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Analytical solution for phase space evolution of electrons operating in a self-amplified
spontaneous emission free electron laser
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I present an analytical solution for the phase space evolution of electrons in a self-amplified
spontaneous emission (SASE) free-electron laser (FEL) operating in the linear regime before saturation
in the resonant case by solving the one dimensional FEL equation together with the solution of the cubic
equation, which represents the evolution of the SASE FEL field. The electrons are shown to be bunched
around �=6 ahead of a resonant electron every resonant FEL wavelength in the high gain regime. The
phase relation is similar to that in a low gain FEL where an electron beam above resonance is injected,
explaining the positive FEL gain. The analytical solutions agree well with numerical simulations and are
applied to obtain the coherent optical transition radiation (OTR) intensity produced from electron
microbunching at FEL wavelength. The coherent OTR intensity is shown to be proportional to FEL
intensity.
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I. INTRODUCTION

A self-amplified spontaneous emission (SASE) free-
electron laser (FEL) has been developed worldwide as an
intense coherent x-ray radiation source [1–3]. The devel-
opment has been supported by extensive theoretical studies
[4–7], which can account for various types of experimental
results such as the exponential increase of SASE power
with the undulator length [1]. This exponential growth of
SASE FEL power can be represented by the solution of the
cubic equation, which is derived from one dimensional
(1D) FEL equations representing both the electron dynam-
ics in the laser field and the dynamics of the FEL field
[4,6,8]. Those theoretical studies have however focused on
the property of the radiation field, and the phase space
evolution of electrons of a SASE FEL has been studied
only in numerical simulations so far [7].

In this paper, I present an analytical solution for the
phase space evolution of electrons in a SASE FEL operat-
ing in the linear regime before saturation by solving the 1D
equations of electron motion together with the solution of
the cubic equation in the resonant case [4], which repre-
sents the evolution of SASE FEL field. The solutions for
the energy and phase changes of electrons are, respectively,
represented by the sum of three independent terms simi-
larly to the solution of the cubic equation; an exponentially
growing term, an exponentially decaying term and an
oscillating term (see Sec. III). The electrons are shown to
be bunched around �=6 ahead of a resonant electron every
resonant FEL wavelength in the high gain regime. This
phase relation is similar to that in a low gain FEL where an
electron beam above resonance is injected, explaining the
positive FEL gain. Substitution of the solution into the 1D
Maxwell equation yields the same field gain as that derived
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from the solution of the cubic equation. The solutions for
the phase space evolution are thus complementary to the
solution for the optical evolution and agree well with a
time-dependent numerical simulation starting from a shot
noise of electrons and solving the 1D FEL equation (see
Sec. V). The saturation behavior is studied by a numerical
calculation which solves the 1D FEL equations with the
initial values given by the present analytical solutions, as
shown in Sec. IV. The solutions are also applied to study
the coherent optical transition radiation (OTR) produced
from electron microbunching at FEL wavelength in
Sec. VI. The coherent OTR intensity is shown to be pro-
portional to FEL intensity, which can account for the
undulator length dependence of the coherent OTR from
electron beam microbunching observed in a SASE FEL at
Argonne Photon Source (APS) [9].
II. 1D FEL EQUATION

When a relativistic electron beam travels through an
undulator, it emits spontaneous radiation along the undu-
lator axis. The bandwidth of the spontaneous radiation
decreases as the beam passes through the undulator be-
cause of the spectrum narrowing [8]. The successive elec-
tric interaction between the radiation field and the
undulating electrons leads to further amplification of the
radiation field. The electron dynamics in the radiation field
and the dynamics of the laser field are given by 1D FEL
equations [8,10].

