they rely on wigglers with periods in the cm
range to drive the free-electron laser (FEL) [3] instability;
finally, for two-stage FELs [4], where the FEL is used as
the drive laser for Compton scattering � rays off the
storage ring electron beam, optimum electron beam con-
ditions for lasing and Compton scattering are incompatible
to a large degree; as a result the peak brightness is consid-
erably smaller than that achievable with an independent
drive laser. This is summarized in Fig. 1, where the peak
brightness of current light sources is presented as a func-
tion of their operating x-ray energy.
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In this paper, we consider the merit of Compton scatter-
ing [5–13] as a promising alternative approach to develop
bright, compact hard x-ray and �-ray light sources,
whereby the incident photons produced by a picosecond
tabletop laser system scatter off a high-brightness, relativ-
istic electron beam to be Doppler-upshifted to energies in
the 0.1–10 MeV range. More specifically, the high-energy
peak brightness scaling of such Compton scattering
light sources is derived, and it is shown that for low
normalized emittance electron beams (1 nC, 1 mm �
mrad, <1 ps, >100 MeV), and tabletop laser systems
(1–10 J, 5 ps Fourier-transform–limited) the peak x-ray
brightness can exceed 1023 photons=�mm2 �mrad2 � s�
0:1% bandwidth� near !x � 1 MeV; this is confirmed by
three-dimensional codes [8,12] that have been extensively
benchmarked against Compton scattering experiments per-
formed at Lawrence Livermore National Laboratory
(LLNL) [11–13]. An analytical expression for the peak
on-axis brightness is a powerful tool to efficiently explore
the 12-dimensional parameter space corresponding to the
phase spaces of both the electron and incident laser beams
and to determine optimum conditions for producing high-
brightness x rays. The unique favorable high-energy scal-
ing of Compton x-ray sources is presented in Fig. 1, and
shows that a novel region of the peak brightness-energy
2-1 © 2005 The American Physical Society
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FIG. 1. (Color) Peak brightness of various x-ray sources as a
function of their operating photon energy.
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chart could be accessed by such new light sources. We also
note that the Compton scattering terminology is used
throughout this paper in view of the fact that it encom-
passes a broader parameter range than Thomson scattering,
which represents the zero-recoil limit of this elastic scat-
tering process; for a discussion of the conditions where the
Thomson limit applies, we refer the reader to Section VI B.

Within the theoretical framework presented here the
incident laser pulse is modeled in terms of photons, as
opposed to a classical coherent electromagnetic field, and
the electrons are described via the Compton scattering
differential cross section. The main reason for using a
photon model is that it allows the description of the scat-
tered radiation both in the time and frequency domains: if
one use the well-known Larmor radiation formula and
Fourier-transform analysis, the temporal information is
lost, as one integrates over time to perform the Fourier
transform yielding the spectral content of the scattered
radiation, then squares the result, thus discarding the phase
information. The photon description, however, imposes
limitations to the modeling of nonlinear effects, where
the ponderomotive force plays an important role in modu-
lating the axial dynamics of the particles; some interfer-
ence phenomena are also neglected.

The interaction geometry under consideration here is
head-on collisions, where the x-ray flash duration is shown
to be equal to that of the electron bunch, and which
produce the highest peak brightness for properly com-
pressed electron beams. Another important aspect of the
analysis presented in this paper is the inclusion of non-
linear effects, such as spectral broadening, which are gen-
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erally ignored in the literature. To our knowledge, this
represents the first attempt to model three-dimensional
nonlinear effects in Compton scattering. These effects are
important, as they show that there is an optimum laser
pulse duration in this geometry, of the order of a few
picoseconds, in sharp contrast with the initial approach to
laser-driven Compton scattering sources where femtosec-
ond laser systems were thought to be mandatory.

This paper is organized as follows: in Sec. II, the tem-
poral x-ray flux and integrated dose are studied; in Sec. III,
the peak on-axis brightness of a Compton scattering light
source is derived, and an analytical expression is obtained
under the assumption that both the electron beam normal-
ized emittance and energy spread remain small; in Sec. IV,
nonlinear effects are included; in Sec. V, a brief discussion
is presented regarding the parameter space where the ana-
lytical theory applies, while Sec. VI focuses on the com-
parison between the analytical brightness expression
derived in Sec. III and a three-dimensional time and
frequency-domain code [12] that has been extensively
benchmarked against Compton scattering experiments per-
formed at LLNL [11–13], for electron beam and laser
parameters corresponding to the current state-of-the art;
finally, conclusions are presented in Sec. VII.
II. FLUX AND X-RAY DOSE

The local number of x-ray photons scattered per unit
time and volume is given by the product of the electron
beam 4-current, j��x�� � ecne�x��u�=�, and the incident
photon 4-flux, ���x�� � cn��x��k�=! [14]:

d4Nx�x��

d4x�
�
�
ec
j��x�����x�� �

�c
�!

ne�x��n��x��u�k�:

(1)

Here, u� � dx�=cd� � ��;u� is the electron 4-velocity,
k� � �!=c;k� is the incident photon 4–wave number, and
� � 8�r2

0=3 is the Compton scattering cross section, ex-
pressed in terms of the classical electron radius, r0 �
e2=4�"0m0c

2 � 2:8178� 10�15 m. In Cartesian coordi-
nates, Eq. (1) can be expressed explicitly as

d4Nx�x; y; z; t�
dxdydzcdt

� �ne�x; y; z; t�n��x; y; z; t�
�

1� � �
ck
!

�
:

(2)

Thus, for collinear and cylindrically symmetric beams
colliding head-on, as illustrated in Fig. 2, the temporal
behavior of the x-ray pulse can be described by considering

d3Nx
2�rdrdzcdt

� �
�

1� � �
ck
!

�
n��r; z; t�ne�r; z; t�

� ��1� �0�n��r; z; t�ne�r; z; t�; (3)

where we have used the average axial velocity of the
electron beam, � � �0ẑ, and the average propagation
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FIG. 2. (Color) Schematic of the interaction geometry, showing
the 1=� x-ray energy cone, dEx=d�x, the Doppler-upshifted
scattered radiation frequency, !x, and the detector position, zd.

HIGH-ENERGY SCALING OF COMPTON SCATTERING . . . Phys. Rev. ST Accel. Beams 8, 100702 (2005)
direction of the incident laser pulse, ck=! � �ẑ, and
where spatial positions are given in terms of cylindrical
coordinates. Since we are interested in the temporal x-ray
flux measured by a detector positioned on axis at z � zd,
we must take into account the retardation condition: the
detection time, td, is connected to the emission time and
axial position by the relation

td � t�
zd � z
c

; (4)

mathematically, this is achieved by multiplying Eq. (3) by
the delta-function retardation condition, and integrating
over time, to obtain

d3Nx
2�rdrdzdtd

�
Z �1
�1

��1� �0�n��r; z; t�ne�r; z; t�

� 	
�
td � t�

zd � z
c

�
cdt

� c��1� �0�ne�

�
r; z; td �

zd � z
c

�
; (5)

where we have introduced the product of the electron and
incident photon densities, ne� � nen�. Note that in the
left-hand side of Eq. (5), the time, t, is now replaced by
the detector time, td. In addition, since the temporal x-ray
pulse does not depend on the position of the detector, we
can set zd � 0.

