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Comment on ‘‘Quasiperiodic spin-orbit motion and spin tunes in storage rings’’
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Contrary to the claim of the recent publication by Barber, Ellison, and Heinemann [Phys. Rev. ST
Accel. Beams 7, 124002 (2004).], we explain in this Comment that (1) the snake resonances are spin
depolarizing resonances just like other spin depolarizing resonances and (2) the perturbed spin tune is
useful to understand depolarization phenomena.
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Recently, we received a publication of a paper by
Barber, Ellison, and Heinemann (BEH) on quasiperiodic
spin-orbit motion and spin tunes in storage rings [1]. While
we welcome their ideas, we note that BEH make criticisms
of calculations that both of us have published (sometimes
in collaboration with coauthors), e.g., that the use of the
‘‘perturbed spin tune’’ (to be defined below) may cause
confusion in the literature. We are not aware of any con-
fusion caused by our papers. In particular, nobody has
published a wrong calculation because of the concepts
and definitions in our papers. We also point out, contrary
to the claim of BEH, that the so-called ‘‘snake resonances’’
(depolarizing resonances in rings equipped with Siberian
snakes) are just like other spin depolarizing resonances,
and can be understood in terms of conventional spin-orbit
coupling theory.

In fact, we can point to useful achievements which have
resulted from our work. Lee and Tepikian [2] predicted the
existence of the snake resonances (with later work by Lee
on even-order snake resonances [3]; see also [4]). Snake
resonances were observed experimentally at the Indiana
University Cyclotron Facility (IUCF) Cooler [5] and later
at the Relativistic Heavy Ion Collider (RHIC) [6]. The
observations are in conformity with the theoretical calcu-
lations. The snake resonances were independently reder-
ived by Mane [7], who gave a nonperturbative analytical
solution in terms of so-called ‘‘sine-Bessel’’ functions. The
sine-Bessel functions are now used to benchmark the spin-
tracking codes at BNL [8].

We summarize the principal details of our work. The
spin precession for the rest-frame spin vector ~S is governed
by the Thomas Bargmann-Michel-Telegdi equation [9]

d ~S
d�

� ~�� ~S; (1)

where � is the ring azimh autnd the spin precession vector
~� depends on the electromagnetic fields of the accelerator

and the particle’s anomalous magnetic g factor G � �g�
2�=2, mass, charge, and velocity. It is well known that a
beam can suffer depolarization during acceleration and
storage due to so-called ‘‘depolarizing spin resonances.’’
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In general, such resonances occur when the spin precession
is coherently perturbed by the imperfection and (off-axis)
intrinsic fields in the accelerator. Derbenev and
Kondratenko proposed special spin rotators, called
‘‘Siberian snakes,’’ to alleviate this agonizing situation
[10]. With snakes, the (closed orbit) spin tune can be
made exactly 1=2 at all beam energies. Siberian snakes
therefore offer the possibility that a polarized beam can, in
principle, be accelerated to arbitrarily high energies with-
out crossing any depolarizing resonances.

However, depending on the magnitude of the driving
terms in the spin precession vector, the spins may still be
depolarized in the ring. We analyze a simple model for the
spin motion in an accelerator with two snakes and one
isolated depolarizing spin resonance, where the spin pre-
cession vector is

~� � G	ê3 � ��ê1 cos�� ê2 sin�� � �p���ê1

� �p��� �ê2: (2)

Here �ê1; ê2; ê3� are unit vectors in the radial, longitudinal,
and vertical directions, respectively, � is the magnitude of
the resonance driving term, � is related to the synchrobe-
tatron phase advance, e.g., d�=d� � K with K �
half integer, and the periodic � function is

�p��� �0� �
X1

j��1

���� �0 � 2j�: (3)

The above model (with small changes of notation) was the
basis for the analysis in Refs. [2,3]. Since the spin tune is
�s � 1=2, the resonance condition of �s � K never occurs.
Unfortunately, when j�j is large, the beam can still be
depolarized when the ‘‘snake resonance’’ condition

�s � ‘K � integer �‘ � integer� (4)

is met. The above snake resonance conditions were derived
based on perturbation theory of a spin-tracking hierarchy
of equations, and confirmed by numerical spin-tracking
calculations. Subsequently, Mane [7] employed
Hamiltonian dynamics to solve the model in Eq. (2) to
derive a nonperturbative solution for the n̂ axis, and con-
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firmed the findings in Ref. [2]. As stated above, experi-
mental observations of snake resonances have been made
at the IUCF Cooler Ring [5] and RHIC [6].