The dimensionless 1D FEL equations by Colson is used
in the present study under the slowly varying envelope
approximation (SVEA) [11], while the variables used
here are similar to Bonifacio’s variables [6]. The simplest
situation is considered in the present study. The electron
beam energy is given by �0mc2 with small energy spread.
The initial electron pulse has a rectangular shape with
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density of ne and a uniform distribution in phase. The
electron pulse length is assumed to be longer than the
slippage distance Nw�r. Here Nw is the number of undu-
lator periods, �r � �w�1� a2

w�=�2�2
0� is the resonant

wavelength, �w � 2�=kw is the period of the undulator,
and aw is the undulator parameter. The fundamental FEL
parameter in MKSA units is given by

� �
1

�0
�eawF

��������������������
ne=��0m�

q
=�4ckw��2=3; (1)

where F is unity for a helical undulator or Bessel function
�JJ� for a planar undulator [6]. The dimensionless time is
defined by � � �4���ct=�w, so that �� � 1 corresponds
to the transit time of light through one gain length of
�w=�4���. The longitudinal position of the ith electron
is defined by �i��� � �4����zi�t� � ct�=�r, so that �� � 1
corresponds to the cooperation length defined by
�r=�4���. The dimensionless field envelope is defined by

a��; �� �
2�eaw�wF

�4���2�2
0mc

2 E��; �� exp�i	��; ���; (2)

with phase 	��; ��, which is equivalent to the Bonifacio’s
envelope [6]. Here E��; �� is the rms optical field strength.
The dimensionless energy and phase of the ith electron are,
respectively, defined by 
i��� � ��i�t� � �0�=���0� and
 i��� � �kw � kr�zi�t� �!rt, where kr � 2�=�r is the
wave number of the resonant wavelength �r. The
dimensionless energy 
i��� also means dimensionless
energy change at � from � � 0, since the energy spread
of the initial electron beam is assumed to be small, i.e.,

i�0� � 0.

In the present definition, evolutions of the field envelope
a��; ��, the energy
i��� and phase  i��� of the ith electron
during FEL interaction are, respectively, given by [8]

d
i���
d�

� a��i���; �� exp�i i���� � c:c:; (3)

d i���
d�

� 
i���; (4)

@a��; ��
@�

� �hexp��i i����i�i����� : (5)

The angular bracket indicates the average of all the elec-
trons in the volume V around � .

III. PHASE SPACE EVOLUTION

The lasing process in FELs starts with formation of a
uniform field in time and space. This process is known as
the spectrum narrowing in the frequency domain [5] or as
the longitudinal phase mixing in the time domain [12]. The
phase of the field 	�0� is almost uniform over length N�r
along the propagation direction when the incident electron
beam passes through N undulator periods [8,12]. In the
present study, the initial uniform field is assumed to be
10070
given by ja�0�jei	�0� for simplicity, where ja�0�j is almost
equal to the amplitude of spontaneous radiation emitted in
order of 1 gain length [5]. In other words, the uniform field
is assumed to be established at � � 0 without spectrum
narrowing in the present study. The initial field evolves
through electric interaction with undulating electrons as it
passes through the undulator. The incident electron beam is
assumed to be uniformly distributed in phase  i�0� with
resonant energy 
i�0� � 0, as described in the previous
section. The evolution of the uniform field as a function of
time is derived from Eqs. (3)–(5), as described by Colson
et al. in Ref. [13].

The electron phase can be expressed as  i��� �  i�0� �
� i��� where � i��� is the first order perturbation in a���.
The field at time � for the steady-state region where � <
�� is given by

a��� � a�0� � i
Z �

0
hexp��i i�0��� i��0�i�i�����d�

0: (6)

The ith electron interacts with the field in the steady-state
region due to the slippage, and the energy modulation
at �0 during ��0 is given from Eq. (3) by �
i��

0� �

�a��0�ei i�0� � c:c:���0. The energy change of the ith elec-
tron at time �, 
i���, is given by the sum of those modu-
lations during �:


i��� �
Z �

0
fa��0� exp�i i�0�� � c:c:gd�0: (7)

The electron phase perturbation is given from Eq. (4) by

� i��� �
Z �

0

i��0�d�0 (8)

�
Z �

0
d�0

Z �0

0
fa��00� exp�i i�0�� � c:c:gd�00: (9)

Substitution of Eq. (9) into Eq. (6) leads to

a��� � a�0� � i
Z �

0
d�0

Z �0

0
d�00

Z �00

0
a��000�d�000: (10)