Near the focal region, the electron beam density can be
modeled by Gaussian radial and temporal distributions

ne�r; z; t� �
Ne����

�
p 3 c��r2

b

1

1� �kfz�2

� exp
�
�

�
t� �u0z=�0c�

��

�
2

�
r2

r2
b�1� �kfz�

2	

�
; (6)

where Ne � q=e is the number of electrons in the bunch,
�� is the bunch duration, rb is the radius at focus, and
where the inverse beta function is given in terms of the
normalized emittance, ", beam focal radius, and energy,
10070
�0, by kf � ��1
f � "=�0r

2
b. Similarly, the photon density

of the focusing and diffracting laser pulse can be described
by Gaussian radial and temporal distributions

n��r; z; t� �
N����������

�=2
p 3 c�tw2

0

1

1� �z=z0�
2

� exp
�
�2

�
t� �z=c�

�t

�
2

� 2
r2

w2
0�1� �z=z0�

2	

�
; (7)

where N� � W="!0 is the total number of photons in the
laser pulse, �t is the pulse duration, and is related to the
bandwidth as �t�! �

���
2
p

, in the case of a Fourier-trans-
form-limited pulse, w0 is the 1=e2 focal radius, and z0 �
�w2

0=�0 is the Rayleigh length. The corresponding inter-
action geometry is illustrated in Fig. 2. Although the
Gaussian distributions chosen here do not provide an ex-
haustive description of the electron and incident photon
density distributions, they provide an appropriate model
that can be handled analytically. We also note that there is a
strong parallel between Eqs. (6) and (7); in particular, the
Rayleigh length and the beta function play similar roles, as
well as emittance and wavelength; for a more detailed
discussion, we refer the reader to [15].

Using the expression of the density product and intro-
ducing the normalized axial position, �z � 2

���
2
p
z=c�t, the

normalized inverse beta function, 
 � kfc�t=2
���
2
p

, and
the normalized inverse Rayleigh length, � � c�t=2

���
2
p
z0,

we have

d3Nx
2�rdrd�zdtd

���1��0�
NeN�

�3r2
bw

2
0��

�
1

�1�
2 �z2��1��2 �z2�
exp

�
�

�
td

��

� �z
�1��0�

2
���
2
p

�t
��

�
2
�

� ���
2
p td

�t
� �z

�
2

�
r2

r2
b�1�


2 �z2�
�

2r2

w2
0�1��

2 �z2�

�
: (8)

The integral over the radius is easily performed [16]:

Z 1
0

exp
�
�r2

�
1

r2
b�1�


2 �z2�
�

2

w2
0�1��

2 �z2�

��
2�rdr

�
�

�1=r2
b�1�


2 �z2�	� �2=w2
0�1��

2 �z2�	
; (9)

and we find that
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FIG. 3. (Color) Overlap function, F , as a function of the nor-
malized inverse beta function, 
 � �fc�t=2

���
2
p

, and normalized
diffraction length, � � c�t=z02

���
2
p

, for a fixed value of � �
2�"=�0�0 � 0:127. The color scale is linear, with arbitrary
units.
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In the 180
 interaction geometry, this expression can be
approximated by

dNx
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8

3�
r2

0

w2
0
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2 �z2�
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and the integral can be performed, using the fact that [16]

Z 1
0

e�x
2
dx

x2 � �2 �
�
2�

e�
2
�1�����	; (12)

where ��x� � �2=
����
�
p
�
R
x
0 e
�t2dt is the error function; we

then find that

dNx
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’
8

3
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0
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0
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�
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��
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�1� 2

r2
b

w2
0
�=��2 � 2

r2
b

w2
0

2�

r
	g��������������������������������������������������

��2 � 2
r2
b

w2
0

2��1� 2
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b
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0
�

r

� exp
� 1� 2

r2
b

w2
0

�2 � 2
r2
b

w2
0

2

�
; (13)

which can be written in a more compact form by noting
that

2
r2
b

w2
0

�
2�"
�0�0

�


� �

�


; (14)

and introducing the overlap function,
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F ��;
;���
f1���

����������������������������������������������������
�
����=�
�2���
2�

p
	g�������������������������������������������

��2���
��1���
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q

� exp
�


���


�2���
2

�
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to obtain

dNx
dtd
’

8

3

r2
0

w2
0

�1� �0�
NeN�

��
F ��; 
;�� exp

�
�

�
td

��

�
2
�

�
Nx����
�
p

��
e�t

2
d=��2

: (16)

The behavior of the overlap function is illustrated in Fig. 3,
for a fixed value of the ratio of the electron beam physical
emittance, which is defined as the ratio of the normalized
emittance to the normalized electron beam energy, "=�;
and laser wavelength, � � 2�"=�0�0 � 0:127, and shows
that for laser pulses much longer than the diffraction
length, where � � 10, there is no optimal value of the
inverse beta function that yields a good overlap; for laser
pulses dominated by diffraction the optimum lies roughly
along the�
 � 1=� region: for example, when� � 1, the
maximum value of F is reached when 
 ’ 10, while for
� � 0:1, 
 ’ 100 is approximately optimum.

Finally, the total dose can easily be derived by integrat-
ing Eq. (16) over the detection time:

Nx ’
8
����
�
p

3

r2
0

w2
0

�1� �0�NeN�F ��; 
;��: (17)

The validity of the approximation used above is shown in
Fig. 4, where both the integral in Eq. (10), shown as blue
squares and blue dotted line, and the approximation in
Eq. (13), shown as a red line, are shown to be in excellent
agreement for the specific parameters discussed in the
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FIG. 4. (Color) Temporal evolution of the x-ray flux for a 1 nC,
��=

���
2
p
� 100 fs rms, 50 MeV compressed electron bunch col-

liding with a 1 J, 1 �m, 5 ps FTL laser pulse. The electron beam
focal radius is rb=

���
2
p
� 10 �m rms, while the laser 1=e2 inten-

sity focal radius is w0 � 20�m. The integrated dose is Nx �
1:6� 109 photons, and the corresponding quantum efficiency is
0.256 photon/electron.
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caption; in general, excellent agreement is obtained over a
wide parameter range. This is an important result, because
it demonstrates that in the 180
 interaction geometry, the
temporal x-ray pulse profile closely follows the electron
beam pulse shape. Physically, this result can be understood
as follows: if the laser pulse is longer than the electron
bunch, then the situation is that of an electromagnetic
wiggler, which is essentially analogous to a magnetostatic
wiggler, where the pulse duration is governed by the
electron beam duration (see, for example, LCLS references
[1,2]); in the case when the laser pulse is shorter than the
electron beam, the electrons still wiggle under the influ-
ence of the laser, and as the x rays propagate at the speed of
light, while the electrons are highly relativistic, the respec-
tive pulse durations remain very similar. For other interac-
tion geometries, however, this is no longer true: in
particular, at 90
, for ��
 �t, the x-ray pulse duration
is governed by the transit time of the laser pulse across the
electron beam focus.
III. PEAK BRIGHTNESS SCALING

As indicated above, the number of x-ray photons radi-
ated per unit volume and per unit time is given by

d4Nx
d4x�

� �c
u�k

�

�!
n��x��ne�x��

� �
�
1� � �

ck
!

