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Smith-Purcell radiation from a charge moving above a finite-length grating
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Smith-Purcell radiation (SPR), generated by an electron beam traveling above a grating, is charac-
terized by a broad range of frequencies. The radiated wavelength depends on the angle of observation
according to the SPR resonance relationship and the bandwidth is inversely proportional to the number of
the grating grooves. A rigorous theoretical model of SPR from a three-dimensional bunch of relativistic
electrons passing above a grating of finite length is presented by an electric-field integral equation method.
The finite-length grating results are compared with the case of an infinitely long grating assumption in
which periodic boundary conditions are rigorously applied and with a model based on the image-charge
approximation. The SPR resonance relationship is the same in all three formalisms. Significant errors in
the strength of the radiated energy are introduced by the two approximations. In particular, for gratings
with less than �20 periods, the image-charge approximation and the infinitely long grating assumption
result in an order of magnitude too high and too low radiated energy per groove, respectively, in the plane
transverse to the grating groove lines. Numerical examples are calculated for an �18 MeV bunch
traveling above different finite-length gratings with a period of 2.5 mm.
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I. INTRODUCTION

Smith-Purcell radiation (SPR) [1] is typically formed by
a charge passing above a periodic grating. It is character-
ized by a broad spectrum of frequencies and can be used as
a coherent frequency-locked terahertz source [2]. The SPR
resonance relationship correlates the nth harmonic of the
radiated wavelength � to the spatial observation angles �
and � by

� �
Dg
n

���1 � sin� sin��; (1)

where Dg is the grating period and � � vx=c �
�1� �2�1=2 is the relativistic bunch velocity as shown
in Fig. 1. Choosing the y axis parallel with the grating
groove lines, the components of the wave number k � !=c
are kx � k sin� sin�, ky � k cos�, and kz � k sin� cos�,
where ! is the angular frequency.

The SPR is caused by diffraction of the charge free-
space evanescent waves (wake fields) from the grating [3].
Under the condition of an infinitely long, periodic grating
an exact model was derived by van den Berg. The radiated
energy is calculated by solving two separated integral
equations, each having a periodic Green’s function, excited
by the charge wake fields [4]. Based on van den Berg’s
method, Haeberlé et al. calculated the SPR for electrons
with energies of 1–100 MeV by solving either the integral
equation or by using a variational or a modal expansion
method in order to alleviate the calculation time [5].

Based on the image-charge approximation, an induced
surface current model was developed by Walsh et al. for a
strip grating [6], generalized by Brownell et al. for an
address: a_kesar@mit.edu
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arbitrary shaped grating [7], and optimized for very high
charge energies by Trotz et al. [8]. This model has the
advantage of a short calculation time which is �104 times
shorter compared to the integral equation method.

Time- and frequency-domain models of SPR by a two-
dimensional bunch moving above a finite-length grating
were derived in [9]. A very good agreement was obtained
between these models. It was shown that the finite length of
the grating has to be taken into account in most experi-
ments and that in the limit of an infinitely long grating the
results are consistent with van den Berg’s line of charge
model [10].

Exact calculation of the radiated energy is important for
terahertz generation as well as for bunch-length diagnos-
tics. In many of the SPR experiments, the radiation was
compared to theory based on either van den Berg’s model
[11–13] or the image-charge model [14–18]. A good
agreement with the image-charge model was reported in
FIG. 1. The SPR scheme. An electron bunch is traveling at an
axial velocity vx above an echelle grating of period Dg.
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[16,18] for beam energies of 1.5–2.3 MeV. However,
several orders of magnitude difference for the calculated
grating efficiency by the two approaches at a beam energy
of 855 MeV was found in [13].

SPR can be used as a nondestructive diagnostic method
to measure short bunch lengths [19,20]. Subpicosecond
bunch-length measurements were obtained by measuring
the SPR from 15 MeV bunches [2,21]. A very good agree-
ment was obtained, on a relative scale (peak energy nor-
malized to unity), between the measured radiation patterns
and the calculations using the three-dimensional electric-
field integral equation (EFIE) model described in this
paper. This comparison allowed to evaluate bunch lengths
of 1:0� 0:1 ps and 0:6� 0:1 ps at different accelerator
operating parameters. The measured bunch lengths agreed
very well with independent measurements by a circularly
polarized deflector [22,23].

The objectives of this paper are to (a) extend the two-
dimensional EFIE model in [9] to the general case of a
three-dimensional bunch moving above a finite-length
grating, (b) demonstrate consistency with van den Berg’s
model [4] for the special case of an infinitely long periodic
grating assumption, and (c) compare the radiated energy
per groove calculated by the finite-length grating,
van den Berg, and the image-charge models. A preliminary
work on the three-dimensional EFIE model described in
this paper is reported in [24].