The integral Eq. (10) can be written in a differential form
by taking successive derivatives, a:::��� � ia���. The solu-
tion is expressed by the form a��� �

P3
n�1 an exp��n��

where the �n are three complex roots of the cubic equation
�3 � i [4,6,13]. When the initial conditions _a�0� �
�a�0� � 0, the field at time � for the steady-state region
where � <�� is given by

a��� �
ja�0�jei	�0�

3
�exp��ei�=6� � exp���e�i�=6�

� exp��e�i�=2��; (11)

where the first term is an exponentially growing term, the
second term is an exponentially decaying term, and the
third is an oscillating term. Equation (11) is valid in the
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FIG. 1. (Color) Electron distributions in a phase plane of � i���
and 
i��� derived from Eqs. (12) and (13) when � = 9 (crosses),
10 (open squares), 11 (open circles). The time evolution of four
different electrons, initial phases of which are  i�0� (solid line),
 i�0� � �=2 (dotted line),  i�0� � � (dash-dotted line), and
 i�0� � 3�=2 (dashed line), are also shown. The initial ampli-
tude of the radiation ja�0�j � 3:79	 10�5 is used.
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linear regime before saturation when the incident electron
beam is resonant.

The integration of Eq. (7) after substitution of Eq. (11)
yields


i��� �
2ja�0�j

3
fe

��
3
p
�=2 cos� i�0� �	�0� � �=2� �=6�

� e�
��
3
p
�=2 cos� i�0� �	�0� � �=2� �=6�

� cos� i�0� �	�0� � �� �=2�g: (12)

The first term in the right hand side of Eq. (12) is the
exponentially growing term, the second is the exponen-
tially decaying term, and the third is the oscillating term.
The integration of Eq. (8) after substitution of Eq. (12)
yields

� i��� �
2ja�0�j

3
fe

��
3
p
�=2 cos� i�0� �	�0� � �=2� �=3�

� e�
��
3
p
�=2 cos� i�0� �	�0� � �=2� �=3�

� cos� i�0� �	�0� � �� ��g: (13)

Equations (12) and (13) are the analytical expressions for
the phase space evolution in a SASE FEL operating in the
linear regime; only numerical solutions for those have been
obtained previously [7]. The gain of the steady-state field at
time � is obtained by substitution of Eq. (13) into Eq. (5) as
follows:

da���
d�

�
ja�0�jei	�0�

3
�exp��ei�=6�ei�=6

� exp���e�i�=6�e�i�=6 � exp��e�i�=2�e�i�=2�;

(14)

when j� i���j � 1. Equation (14) is the same as differ-
entiation of Eq. (11) with respect to �.

The longitudinal phase space distribution of electrons
within a resonant wavelength is usually depicted in a phase
space composed of phase  i��� and energy 
i��� [7,8].
This phase space is suitable for one to see how electron
microbunching develops via the longitudinal ponderomo-
tive force, but not to see how much the individual electron
moves from its initial phase, especially in the early stage of
the FEL evolution because of � i��� � 1. A phase space
composed of phase change � i��� and energy change

i��� allows one to see the time evolution of the electron
microbunching.

In the present paper, the electrons at � � 0 are numbered
depending on their longitudinal positions from the front to
the rear. The relative position between two adjacent elec-
trons is thus represented by zi�0�> zi�1�0�, and the relative
phase is given by  i�0�> i�1�0� by definition. One can
calculate the values of Eqs. (12) and (13) for each i and plot
the point in the phase space, as shown in Fig. 1. The
electrons within resonant wavelength �r are distributed
along an ellipse at time instant � and are lined along the
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ellipse counterclockwise as the identification number i
increases. The crosses are the distribution when � � 9,
the open squares are when � � 10 and the open circles
are when � � 11. The figure also shows the time evolution
of four electron particles, initial phases of which are  i�0�
(solid line),  i�0� � �=2 (dotted line),  i�0� � � (dash-
dotted line), and  i�0� � 3�=2 (dashed line). One can
find that the ellipse expands exponentially in size and
rotates clockwise with time. In the calculation ja�0�j �
3:79	 10�5 is used. This value is the same as that used in
the simulation which will be described in Sec. V.