�
n��x��ne�x��: (18)

To obtain the radiated x-ray density per unit solid angle,
one can use the differential scattering cross section:
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d5Nx
d4x�d�x

�
d�
d�x

c
u�k

�

�!
n��x��ne�x��: (19)

Finally, the local spectral brightness can be derived by
using the Doppler-shifted x-ray frequency, which is given
by

!x

!
�
�
�x
�
�� u � ck

!

�� u � n̂x
; (20)

in the Thomson limit; here, n̂x is the direction of observa-
tion. It is easily seen that for head-on collisions, the fre-
quency of the backscattered radiation is Doppler upshifted
by approximately 4�2: using ck=! � �ẑ and n̂x � ẑ,
!x � !��� uz�=��� uz� ’ 4�2!. We then have

d6Nx
d4x�d�xd!x

�
d�
d�x

�
1� � �

ck
!

�
n��x��ne�x��

� 	
�
!x �!

�
�x

�
; (21)

where � and �x are the electron light-cone variables with
respect to the incident and scattered photons, respectively,
as defined in Eq. (20).

For realistic electron and laser beams, Eq. (21) must be
integrated over the entire phase space of each beam to yield
the x-ray brightness, within the context of an incoherent
superposition.

We now consider a drive laser pulse with uncorrelated
Gaussian phase space; in the lab frame, the laser propa-
gates along the z axis in the negative direction, while
the linear polarization lies in the x-z plane. In addition,
the electron beam propagates along the positive z axis,
which corresponds to head-on collisions at 180
; finally,
we choose the direction of observation to lie along the
electron beam axis, where the brightness is highest, by
letting n̂x � ẑ.

For this specific interaction geometry, illustrated in
Fig. 2, and neglecting the transverse laser wave number
spectrum, which only adds very small biquadratic correc-
tion terms for extremely tight laser foci, the differential
scattering cross section takes a very simple form [12]:

d�
d�x

��������n̂x�ẑ
� r2

0

�
�� u
�� u

�
; (22)

and the local on-axis spectral brightness reads

d6Nx
d4x�d�xd!x

��������n̂x�ẑ
� r2

0

�
��u
��u

�
�1

��z�n��x��ne�x��	
�
!x�!

�
�x

�
:

(23)
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A. Laser spectrum

Integrating over the laser spectrum, to account for the
incident photon energy distribution, we now have

S! �
1����
�
p

�!

Z �1
�1

d6Nx
d4x�d�xd!x

��������n̂x�ẑ

� exp
�
�

�
!�!0

�!

�
2
�
d!

� r2
0

�
�� u
�� u

�
�1� �z�n��x��ne�x��

1����
�
p

�!

Z �1
�1

� 	
�
!x �!

�� uz
�� uz

�
exp

�
�

�
!�!0

�!

�
2
�
d!: (24)

The integral in Eq. (24) is easily performed [16], with
the result that

S! � r2
0

�
�� u
�� u

�
�1� �z�n��x��ne�x��

1����
�
p

�!

�
�� uz
�� uz

�

� exp
�
�

�
!x���� uz�=��� uz�	 �!0

�!

�
2
�
: (25)
B. Energy spread

Next, the effects of energy spread can be considered by
integrating the local on-axis brightness over a Gaussian
energy distribution:

S� �

R
1
1 S!��� expf����� �0�=��	2gd�R
1
1 expf����� �0�=��	2gd�

: (26)

It proves convenient and sufficiently accurate to replace
the lower integral bound by �1; in this case the normal-
ization factor is 1=

����
�
p

��, and Eq. (26) becomes

S� ’
r2

0nen�����
�
p

�!
1����
�
p

��

Z �1
�1

�
�� u
�� u

��
�� uz
�

�

� exp
�
�

�
!x���� uz�=��� uz�	 �!0

�!

�
2

�

�
�� �0

��

�
2
�
d�: (27)

At this point, one can use the fact that, for highly relativ-
istic beams, ��1 � 1, and for sufficiently low normalized
emittance the transverse electron velocity is much smaller
than its axial counterpart, with u? � uz. Within this con-
text, and keeping in mind the fact that

�2 � 1� u2 � 1� u2
? � u

2
z ;

�2 � u2 � ��� u���� u� � 1;

�2 � u2
z � ��� uz���� uz� � 1� u2

?;

(28)
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we have

�� uz
�� uz

’
1� u2

?

4�2 ;

�
�� u
�� u

��
�� uz
�

�
�
��� u�2

���� uz�
�1� u2

?� ’ 2�1� u2
?�:

(29)

Furthermore, one can assume that the electron beam
energy spread is small compared to the average energy,
with ��=�0 � 1, and we can make the following approxi-
mation:

1

�2 � ��0 � 	��2 ’
1

�2
0

�
1� 2

	
�0

�
; (30)

where we have introduced the variable 	 � �� �0. With
this, Eq. (27) takes the simpler form

S� ’
r2

0nen�����
�
p

�!

2�1� u2
?�����

�
p

��

Z �1
�1

� exp
�
�

�
�!x=4�2

0��1�u
2
?�f1��2�	=�0�	g�!0

�!

�
2

�
	2

��2

�
d	: (31)

It proves useful to introduce the normalized Doppler-
upshifted frequency, 
 � !x=4�2

0!0, and the relative
spectral width of the drive laser pulse, 	! � �!=!0, to
obtain

S�’
r2

0nen�����
�
p

�!

2�1�u2
?�����

�
p

��

Z �1
�1

�exp
�
�

�

�1�u2

?�f1��2�	=�0�	g�1

	!

�
2
�
	2

��2

�
d	:

(32)

This integral can be performed analytically [16]:

Z �1
�1

exp��p2x2 � qx�dx �

����
�
p

p
exp

�
q2

4p2

�
; (33)

introducing the scaled relative energy spread, 	� �
2��=�0, and identifying terms, we have

	 � x; p2 �
1

��2

�
1�

	�2

	!2 

2�1� u2

?�
2

�
;

q �
1

��

�
2
	�

	!2 
�1� u
2
?��
�1� u

2
?� � 1	

�
;

(34)
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after some algebra, we find that

S� ’
2r2

0nen�����
�
p

!0

1� u2
?��������������������������������������������������

	!2 � 	�2
2�1� u2
?�

2
q

� exp
�
�

�
�1� u2
?� � 1	2

	!2 � 	�2
2�1� u2
?�

2

�
: (35)
C. Emittance

The next important aspect of the electron beam phase
space is the normalized emittance contribution to the
brightness degradation; assuming a cylindrically symmet-
ric beam, both in real and in momentum space, emittance
can be modeled by a Gaussian distribution of transverse
velocity:

S" �
1

��u2
?