We now arrive at what seems to be the heart of the
criticisms in BEH. Although the spin tune (as defined in
the sense of Hamiltonian dynamics) is 1=2 with snakes, the
spin precession is perturbed by the existence of the spin
depolarizing resonances. One of us (S. Y. L.) introduced the
concept of the ‘‘perturbed spin tune’’ from the trace of the
spin one-turn map to understand the snake resonance phe-
nomena [3,4]. The key to BEH seems to be restrictions they
place on the usage of the words ‘‘spin tune.’’ It appears that
BEH is intended to call foul to the definition of the per-
turbed spin tune as a ‘‘fake spin tune’’ [11], and hides the
snake resonances via statements such as ‘‘static phenome-
non characterized by an invariant spin field which is irre-
ducibly discontinuous in �2’’ [11].

Our Comment is intended to clarify the point that a
snake resonance is a depolarizing spin resonance just like
any other, e.g., the imperfection and intrinsic resonances
which have long been known in the literature. It is recog-
nized that the ‘‘perturbed spin tune’’ is not a secular spin
tune in the sense of Hamiltonian dynamics, and was never
claimed to be so. Indeed, Mane [7] performed his calcu-
lations entirely within the framework of Hamiltonian dy-
namics, and derived a solution for the secular spin tune,
which he showed is 1=2 on all of the ‘‘well-tuned tori’’ as
defined by BEH. (Mane treated both the one-snake and
two-snake models. He also solved the single snake model
using Yokoya’s SODOM2 formalism [12].) Yet, the per-
turbed spin tune, representing the phase advance of the spin
vector in each succeeding revolution, is useful to under-
stand some depolarization phenomena to be addressed
below. The analytic solution of the n̂ axis for the two-snake
model in Eq. (2) was obtained as a Fourier series

n3 � A0 � 2
X

m�even

Am cosm�	: (5)

Here the Am are sine-Bessel functions, and �	 is the value
of �
 K� at an observation point (e.g., just before the first
snake). The snake resonance spectrum is given by the
locations of the singularities in the expression for n3, i.e.,
the sine-Bessel functions, and agrees with that published in
[2]. A quantity of interest is hn3i, with a uniform average
over the phase �	 (i.e., an ensemble average for particles
with all betatron phases). From Eq. (5), we find

hn3i � A0: (6)

Ptitsin and Shatunov [13] has also solved this model, to
leading order in perturbation theory (using standard spin-
orbit theory). Their expression for hn3i is equivalent to
Eq. (6), within the approximations they make.

We now briefly discuss the perturbation theory in [2].
The n-turn spin map T��n� is calculated iteratively by
using the spin-tracking equation
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T��n�1� � ���n�1; �n�T��n�; (7)

where �n�1 � �n � 2. Here ���n�1; �n� is the one-turn-
map (see [2] for details). The equations can be solved using
a power series expansion in the strength parameter b2,

where b � ��=�� sin��=2� and � �
����������������������������������
�K �G	�2 � �2

p
.

Then

T11 � T�0�
11 � T�1�

11 � T�2�
11 �    ; (8)

T12 � T�1�
12 � T�2�

12 � T�3�
12 �    ; (9)

where T�i�
11 � O�b2i� and T�i�

12 � O�ab2i�1�, where a ���������������
1� b2

p
. The polarization is given by hSzi � 1�

2jT12j
2. The off-diagonal spin transfer matrix element

T12 for the ‘th order snake resonances is a result from
the coherent perturbing kicks, that can be summed to

T�‘�
12 ��n� 
 b2‘�1 sin�n�‘K � �s��

sin��‘K � �s��
: (10)

On a snake resonance, the spin vector is perturbed coher-
ently, and the perturbative solution diverges, a typical
characteristic of any physical system encountering a
resonance.

The spin-tracking hierarchy was not used in Refs. [2–4]
to solve for the n̂ axis (but in principle it can be adapted to
do so). One defines the operational ‘‘perturbed spin tune’’
Qs as

cos�Qs�n�� �
1

2
Trace����n�1; �n�� � b2 sin�2��; (11)

where � depends on a combination of the resonance tune
and orbital angle K�. For an intrinsic spin resonance, K is
not an integer, and thus the perturbed spin tune oscillates
around the spin tune of 1=2 with an envelope given by

Qs;max =min �
1

2
�

1


arcsinb2: (12)

Since the betatron motion of a particle has a different
betatron phase in each succeeding turn, the spin phase
advance in each revolution, perturbed by existence of
spin resonances, also changes accordingly. If one waits
long enough to trace all betatron orbits, the betatron orbit
can return its original position. This explains the time
average and ensemble average produce the same spin
tune of 1=2.