The center of the microbunch is the place where
electrons within resonant wavelength �r are concentrated
every resonant FEL wavelength. The electron at the
microbunch center satisfies the condition of � c��� � 0,
since � i��� � �� j��� when  i�0� �  c�0� � �� and
 j�0� �  c�0� � �� from Eq. (13). The �c� 1�th electron
which is located just in front of the microbunch center, that
is the cth electron, satisfies the condition of � c�1���< 0
and the �c� 1�th electron satisfies the condition of
� c�1���> 0. The intersection of the ellipse and the line
� i��� � 0 where 
i���< 0 is the location of the micro-
bunch center. Figure 2 depicts electron distributions cor-
responding to those shown in Fig. 1 in a usual longitudinal
phase space of  i��� and 
i���. The bunch center satisfy-
ing � i��� � 0 is indicated by an arrow and located �=6
ahead of a resonant electron 
i��� � 0, as supported by
Eqs. (12) and (13) when � 
 4. This phase difference
between � i��� � 0 and 
i��� � 0 can be attributed to
the facts that modulation in phase requires an additional
time after modulation in energy similarly to a buncher
section in an accelerator system and that the electron
beam is continuously modulated in energy inside an un-
dulator. The phase relation between � i��� � 0 and

i��� � 0 is similar to the low gain FEL with an incident
electron beam above resonance [8,10]. This ensures that
1-3
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FIG. 3. (Color) Electron distributions in a normalized phase
plane of ��i��� given by Eq. (15) and Mi��� given by
Eq. (16) for � � 2; 3; 4; 6; 10. The center of the electron micro-
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 4.
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FIG. 2. (Color) Electron distributions in a phase plane of
 i��� �  i�0� �� i��� and 
i��� derived from Eqs. (12) and
(13) when � � 9 (crosses), 10 (open squares), 11 (open circles).
The arrow indicates the microbunch center which electrons
within �r are concentrated around. The initial amplitude of the
radiation ja�0�j � 3:79	 10�5 is used.
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the optical field is amplified. The position of the micro-
bunch center is unclear only from Fig. 2 without Eqs. (12)
and (13).

An advantage of the phase space used in Fig. 1 over the
usual phase space is that the ellipse size clearly shows how
much electrons shift from their initial phases. Another
advantage is that one can see the distance between the
microbunch center and the resonant electron. The longitu-
dinal phase space normalized by FEL amplitude, which is
composed of

��i��� � � i���
3

ja�0�je
��
3
p
�=2

(15)

and

Mi��� � 
i���
3

ja�0�je
��
3
p
�=2
; (16)

is useful for this purpose and is shown in Fig. 3. The shape
of the distribution gradually changes when � < 4 and
remains almost constant in the high gain regime defined
by � 
 4. The microbunch center is close to the resonant
electron when �� 4, but the space between them in-
creases with � and remains constant when � 
 4.

In the high gain regime, the exponentially growing terms
dominates in Eqs. (11)–(13), and the field is given by

a��� �
ja�0�j

3
e
��
3
p
�=2ei	���; (17)

where 	��� � �=2�	�0�. The energy and phase of the
ith electron are, respectively, given by


i��� �
2ja�0�je

��
3
p
�=2

3
cos� i�0� �	��� � �=6�; (18)

� i��� �
2ja�0�je

��
3
p
�=2

3
cos� i�0� �	��� � �=3�: (19)
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The constant ellipse seen in Fig. 3 is ��i���2 �Mi���2 ����
3
p

��i���Mi��� � 1 when � 
 4. The ellipse rotates
clockwise as 	��� increases linearly with �, while its
size remains constant. This shows that the electron micro-
bunching develops exponentially in size proportional to
the FEL amplitude and the position of the bunch center
shifts linearly proportional to the FEL phase. The micro-
bunch center in the high gain regime is located at
���i���;Mi���� � �0;�1� in Fig. 3. The electrons inside
the microbunch are thus concentrated around  i�0� �
	��� � �=3 � �=2. The exponential decrease of the en-
ergy of the microbunch center corresponds to the exponen-
tial decrease of the energy of the microbunch as a whole.
The energy radiated by the microbunch is used for the field
amplification.