Z 1
0
S��u?� exp

�
�

�
u?

�u?

�
2
�

2�u?du?:

(36)

More explicitly, the local on-axis brightness, averaged
over the 6-dimensional electron beam phase space, takes
the form

	
d6Nx

d4x�d�xd!x

��������n̂x�ẑ




�
2r2

0����
�
p

!0
ne�x��n��x��S"�
; 	!; 	�;�u?�; (37)

where the normalized spectral brightness is defined as
S" � S"

����
�
p

!0=2r2
0nen�:

S"�
; 	!; 	�;�u?� �
1

�u2
?

Z 1
0

�
2u?�1� u

2
?���������������������������������������������������

	!2 � 	�2
2�1� u2
?�

2
q

� exp
�
�

�
�1� u2
?� � 1	2

	!2 � 	�2
2�1� u2
?�

2

�
u2
?

�u2
?

�
du?: (38)
D. Time-dependent x-ray brightness

To obtain the brightness in synchrotron units,
namely photons=�mm2 �mrad2 � s� 0:1% bandwidth�,
one must take into account the correlation between the
spatial position along the direction of observation of the
x rays and the radiation time to translate these variables in
terms of the detector time, td, by taking into account the
retardation condition, as discussed in Sec. II. Since n̂x � ẑ;
we have
10070
d6Nx
dxdydzdtdd�xd!x

�
Z �1
�1

d6Nx
d4x�d�xd!x

� 	
�
td � t�

zd � z
c

�
cdt; (39)

where zd represents the detector position, and where we
have omitted the averaging brackets and the direction of
observation for simplicity. We obtain

d6Nx
dxdydtdtdd�xd!x

�
cd6Nx

d4x�d�xd!x

�
x; y; z; td �

zd � z
c

�

�
2r2

0c����
�
p

!0
S"�
; 	!; 	�;�u?�ne�

�

�
x; y; z; td �

zd � z
c

�
; (40)

where we have used the density product function
ne��x�� � ne�x��n��x��. A second integral yields the
sought-after on-axis brightness:

d5Nx�td�
dxdydtdd�xd!x

�
Z �1
�1

d6Nx
dxdydtdtdd�xd!x

dz

�
2r2

0c����
�
p

!0
S"�
; 	!; 	�;�u?�

�
Z �1
�1

ne�

�
0; 0; z; td �

z
c

�
dz:

(41)

Note that in Eq. (41), we have set zd � 0, since the
brightness does not depend on the position of the detector,
and we have chosen x � y � 0, since the maximum den-
sity product is obtained on-axis in the cases where the
electron beam and laser pulse have zero transverse offset.

To translate this quantity into more familiar units, we
multiply it by a small surface element, 	� � 1 mm2 �
10�6 m2, a small solid angle, 	�x � 1 mrad2 �
10�6 rad2, and by 0.1% fractional bandwidth, 	!x �
10�3!x:

Bx �
d5Nx

dxdydtdd�xd!x
� 	�� 	�x � 	!x

�
d5Nx

dxdydtdd�xd!x
� 10�15 �!x: (42)

Using the definition of the normalized Doppler-
upshifted frequency, we can recast Eq. (42) to obtain the
peak, on-axis brightness:

B̂x �
8� 10�15�2

0r
2
0c
����

�
p S"�
; 	!; 	�;�u?�

�
Z �1
�1

ne�

�
r � 0; z;

z
c

�
dz; (43)

where we have assumed that there is no temporal offset
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between the laser pulse and the electron bunch, so that the
peak brightness occurs for td � 0, when zd � 0.

E. Analytical peak brightness expression

Further simplifications can be obtained in the case where
the main degradation due to the electron beam emittance is
10070
a low-energy tail in the x-ray spectrum caused by the tilt of
the x-ray cones emitted by electrons crossing the axis with
a small, but nonzero angle; in that case Eq. (38) can be
approximated as follows:
S"�
; 	!; 	�;�u?� �
1

�u2
?

Z 1
0

�1� x�����������������������������������������������
	!2 � 	�2
2�1� x�2

p exp
�
�

�
�1� x� � 1	2

	!2 � 	�2
2�1� x�2
�

x

�u2
?

�
dx;

’
1

�u2
?

1������������������������������
	!2 � 	�2
2

p Z 1
0

exp
�
�
�
�1� x� � 1	2

	!2 � 	�2
2 �
x

�u2
?

�
dx: (44)

Here, we have first changed variables by using x � u2
?, and kept only the lowest-order spectral dependence on u2

?.
Equation (44) can be integrated analytically [16]:

Z 1
0

exp
�
�
x2

4�
� �x

�
dx �

��������
��

p
exp���2��1����

����
�

p
�	: (45)

Identifying terms, we find that

S"�
; 	!; 	�;�u?� ’

����
�
p

2
�u2
?

exp
�

� 1

2
�u2
?

�
2�

	!2 � 	�2
2

2
�
� 1��u2
?

���
1��

�

� 1������������������������������

	!2 � 	�2
2
p

�
1�

	!2 � 	�2
2

2
�
� 1��u2
?

���
:

(46)

Furthermore, the axial overlap integral in Eq. (43) can also be expressed analytically: as previously indicated, the
electron beam density is given by Eq. (6), and the incident photon density of the focusing and diffracting laser pulse is
described by Eq. (7). When the beams are collinear, and have no temporal or radial offsets, we have

Z �1
�1

ne�

�
r � 0; z;

z
c

�
dz �

NeN�
��=

���
2
p
�3c2r2

bw
2
0���t

Z �1
�1

dz

�1� �kfz�2	�1� �z=z0�
2	

exp
�
�
z2

c2

�
�1� �u0=�0�

2

��2 �
8

�t2

��
:

(47)

At this point, we note that for relativistic beams,

�1� �u0=�0�	
2

��2
�

8

�t2
’

1

4�4
0��2 �

8

�t2
’

8

�t2
; (48)

where the last approximation stands for most practical cases. Within those circumstances, Eq. (47) can be integrated
analytically [17]:

NeN�
��=

���
2
p
�3c2r2

bw
2
0���t

Z �1
�1

dz

�1� �kfz�2	�1� �z=z0�
2	2

exp
�
�

8z2

c2�t2

�
�

NeN�
�3cr2

bw
2
0��

Z �1
�1

e��z2
d�z

�1� 
2 �z2��1��2 �z2�

�
NeN�

�2cr2
bw

2
0��


e1=
2
���1=
� � 1	 ��e1=�2

���1=�� � 1	

�2 � 
2 �
NeN�

�3cr2
bw

2
0��

O�
;��; (49)

where we have used the normalized axial position, �z � 2
���
2
p
z=c�t, and the dimensionless beam envelope parameters

defined in Sec. II.
Using these results in the expression of the peak brightness, we finally find that

B̂x �
4� 10�15

�2

�2
0

"2

NeN�
��

r2
0

w2
0

exp
�

� 1

2
�u2
?