We can apply the perturbed spin tune to the single
resonance model with two snakes [see Eq. (2)]. With
snakes, the spin tune becomes 1=2 and the effective spin
perturbing kick in each snake section becomes b at the spin
kick tune of K. Because of the perturbed spin kick, the
phase advance of the spin vector is modified to Qs, which is
unfortunately complicated by its turn-by-turn variation.
Taking the Qs;max =min as the dominant effect on spin mo-
tion, we derive
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hS3i �
��������������������

�2 � �2eff
q ; (13)

where �eff � 2b= and � � ��K �Qs;max =min� (the ex-
trema of the perturbed spin tune). Figure 1 compares the
approximate expression of Eq. (13) (dashed line) against
hn3i of Eq. (6) (solid line), where hn3i � A0 and hS3i are
plotted against K for 0 � K � 0:5, for three values � �
0:2; 0:4, and 0:6. When the resonance tune falls within the
range of the perturbed spin tune, the spin precession be-
comes complicated, one cannot derive a simple approxi-
mate formula. Figure 1 shows that the use of the perturbed
spin tune can give a useful approximate expression for the
polarization. More graphs can be found in [14], where, for
example, it is shown that a numerical calculation of the
polarization using stroboscopic averaging [15] yields iden-
tical results to Eq. (6).

Now we consider the spin motion of a particle in an
accelerator with two snakes and an imperfection resonance
(�imp � 0:36 at Kimp � 485) and a very weak intrinsic spin
resonance (�int � 0:0033, Kint � 485� K). The particle
energy is accelerated from far below to far above the
resonance region G	 ’ 485. Because the intrinsic reso-
nance strength is very small, the perturbed spin tune Qs
is essentially produced by the imperfection resonance. The
FIG. 1. The expression hn3i � A0 (solid curve), is compared
with an approximate expression for hS3i (dashed curve) calcu-
lated using the perturbed spin tune, as a function of the reso-
nance tune K (K � 0 to 0.5) for a single resonance model
with two snakes. Three plots are shown, for resonance driving
terms with amplitudes � � 0:2 (top plot), 0.4 (center), and 0.6
(bottom).
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lower plot of Fig. 2 shows the perturbed spin tune Qs, and
the top plot shows the polarization, hSzi, after passing
through these two spin resonances for three intrinsic tune
values K � 0:59; 0:60, and 0.61. When the intrinsic reso-
nance tune (K � 0:61) does not overlap with the perturbed
spin tune, there is no depolarization. However, when the
intrinsic spin resonance tune overlaps with the perturbed
spin tune, the spin is depolarized by the spin resonance.
The concept of the perturbed spin tune is well-defined for
an accelerating beam.

Another example (which we acknowledge was known
by others before our works, and does not involve snakes,
and did not employ the name ‘‘perturbed spin tune’’) is the
perturbation of the spin tune in a planar ring caused by
synchrotron oscillations �s � G	0�1��E=E0�, resulting
in multiple crossings of a resonance line during accelera-
tion. This phenomenon has been experimentally observed
at several synchrotrons.

In conclusion, we have listed several formalisms, by
different authors, which all treat the polarization in rings
equipped with snakes within the framework of existing
spin-orbit coupling theory. The formalisms are all in agree-
ment with each other, within the framework of the various
approximations made. We also presented a brief descrip-
tion on the use of the perturbed spin tune. The perturbed
spin tune, defined as the number of spin precession turns
per orbital revolution, is naturally one of relevant parame-
FIG. 2. (Color) The effect of depolarization due to perturbed
spin tune shift on the spin. The model contains an imperfection
and a weak intrinsic spin resonances in an accelerator with two
snakes. The top plot shows the value of hSzi after acceleration
across the resonance region. The bottom plot shows the per-
turbed spin tune Qs. Plots for three intrinsic tune values K �
0:59, 0.6, and 0.61 are shown. Note that the imperfection spin
resonance produces a spin tune shift, and the depolarization is
clearly observed when the tune of the intrinsic spin resonance
overlaps with the perturbed spin tune.
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ters that determines the spin depolarization in passing
through spin resonances. We have offered evidence that
snake resonances are none other than standard spin depo-
larizing resonances. We have no objection to the defini-
tions of BEH. We see no evidence that their definitions lead
to different answers for the snake resonances.
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