The field gain given by Eq. (14) can be used as long as
j� i���j � 1. However, the gain deviates from Eq. (14)
near saturation, where the amplitude grows and
j� i���j � 1 does not hold any more for some electrons.
The threshold amplitude above which Eq. (14) does not
hold can be roughly estimated from calculation of Eq. (5).
Substitution of Eqs. (17) and (19) into Eq. (5) gives

dja���j
d�

� �hcosf i�0� �	��� � 2ja���j

	 cos� i�0� �	��� � �=3�gi�i����� ; (20)

d	���
d�

�
1

ja���j
hsinf i�0� �	��� � 2ja���j

	 cos� i�0� �	��� � �=3�gi�i����� : (21)

The values of the right hand sides of Eqs. (20) and (21) are
calculated as a function of the value of ja���j and shown in
Figs. 4(a) and 4(b), respectively. In the calculation the
value of  i�0� �	��� is uniform over 2�. The solid line
in (a) stands for Eq. (20) and the dash-dotted line in (b) for
Eq. (21). The dotted lines in (a) and (b) are derived from
1-4
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Eq. (14). From the figure one can find that Eqs. (11)–(13)
can be used when ja���j � 1.
-1
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τ=τp
-1

0

1

d|
a(

τ)
|/d

τ

dφ
(τ

)/
dτ

FIG. 5. (Color) The amplitude gain dja���j=d� (solid line) and
phase shift d	���=d� (dotted line) calculated numerically from
the 1D FEL equations given by Eqs. (25)–(28) as a function of
�� �0:1. The gain is zero at �p. The initial values for the
calculation are given by Eqs. (22)–(24).
IV. SATURATION

One can calculate the efficiency and amplitude near
saturation by starting with the initial values given by
Eqs. (17)–(19) and numerically solving the time-
dependent 1D FEL equations. The initial field at an arbi-
trary time �x in the linear regime, where ja��x�j � x� 1,
is given from Eq. (17) by

a��x� �
ja�0�j

3
e
��
3
p
�x=2ei	��x� � xei	��x�: (22)

The energy and phase of the ith electron at �x are derived
from substitution of Eq. (22) into Eqs. (18) and (19) and
are, respectively, given by


i��x� � 2x cos� i�0� �	��x� � �=6�; (23)

 i��x� �  i�0� � 2x cos� i�0� �	��x� � �=3�: (24)

The 1D FEL equations when � 
 �x are rewritten as
follows:

d
i���
d�

� 2ja���j cos� i��� �	����; (25)

d i���
d�

� 
i���; (26)

dja���j
d�

� �hcos� i��� �	����i�i�� ; (27)

d	���
d�

�
1

ja���j
hsin� i��� �	����i�i�� : (28)
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Using Eqs. (22)–(24) as the initial values and solving
Eqs. (25)–(28) numerically, dja���j=d� and d	���=d�
can be obtained as a function of �� �x in Fig. 5. In the
calculation, x � 0:1 is used as an example. It is found that
dja���j=d� decreases down to 0 when �p � �0:1 � 3:7.
Here �p is the time when the efficiency and amplitude
reach their peaks and the amplitude gain turns to negative.
Integration of dja���j=d� from �0:1 to �p yields

Z �p

�0:1

ja���j
d�

d� � 1:08:

The peak amplitude is thus given by

ja��p�j � 1:18; (29)

which agrees well with the peak amplitude of the SASE in
the steady-state regime obtained in a numerical calculation
[6]. The value in the right hand side of Eq. (29) does not
depend on the value of x as long as x� 1.