�
2�

	!2 � 	�2
2

2
�
� 1��u2
?

���
1��

�

� 1������������������������������

	!2 � 	�2
2
p

�
1�

	!2 � 	�2
2

2
�
� 1��u2
?

���

�

e1=�2

���1=
� � 1	 ��e1=�2
���1=�� � 1	

�2 � 
2 ; (50)

where we have made the approximation �u?rb � "u0=�0 ’ ".
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The peak on-axis brightness scales inversely quadrati-
cally with the electron beam physical emittance, "=�0,
linearly with the bunch charge, q � eNe, and inversely
with the electron bunch duration, ��. Using the definition
of the electron bunch brightness, Be � �2

0Ib="
2 �

�2
0q="

2��, we find that the x-ray brightness is directly
proportional to that quantity, thus emphasizing the impor-
tance of the electron beam quality for Compton scattering
light sources.

While less critical, the laser plays an important role; in
the linear regime, the laser pulse requirements for high-
brightness x-ray operation can be summarized as follows:
the spot size should be small, to maximize the incident
photon density, and the pulse duration should be short
compared to the Rayleigh length and the beta function of
the electron beam in order to bring the overlap parameters

 and � close to zero, as we have O�
;�� � O�0; 0� �����
�
p

. The laser fractional bandwidth, 	!, however, should
be commensurate with the electron beam relative energy
spread, 	�=2, and transverse momentum spread, �u?=u0,
to avoid significant degradation of the spectral density
function, S"�
; 	!; 	�;�u?�. In the nonlinear regime,
described in the next section, these conditions are further
constrained by the spectral broadening induced by the
inhomogeneous laser ponderomotive force during the
interaction.

IV. NONLINEAR SPECTRAL BROADENING
Before evaluating this analytical expression of the peak

on-axis brightness against our three-dimensional time and
frequency-domain code, which has been benchmarked
against experimental results, we study the spectral broad-
ening induced by nonlinear effects for large values of the
maximum laser normalized vector potential [7–9],

A0 � 2

���������������������������������������������
N����������

�=2
p 3 c�tw2

0

�0r0�C

vuut ; (51)

where �C � r0=� is the electron Compton wavelength and
� is the fine structure constant. Note that the local value of
the normalized potential is simply given by

A�x�� � 2
�����������������������������
n��x���0r0�C

q
: (52)

It is well known that the Doppler-upshifted radiation
frequency of an electron subjected to an intense electro-
magnetic field must be corrected to account for the pon-
deromotive force of the incident laser pulse [7–10]; using
our notation:

!x �
!0

1� hA2i

�
�� uz
�� uz

�
: (53)

For a linearly polarized laser pulse,

hA2i �
1

2
�2

�����������������������������
n��x���0r0�C

q
	2 � 2n��x���0r0�C: (54)

This suggests that we can modify our derivation by per-
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forming the following replacement:

	
�
!x �!

�� uz
�� uz

�
! 	

�
!x �

!
1� 2n��x���0r0�C

�
�� uz
�� uz

�

� 	
�
!x �

!
��x��

�� uz
�� uz

�
: (55)

The physics behind this modification is that the fre-
quency scattered by electrons is now a local variable,
reflecting the local ponderomotive force experienced by
the electrons. Proceeding along the same lines of the
derivation presented in Sec. III, we then have

S! �
r2

0����
�
p

�!

�
�� u
�� u

��
�� uz
�

�
��x��n��x��ne�x��

� exp
�
�

�!x��x������ uz�=��� uz�	 �!0

�!

�
2
�
;

(56)

S� ’
2r2

0nen������
�
p

!0

1� u2
?�������������������������������������������������������

	!2 � 	�2
2�2�1� u2
?�

2
q

� exp
�
�

�
��1� u2
?� � 1	2

	!2 � 	�2
2�2�1� u2
?�

2

�
; (57)

and

S"�
;	!;	�;�u?;x��’

����
�
p

2
��u2
?

exp
�

��1

2
��u2
?

�

�
2�

	!2�	�2
2�2

2
��
��1��u2
?

��

�1��
�


��1����������������������������������
	!2�	�2
2�2

p
�

�
1�

	!2�	�2
2�2

2
��
��1��u2
?

��
:

(58)

To obtain the nonlinear brightness, we now need to
perform the following integral:

B̂x �
8� 10�15�2

0r
2
0c
����

�
p

Z �1
�1

�
�
r � 0; z;

z
c

�
S"

�

�

; 	!; 	�;�u?; r � 0; z;

z
c

�
ne�

�
r � 0; z;

z
c

�
dz:

(59)

Returning to the definition of the local ponderomotive
force, and using previously defined variables, we have

�
�
r � 0; z;

z
c

�
� 1� 2n�

�
r � 0; z;

z
c

�
�0r0�C

� 1�
A2

0

2

e��z

1��2 �z2 � ���z�: (60)
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Finally, the explicit expression for the nonlinear brightness reads

B̂x �
4� 10�15

�3

�2
0

"2

NeN�
��

r2
0

w2
0

Z �1
�1

exp

�� �z� � 1

2
���z��u2
?

�
2�

	!2 � 	�2
2�2��z�

2
���z��
�� �z� � 1	�u2
?

�

�

�
1��


���z� � 1����������������������������������������
	!2 � 	�2
2�2��z�

p
�
1�

	!2 � 	�2
2�2��z�

2
���z��
���z� � 1	�u2
?

���
e��z2

d�z

�1� 
2 �z2��1��2 �z2�
: (61)
This expression is valid only for small values of A2
0, in

the weakly nonlinear regime, because it does not account
for the radiation of harmonics [6,7,9]; however, it is suffi-
cient to determine whether the laser intensity is small
enough for the linear brightness scaling to apply; further-
more, it properly accounts for the downshift of the main
spectral line due to ponderomotive force, as well as the
inhomogeneous spectral broadening due to the variation of
the ponderomotive force along the electron axis. It is
sufficient, however, to determine the optimum laser pulse
duration to maximize the source brightness, as discussed in
Sec. VI B.