The efficiency is obtained from Eq. (29). The energy
carried by the intracavity radiation over unit length of �r
along the propagation direction is given from Eq. (2) by

�0�r�E��; ��
2 �

�0�r��4
0m

2c4ja��; ��j2�4���4

4�2e2a2
w�

2
wF

2 ;

where � is the effective radiation area averaged over the
length of the undulator. The time derivative of the intra-
cavity energy, @��0�r�E��; ��2�=@� is equal to the amount
of the instantaneous energy loss of the microbunch given
by �Nemc2dh�i��� � �0i�i�����=d�. Here Ne � ne�r�
is the number of electrons contained in a unit volume of
�r�. The electron beam density is given by ne �
�16�3�3

0�0mc2k2
w�=�e2a2

wF2� from Eq. (1), and thus

Ne � �4���
3 �r�0��3

0mc
2

�e2a2
w�2

wF2 : (30)

The average of the instantaneous energy loss of the micro-
bunch at time � is thus given by
1-5
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�
dh
i���i�i�����

d�
�
dja���j2

d�
: (31)

Integration of Eq. (31) in � yields

�h
i���i�i����� � ja���j
2: (32)

The extraction efficiency for the microbunch at time � is
given by ��h
i���i�i����� and is almost equivalent to the
efficiency ��� for the electron beam composed of many
microbunches. This is because all the microbunches inter-
act with almost the same steady-state field in a SASE FEL.
Substitution of Eq. (29) into Eq. (32) leads to the efficiency
at �p

��p� � 1:39�; (33)

which agrees well with  � 1:37� obtained in a numerical
simulation [7] and with  � � obtained in the theoretical
work based on the coupled Klimontovich-Maxwell equa-
tions [5].

The number of undulator periods Nw required for the
saturation to occur depends on the value of �x�0:1, while
�p � �x�0:1 is derived to be 3:7 from Fig. 5. The time �x�0:1

will be derived from Eq. (22) when the initial amplitude
ja�0�j is obtained. The amplitude ja�0�j is equivalent to the
amplitude of spontaneous radiation emitted in about one
gain length [5] and is estimated to be

������������������
2��=Ne

p
from

Eq. (5), since the variance of hcos� i����i�i����� per the
cooperation length is given by �4���=�2Ne� from a statis-
tical consideration [14]. Substitution of Eq. (30) into
ja�0�j �

������������������
2��=Ne

p
gives

ja�0�j �
1

�
e����������������������

32�mc2"0

p Faw�w��������������
�3

0��r
q : (34)

The effective radiation area is � � �rZR=2 where ZR �
R�w=�4��� is the Rayleigh range and R 
 1 for 1D SASE
FEL theory [5]. Substitution of � � R�w�r=�8��� into
Eq. (34) yields ja�0�j � P=

�������
�R
p

, where

P �
e��������������

mc2"0

p
��������������������������
F2a2

w�0

�w�1� a
2
w�

2

s
: (35)

Substitution of ja�0�j � P=
�������
�R
p

into Eq. (22) when x �
0:1 gives ���

3
p

2
�0:1 � �1:2� ln�P� �

1

2
ln��R�:

This equation yields

�p �
2���
3
p

�
�1:2� ln�P� �

1

2
ln��R�

�
� 3:7: (36)

The parameter P ranges from 1	 10�6 to 2	 10�5 for
almost all the Compton FELs [15], � ranges from 0.001 to
0.01, and R is order of unity. The time �p is estimated to
10070
range from 11 to 16. This is consistent with the well known
saturation condition of a SASE FEL: �Nw � 1 [5].
V. NUMERICAL SIMULATION

In order to confirm the present analytical solutions for
the electron phase space evolution, a numerical simulation
is performed which solves the 1D FEL equations in a time-
dependent manner [16] and takes into account a shot-noise
effect by employing a method by Penman and McNeil [14].
The electron bunch length Lb and slippage length Nw�r
used in the simulation are both 20 �r=�4���, and the FEL
parameter is � � 0:0045. The parameters used in the
simulation such as aw, �w, and �0 yield P � 2:54	
10�6 and P=

����
�
p
� 3:79	 10�5, which is the same as the

initial amplitude ja�0�j used in Figs. 1 and 2. These pa-
rameters ensure saturation within a single pass.