V. LIMITATIONS OF THE ANALYTICAL THEORY

In this section, a brief discussion is presented regarding
the parameter space where the analytical theory applies. A
number of assumptions are made in order to present an
analytically tractable theory, which need to be reviewed in
order to precisely define when the theory applies. First and
foremost, the relative energy and transverse momentum
spread of the electron beam, and the laser pulse bandwidth,
are assumed to be small enough to warrant Taylor-
expansions; typically, maintaining these below a few per-
cent yields good agreement between the analytical bright-
ness and full three-dimensional computer simulations.
Second, the phase spaces of the laser pulse and electron
bunch are uncorrelated: for example, frequency or energy
chirping are not modeled here, as well as space-charge
effects and coherent synchrotron radiation along the elec-
tron beam line upstream of the final focus. Other limita-
tions include very small focal radii, where the laser pulse
FIG. 5. (Color) Comparison between the experimentally measured an
the PLEIADES facility. The maximum photon energy produced as
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wave-front curvature becomes important, along with the
electron beam divergence; these effects appear for values
below a few�m. Finally, as mentioned earlier, the incident
laser pulse is modeled in terms of photons, as opposed to a
classical coherent electromagnetic field, and the electrons
are described via the Compton scattering differential cross
section, to obtain a description of the scattered radiation
both in the time and frequency domains. The photon
description, however, imposes limitations to the modeling
of nonlinear effects, where the ponderomotive force plays
an important role in modulating the axial dynamics of the
particles. In particular, oscillations in the spectral fluence
that have been described in Refs. [18,19], are more difficult
to describe within the photon model, as they require one to
take into account the instantaneous state of motion of the
electron at the time of scattering. Finally, we note that we
have considered emittance-dominated beams, which is
generally a good assumption for most current and planned
Compton scattering light sources.

VI. COMPARISON BETWEEN ANALYTICAL
BRIGHTNESS AND THREE-DIMENSIONAL

CODES

Having derived an analytical expression for the peak on-
axis brightness and prescribed a simple analysis of weakly
nonlinear effects, we now focus on a detailed comparison
between those results and our three-dimensional codes
[8,12], which have been thoroughly benchmarked against
ongoing Compton scattering experiments at LLNL [11–
13]. For example, Fig. 5 shows the excellent agreement
d computationally predicted x-ray angular energy distribution at
of this writing is 140 keV.
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FIG. 6. (Color) PARMELA simulations for a 1 nC, 0:6 mm �mrad,
250 MeV beam (see text).
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obtained between the three-dimensional codes and the
experimentally measured angular x-ray energy distribu-
tion. The vertical axes are color coded linearly, with the
same scale, and the integrated x-ray dose agree to within
10%. This deviation is attributed to the accuracy with
which the various moments of the electron and laser phase
spaces can be measured, including energy, energy distri-
bution, emittance, focal spot size, beta function, Rayleigh
range, and charge. For more detail, we refer the reader to
references [11–13].

A. Laser and linac parameters, x-ray brightness

The specific parameters used in these simulations cor-
respond to an optimized S-band linac using a 1.6-cell rf
gun with symmetrized racetrack cavities operating with a
peak photocathode field of 140 MeV=m, a fully spatially
and temporally shaped UV photocathode laser pulse [20],
and full implementation of emittance compensation. For
such a system, a normalized rms emittance of <1 mm �
mrad is expected at a charge of 1 nC. This is confirmed by
PARMELA simulations, showing that 0:6 mm �mrad is pos-
sible at a full nC of charge, as shown in Fig. 6, for a
250 MeV beam. Five 2.5-meter long rf sections operating
at a gradient of 20 MeV=m to minimize dark current, and
using symmetrized rf feeds to minimize dipole and multi-
pole field aberrations, then accelerate the bunch. One of the
critical parameters in the x-ray brightness scaling is the
electron bunch duration, ��: as shown in Fig. 4, the x-ray
flash has essentially the same temporal length as the elec-
tron beam. Therefore, it is highly desirable to produce very
short electron bunches to generate ultrashort x-ray flashes.
The five-section linac architecture allows for the imple-
mentation of both velocity and chicane compression
schemes, which have already demonstrated electron bunch
lengths as short as 300 fs rms and 80 fs rms at PLEIADES
[11–13] and at the Sub-Picosecond Pulse Source [21,22],
respectively. However, some care should be taken when
performing pulse compression, in order to minimize co-
herent synchrotron radiation, space charge, and nonther-
mal emittance growth.

The main drive laser specifications are as follows: pulse
energy in the 1–5 J range, duration of 5 ps FTL, 10–100 Hz
repetition rate, and diode pumping for stability. Adaptive
optics could be used to provide for a high-quality laser
focal region. In the simulations presented here, we have
consistently used 1 J of laser energy.

Optimized parameters used in the following simulation
are summarized in Table I. For these parameters, the
Rayleigh length is z0 � 1:257 mm, the normalized vector
potential is A2

0 � 0:019, and the beta function is �f �
49 mm. The peak on-axis brightness is shown in Fig. 7,
where the squares are produced by a fully three-
dimensional time and frequency-domain code [12], while
the solid line corresponds to the linear analytical model
derived in Sec. III; the agreement is very good, and the
100702
variations seen on the code results are caused by statistical
noise, as this first example was simulated with 20 000
macroparticles. Indeed, for 200 000 macroparticles, the
agreement is even better, as seen in Fig. 8. In particular,
the maximum value of the peak on-axis brightness pre-
dicted by the code is 3:736� 1021, in synchrotron units,
while the analytical model yields 3:677� 1021, with a
relative indetermination of 1.6%. To verify the close match
between the electron beam phase space input to the three-
dimensional code and the Gaussian distributions used in
the analytical theory, histograms are compared with the
latter.

Next, the electron beam energy is raised to 250 MeV,
while all other parameters are kept constant. To minimize
statistical noise, as explained above, we run 200 000 par-
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TABLE I. Linac and laser parameters.

Linac Laser

Particle energy �0m0c2=e � 50 MeV hc=e�0 � 1:2398 eV
Number of particles q � Nee � 1 nC W � N� !0 � 1 J
Pulse duration ��=

���
2
p
� 100 fs rms �t � 5 ps (intensity 1=e2)

Focal spot radius rb=
���
2
p
� 10 �m rms w � 20 �m (intensity 1=e2 )

Energy spread ��=
���
2
p
�0 � 0:1% rms �! �

���
2
p
=�t �FTL�

Transverse phase space "=2 � 1 mm �mrad rms �k?=k0 1

FIG. 8. (Color) Identical to Fig. 7, with 200 000 macroparticles.
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ticles. The result is shown in Fig. 9. Again, excellent
agreement is obtained between the three-dimensional
time and frequency-domain code and the analytical bright-
ness, with a maximum of 9:198� 1022, and 9:04� 1022

synchrotron units, respectively, at a photon energy of
1.19 MeV. Note that the peak brightness has effectively
scaled as �2

0, since the brightness at 250 MeV is very nearly
25 times higher than that obtained at 50 MeV. Clearly, this
would represent an exceptionally bright source, many or-
ders of magnitude above the output of the highest energy
synchrotron currently in operation, although the gain in
average brightness is less spectacular, as the practical
repetition rate of such a source would probably be in the
10–100 Hz range. We also note that reaching 1 kHz repe-
tition rate with 1 J per pulse, corresponding to 1 kW
average power, may soon be possible by using high aver-
age power fiber laser technology, currently under develop-
ment [23], and hyperdispersion compressors. To further
establish the �2 scaling of the peak brightness, the codes
have been run at 100, 150, 200, and 250 MeV, both for a
fixed energy spread of �� � 0:05 MeV and for a fixed
relative energy spread of ��=�0 � 0:1%; the result,
shown in Fig. 10 clearly confirm that scaling.
FIG. 7. (Color) Peak spectral on-axis brightness as a function of
photon energy for the electron bunch and drive laser pulse
parameters presented in Table I. The blue curve is the analytical
brightness, while the red squares correspond to three-
dimensional computer simulations using 20 000 macroparticles.
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Another important aspect of the x-ray phase space is the
fact that, to lowest order, the brightness is nearly indepen-
dent from the electron beam spot size: one trades diver-
gence and spot size, in exact parallel with the electron
FIG. 9. (Color) Peak spectral on-axis brightness as a function of
photon energy for the electron bunch and drive laser pulse
parameters presented in Table I, except for the beam energy,
which is now 250 MeV. The blue curve is the analytical bright-
ness, while the red squares correspond to three-dimensional
computer simulations using 200 000 macroparticles.
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FIG. 11. (Color) Top: peak spectral on-axis brightness as a
function of photon energy for an electron beam focal radius
rb=

���
2
p
� 5 �m rms. Center: peak spectral on-axis brightness as

a function of photon energy for an electron beam focal radius
rb=

���
2
p
� 10 �m rms. Bottom: peak spectral on-axis brightness

as a function of photon energy for an electron beam focal radius
rb=

���
2
p
� 25 �m rms. The electron beam energy is 250 MeV; all

other parameters are given in Table I. In the top figure, the blue
curve corresponds to Eq. (5), while the red one is obtained from
a direct computer integration of the overlap integral; a slight
deviation is only observed at very small radii. The red squares
are generated by three-dimensional computer simulations.

FIG. 10. (Color) Spectral maximum of the peak on-axis bright-
ness as a function of the electron beam energy. The solid blue
curve corresponds to the analytical brightness for a fixed energy
spread of 0.05 MeV, while the solid red curve is generated using
the analytical brightness for a fixed relative energy spread of
0.1%. The blue squares and red circles correspond to three-
dimensional computer simulations using 200 000 macroparticles.
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beam phase space. This does not hold exactly, however,
because the overlap between the electron and laser beams
varies with the electron beam spot size. Furthermore, the
spectral content of the x rays is also influenced by the
electron beam divergence; the combination of these two
effects, namely, overlap and emittance-induced spectral
broadening explains the slow variation of the x-ray bright-
ness with the electron beam radius. More specifically, it is
important to note that the x-ray spot size is not necessarily
strongly dependent on the electron beam spot size. The fact
that the brightness is primarily a function of the electron
beam normalized emittance, and not the spot size, is de-
rived from the combination of the dependence of the x-ray
dose on both the electron beam and laser beam spot sizes,
through the overlap function, and the dependence of the x-
ray divergence and spectrum on the electron beam diver-
gence in the limit where the electron beam divergence, or
emittance, is the dominant factor in determining the x-ray
spectrum. The variation from the simple scaling is due
primarily to the two following facts: when the electron
spot size is big, the spectral width will be dominated by the
electron beam energy spread and the laser bandwidth,
hence the brightness should be lower than suggested by
the scaling; when the electron spot is small, the beta
function will become shorter than the possible interaction
length, hence, degrade the overlap function, and the bright-
ness. Additionally, the large transverse velocity can also
lead to higher order terms leading to additional broadening
of the spectrum.

This can be studied systematically, as shown in Fig. 11,
where the behavior of the peak on-axis spectral brightness
100702-13
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is shown for 3 different values of the electron beam focal
spot size: 5, 10, and 25 �m. The spectral broadening due to
the large electron beam divergence for small spot sizes is
clearly visible; for large focal beam radii, the spectrum is
dominated by the laser bandwidth and the relative energy
spread of the electron beam. The maximum value of the
peak on-axis brightness can then be plotted as a function of
the electron beam focal radius, as shown in Fig. 12: instead
of scaling rapidly like the inverse source size and electron
beam density, 1=r4

b, the variation of the brightness is slow,
and depends mostly on the aforementioned combination of
divergence-induced spectral broadening and beams over-
lap integral. For applications requiring narrow x-ray band-
width, one can use a relatively large spot size, while the
brightness can be maximized for small electron beam focal
spots, at the expense of spectral purity. The discrepancy
between the three-dimensional code and the analytical
theory for very small values of rb corresponds to the fact
that the assumption of small transverse velocity spread,
�u?=u0, begins to break down for these extremely small
electron beam focal spot sizes.

B. Optimum laser pulse duration and bandwidth

In the case of Fourier-transform-limited laser pulses, the
relation between the pulse duration, �t, and the spectral
bandwidth, �!, as defined in the previous sections is
�!�t �

���
2
p

. For large values of the laser pulse duration,
the laser bandwidth is very narrow, and the normalized
vector potential is small, which allows for minimal linear
FIG. 12. (Color) Spectral maximum of the peak on-axis bright-
ness as a function of the electron beam focal radius. The solid
blue curve is generated using the analytical brightness while the
red squares correspond to three-dimensional computer simula-
tions using 200 000 macroparticles. The deviation observed at
small radii corresponds to the fact that the assumption of small
transverse velocity spread, �u?=u0, begins to break down for
these extremely small electron beam focal spot sizes.
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and nonlinear x-ray spectral broadening; however, the
overlap integral becomes small as the normalized parame-
ters 
 � kfc�t=2

���
2
p

and � � c�t=2
���
2
p
z0 become large.

Conversely, for ultrashort laser pulses, the fractional laser
bandwidth contributes strongly to the x-ray spectral band-
width, and nonlinear effects become important, further
degrading the x-ray brightness. To quantify these effects,
the peak on-axis spectral brightness is derived as a function
of the drive laser pulse duration, while all other parameters,
including the laser pulse energy and spot size, are fixed and
described in Table I, except the electron beam energy,
which is 250 MeV; the results are shown in Figs. 13 and
14. When nonlinear effects are neglected, a relatively large
range of laser pulse durations yields high-brightness op-
eration; the limits are set by the laser bandwidth for short
pulses, which broadens the x-ray spectrum, and by diffrac-
tion for long pulses. Accounting for nonlinear effects,
however, reveals a much tighter constraint on the drive
laser pulse duration, as shown in Fig. 14, where the
strength of the ponderomotive force is also indicated: the
optimum lies in the 2–10 ps, range and a duration of 5 ps
FTL represents a good design point. This is an important
result, as it guides the choice of technology regarding the
drive laser, as outlined in Sec. VI A.