Figure 6 shows the calculated electron distributions of
an electron microbunch in a longitudinal phase space of
��i��� and Mi���, which is initially located at �i�0� �
�1:7. The distribution is similar to that shown in Fig. 3.
The time evolution in a phase space of � i��� and 
i���
shown in Fig. 7 is also similar to that shown in Fig. 1,
although the size of the ellipse in Fig. 7 is roughly twice
smaller than that in Fig. 1 despite the same �. The size
difference can be attributed to the time required for the
spectrum narrowing. This effect is not included in the
present analytical study, but in the simulation. The initial
field at � � 0 is approximated by a�0� � ja�0�jei	�0� in the
present analysis, though the spectrum narrowing is estab-
lished after some undulator periods [8,12].

Electron microbunches with initial positions different
from �i�0� � �1:7 also show similar evolution to that
with �i�0� � �1:7. This is because each microbunch is
modulated by the steady-state field, which has almost the
same field envelope independent of � . The energy and
1-6
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phase modulation of each microbunch are similar to each
other and given by Eqs. (12) and (13). The maximum
efficiency obtained in the simulation is max � 0:0053
when � � 15:0, as shown in Fig. 8, while Eqs. (33) and
(35) give the peak efficiency of ��p� � 0:0063 at �p �
14:1 when � � 0:0045 and P � 2:54	 10�6. The present
study is almost consistent with the result of the numerical
simulation.

The electron phase space evolution before saturation
studied in the present numerical simulation does not de-
pend on the electron pulse length or the slippage length as
far as both of them are longer than �r�p=�4���. This
corresponds to the shortest slippage length necessary for
the steady-state field to reach saturation. The shortest
slippage length is about 15 �r=�4��� in the simulation
shown in Fig. 8.
VI. COHERENT OPTICAL TRANSITION
RADIATION FROM ELECTRON

MICROBUNCHING

The evolution of electron beam microbunching in a
SASE FEL has been experimentally studied by means of
coherent OTR at APS [9]. They have found that the coher-
ent OTR intensity at FEL wavelength increases as a func-
tion of the undulator length proportionally to the FEL
-14
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FIG. 8. (Color) Efficiency as a function of � obtained in a
simulation. The solid line is semilog plot, and the dotted line
is linear plot. The simulation parameters are the same as in
Fig. 6.
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power. This experimental study has been supported by
theoretical studies where the electron beam pulse after
FEL interaction is assumed to have a Gaussian distribution
modulated sinusoidally at FEL wavelength and its harmon-
ics as follows [17,18]:

h�z� �
1�������

2�
p

�
exp

�
�

z2

2�2

��
1�

X1
n�1

bn cos�nkrz�
�
; (37)

where � is the rms longitudinal electron pulse length and
bn is bunching parameter of the nth harmonic of FEL. This
equation yields narrow spikes at the fundamental FEL
wavelength and its harmonics and explains the coherent
OTR experiments performed at APS [9]. However, it is not
straightforward to connect the bunching parameter bn with
such parameters as the FEL amplitude. In this section, the
coherent OTR intensity is shown to be proportional to the
FEL intensity without an assumption used in Eq. (37), but
with the present analytical solutions of electron phase
space evolution.

The radiation field at a frequency ! � 2�c=� produced
from a single electron is proportional to Ek / e

i�!t�’k�

[19,20], where

’k �
2�zk
�

(38)

describes the position of the kth electron with respect to the
center of the electron beam pulse, and zk is the distance of
the kth electron from the center of the beam pulse along the
propagation direction. When the particle number of the
electron beam is ~Ne, the radiation power P�!� at the
frequency ! is proportional to [19]

P�!� �
X~Ne

k;j

EkE

j / ~Ne �

X~Ne

k�j

ei�’k�’j�: (39)

The first term in the right-hand side of Eq. (39) represents
incoherent emission and the second term coherent
emission.

The analytical form of coherent OTR spectrum can be
obtained from Eq. (39), when the analytical form of the kth
electron position zk is available. This electron position
during SASE evolution has been obtained in Sec. III
when the incident electron pulse has a rectangular shape
and is given from Eq. (19) by

zk��� �
�r
2�
� k�0� � � k����

�
�r
2�

 k�0� �
�r
2�

2ja���j cos� k�0� �	��� � �=3�;

(40)

in the high gain regime � 
 4 before saturation ja���j �
1. When the rectangular electron pulse length is assumed to
be l�r, the total electric field is proportional to
1-7
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1
~Ne

X~Ne

k

Ek /
1

l�r

Z l�r=2

�l�r=2
ei�!t�2�z=��dz �

ei!t

2�l

Z �l

��l
ei��r=�� 

�
1� i

�r
�

2ja���j cos� �	��� � �=3�
�
d 

� ei!t
�
sin��l�r=��
�l�r=�

� i
�r
�
ja���j

�
e�i�	�����=3� sin��l�1� �r=���

�l�1� �r=��
� ei�	�����=3� sin��l�1� �r=���

�l�1� �r=��

��
: (41)

From Eq. (41), the coherent OTR power spectrum Pc�!� is proportional to

Pc�!� /
1

~Ne� ~Ne � 1�

X~Ne

k�j

EkE

j

�
sin2��l�r=��

��l�r=��
2 � 2ja���j

sin��l�r=��
�l

sin�	��� � �=3�
�
�

sin��l�1� �r=���
�l�1� �r=��

�
sin��l�1� �r=���
�l�1� �r=��

�

�

�
�r
�

�
2
ja���j2

�
sin2��l�1� �r=���

��l�1� �r=���2
�

sin2��l�1� �r=���

��l�1� �r=���2
� 2 cos�2	��� � 2�=3�

sin��l�1� �r=���
�l�1� �r=��

	
sin��l�1� �r=���
�l�1� �r=��

�
: (42)
The first term in the right hand side of Eq. (42) shows well
known coherent OTR produced from the electron beam
pulse length [19,21]. The second term is negligible, since it
is much smaller than unity due to �sin��l�r=��=�l� � 1.
The brace in the third term has three terms. Among them,
only the first term can approach unity when � � �r.
Finally, Eq. (42) can be approximated by

Pc�!� /
sin2��l�r=��

��l�r=��
2

�

�
�r
�

�
2
ja���j2

sin2��l�1� �r=���

��l�1� �r=���2
: (43)

The second term shows the coherent OTR from SASE
induced electron microbunching and tells us not only that
this radiation appears at FEL wavelength but also that its
power is proportional to the square of the normalized FEL
amplitude, that is the FEL optical amplitude [see Eq. (2)].
The APS experiment, where dependence of coherent OTR
on the undulator length is found to be similar to that of
SASE power [9], can be explained directly from Eq. (43)
without assuming such electron distribution as given by
Eq. (37).

VII. CONCLUSION

The phase space evolution of electrons in a SASE FEL
operating in the linear regime before saturation in the
resonant case has been solved analytically from the 1D
FEL equation. The evolutions of the phase change � i���
and energy change 
i��� of the ith electron are, respec-
tively, represented by the sum of three independent ana-
lytical solutions similarly to the evolution of the SASE
field; an exponentially growing term, an exponentially
decaying term, and an oscillating term. The electrons are
shown to be bunched around �=6 ahead of a resonant
electron every resonant FEL wavelength in the high gain
10070
regime, which explains the positive FEL gain. A newly
introduced longitudinal phase space composed of � i���
and 
i��� allows one to see how much electron micro-
bunching develops and where the microbunch center is.
The electron distribution in the phase space expands ex-
ponentially with time in size, rotating clockwise linearly in
the high gain regime defined by � 
 4. These expansion in
size and clockwise rotation correspond to the exponential
increase of the amplitude and linear increase of the phase
of the SASE field, respectively, and represent the time
evolution of the electron microbunching. The microbunch
center is located where � i��� � 0 and 
i���< 0, and the
energy of the microbunch center decreases exponentially.
The present analytical solutions will be applied to a study
of the electron microbunching induced by FEL interaction.
The coherent OTR intensity at FEL wavelength produced
from electron microbunching has been shown to be pro-
portional to FEL intensity.
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