The various sources of spectral broadening for the scat-
tered x rays are summarized in Table II; they also help
define the transition from Thomson, or recoilless scattering
to Compton scattering, as explained below.

While it is difficult to define the transition from
Thomson to Compton scattering because there is no scale
for the recoil, a pragmatic approach consists in comparing
the various contributions to spectral broadening listed
above: if the relative recoil term is small compared to the
scattered x-ray fractional bandwidth, one operates in the
Thomson scattering limit, while when recoil contributes
FIG. 13. (Color) Peak spectral on-axis brightness as a function
of the normalized Doppler-shifted frequency, 
 � !x=4�2

0!0,
and laser pulse duration, �t. All other parameters are fixed, as
described in the text, and nonlinear effects are ignored. The color
scale is linear, with arbitrary units.
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FIG. 14. (Color) Identical to Fig. 13, but nonlinear effects are included. The color scale is linear, with arbitrary units.
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significantly to the x-ray spectral width, Compton scatter-
ing best describes the process.

C. Comparison with correlated electron beam phase
space

The Gaussian distributions used to obtain an analytical
expression of the brightness do not contain the type of
correlations that one typically observes in real electron
beams; in order to further evaluate the robustness of our
theoretical model, we have performed a detailed compari-
son between the analytical theory and PARMELA simula-
tions interfaced to the aforementioned three-dimensional
time and frequency-domain x-ray code for a specific
example. The electron beam phase space is that given in
Fig. 6, and corresponds to the system outlined in Sec. VI A;
focusing is provided by a quadrupole triplet, which pro-
duces a tight focal spot shown in Fig. 15. The correspond-
ing three-dimensional electron distribution at focus is
shown in Fig. 16, for 10 000 macroparticles. To see how
the correlated phase space given in this example deviates
from the idealized Gaussian distributions used in the ana-
lytical model, histograms are presented in Figs. 17 and 18,
and compared with simple distributions: for example, the
radial particle distribution shown in Fig. 17 (top) is well
TABLE II. Various sources of spectral broadening for scat-
tered x rays.

Spectral broadening parameter Physical origin

�!=!0 Laser fractional bandwidth
c�k?=!0 Laser focusing
��=�0 Electron beam energy spread
"=�0rb Electron beam focusing
A2

0 Nonlinear ponderomotive force
2�0 !0=m0c

2 Compton scattering recoil
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approximated by a function of the type
����������
r=rb

p
e�r=rb ,

whereas the Gaussian equivalent takes the form
re�r

2=r2
b=rb; the temporal distribution, on the other hand,

closely resembles a super-Gaussian of the form
exp���t=���8	, as shown in Fig. 17 (bottom). The distri-
bution that most deviates from a Gaussian, however, is
that of the particle energy, shown in Fig. 18 (top), as it is
strictly bounded on the high side by the maximum linac
accelerating gradient, obtained at the optimum phase.
Finally, the distribution of transverse momentum, shown
in Fig. 18 (bottom), substantially deviates from the
u? exp���u?=�u?�

2	=�u? distribution used in the
model. Nonetheless, the analytical brightness still com-
FIG. 15. (Color) Electron beam focal distribution generated with
PARMELA.
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FIG. 17. (Color) Top: histogram of the radial particle distribu-
tion at focus; the red curve shows that the particle density
behaves as

����������
r=rb

p
e�r=rb . Bottom: temporal histogram of the

electron bunch; the red curve is a super-Gaussian, of the form
exp���t=���8	.

FIG. 18. (Color) Top: histogram of the particle energy. Bottom:
histogram of the particle transverse momentum; the red curve is
a Gaussian fit.

FIG. 16. (Color) Three-dimensional electron distribution at fo-
cus, generated with PARMELA using 10 000 macroparticles.
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pares well with the result of a full three-dimensional
simulation, as shown in Fig. 19. Here, we have used the
PARMELA phase space to calculate the average value and
rms deviation of the parameters used in the theory, and
made small adjustments to optimize the fit: h�i � 493:33,
�� �

���
2
p

��rms � 0:954, �� �
���
2
p

��rms � 4:208 ps,
rb � 1:13rbrms � 6:23 �m, and �u? � �u?rms � 0:225.
The main discrepancy is mainly due to the non-Gaussian
nature of the energy distribution shown in Fig. 18 (top). We
also note that the peak brightness presented here for a full
PARMELA simulation of the electron beam and a full three-
dimensional x-ray simulation, with an uncompressed elec-
tron beam, is quite high and reaches 8� 1021 in synchro-
tron units; an electron bunch compression factor of 15,
down to 200 fs rms would generate a brightness of 1:2�
1023 synchrotron units, provided the emittance is not de-
graded in the process. These numbers confirm the feasi-
bility of the results presented in Sec. VI A.
VII. CONCLUSIONS

High-energy, high-brightness Compton scattering
light sources offer a promising development path toward
-16



FIG. 19. (Color) Peak spectral on-axis brightness as a function
of photon energy for the 250 MeV electron bunch simulated by
PARMELA. The blue curve is the analytical brightness, while the
red squares correspond to three-dimensional computer simula-
tions using 10 000 macroparticles.
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an unexplored region of the brightness-energy chart,
with a projected peak on-axis brightness in the
1020–1025 photons=mm2 �mrad2 � s� 0:1% bandwidth
range, and photon energies between 100 keV and
10 MeV. Such novel light sources are made possible by
the combination of new technologies, including high-
brightness, high-gradient symmetrized rf guns, spatial
and temporal laser pulse shaping, diode-pumped solid-
state lasers, and optical parametric amplification. A wide
array of important applications would greatly benefit from
such new hard x-ray and �-ray sources, including nuclear
fluorescence spectroscopy, time-resolved positron annihi-
lation spectroscopy, and MeV flash radiography. The
brightness scaling of Compton scattering light sources
has been derived and compared to fully three-dimensional
codes that have been extensively benchmarked against
experiments performed at LLNL; the agreement is found
to be excellent over a wide parameter range, and the
analytical brightness expression allows one to quickly ex-
plore the wide parameter space comprising both the elec-
tron beam and the laser pulse phase spaces to optimize the
design of a compact, tunable, high-brightness light source
using a Joule-class, 5 ps FTL laser and a low normalized
emittance (1 mm �mrad, 1 nC), relativistic (50–250 MeV)
electron beam. As a caveat, we note that in the case of a
correlated phase space, with non-Gaussian distributions,
such as those often produced by realistic PARMELA simu-
lations, the analytical theory does deviate slightly from the
full three-dimensional code results, but is still effective in
helping predict the peak brightness and spectral character-
100702
istics of the source. Finally, nonlinear effects have also
been included, and shown to play an important role in
optimizing the drive laser pulse duration.
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