II. EFIE FORMULATION

A. Finite-length grating

In this subsection electric-field integral equations are
derived for Smith-Purcell radiation by a three-dimensional
bunch moving above a finite-length grating. Assuming a
metal grating as a reflector, the reflected-field vector po-
tential A�r; !� at each angular frequency! is correlated to
the surface current J�r; !� on the perimeter of the reflector
by [25]

A �r; !� �
Z
C

Z W=2

�W=2
J�r0; !�G3D�r� r0; !�dy0dc0; (2)

where the grating groove lines are parallel to the y direction
and are of width W. The integration path along the grating
profile at the xz plane is denoted by C, as described in
Fig. 1. In this equation the three-dimension Green’s func-
tion is

G3D�r� r0; !� �
e�jkjr�r0j

4�jr� r0j
; (3)

where a frequency dependence ej!t is assumed and the
observation and source points are r � xx̂	 yŷ	 zẑ and
r0 � x0x̂	 y0ŷ	 z0ẑ, respectively.

The electric component of the reflected field is given by

E ref�r; !� � �j
Z0

k
�rr	 k2�A�r; !�; (4)
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where Z0 � ��0=�0�1=2 is the free-space impedance and
�0 and �0 are the free-space permeability and permittivity,
respectively. Assuming a perfectly conducting grating, the
tangential component of the electric field Ek �
Einc 	 Eref � 0 on the grating surface. The incident elec-
tric field is given by the Fourier transform of the free-space
electric field produced by a charge q moving along the x
direction at a relativistic velocity �

E inc�r; !� �
qZ0

2��
e�j�k=���x�x0�

k
�

�

�
ŷ�y� y0� 	 ẑ�z� z0�

�
K1

�
k�
�

�

	 j
x̂

K0

�
k�
�

��
; (5)

where �x0; y0; z0� are the charge coordinates, � �

�y� y0�2 	 �z� z0�2�1=2 is the transverse distance, and
K0 and K1 are the zeroth and first-order modified Bessel
functions of the second kind, respectively.

Equations (2)–(5) can be combined into a two-
dimensional electric-field integral equation solved along
the grating profile and width to find the unknown surface
current,

E inc�r; !� � j
Z0

k
�rr	 k2�

Z
C

Z W=2

�W=2
J�r0; !�

�G3D�r� r0; !�dy0dc0;
(6)

where the source and observation points are located on the
grating surface. For k�=�> 1 the modified Bessel func-
tions in Eq. (5) are dominated by an exponential decay. The
induced surface current is expected to decay similarly, and
thus, for a grating of sufficient width W=2 � �=k and
W=2 � b, where b � bmin 	 h and bmin is the average
height of the bunch above the grating as shown in Fig. 1,
Eq. (6) could be approximated by

Einc�r; !� � j
Z0

k
�rr	 k2�

Z
C

Z 1

�1
J�r0; !�

�G3D�r� r0; !�dy0dc0: (7)

Applying the spatial Fourier operator
R
1
�1 e

jkyydy on
Eq. (7) results for ky < k in two coupled one-dimension
electric-field integral equations, solved along the grating
profile

~Einc
c �x; z; ky;!� � j

Z0

k

Z
C
~JcA ~G	 ~JyB ~G�dc0 (8a)

~Einc
y �x; z; ky;!� � j

Z0

k

Z
C
~JcC ~G	 ~JyD ~G�dc0: (8b)

For a charged bunch having a transverse and longitudinal
distribution function f�x0; y0; z0� traveling above the grat-
ing, i.e. z0 > h for all of the particles in the bunch where h
is the grating height as shown in Fig. 1, the spatial electric-
field incident on the grating is
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~E inc�x; z; ky;!� �
qZ0

2�
e�j�k=��x	kaz

�
ŷ
jky
ka

� ẑ

	 jx̂
k=�
ka

�
F�k�; (9)

where ka �
�����������������������������
�k=��2 	 k2y

q
and the bunch form factor,

F�k� �
RRR
ej�k=��x0	jkyy0�kaz0f�x0; y0; z0�dx0dy0dz0, affects

the coupling of the wake to the grating and produces the
cutoff frequency. Throughout this paper the bunch longi-
tudinal distribution is assumed to be Gaussian with a full
width at half maximum (FWHM) of *x and the transverse
distribution is assumed as a + function at y0 � 0 and z0 �
b, namely, F�k� � exp��kab� �k=��2*2

x=16 ln2�.
The spatial electric-field components tangent

to the grating profile and along the grating grooves are
~Einc
c �x;z;ky;!�� ~Einc

x �x;z;ky;!�cos�,�	 ~Eincz �x;z;ky;!��
sin�,� and ~Einc

y �x; z; ky;!�, respectively, the corresponding
spatial components of the surface current are
~Jc�x0;z0;ky;!� � ~Jx�x0;z0;ky;!�cos�,0� 	 ~Jz�x0;z0;ky;!��
sin�,0� and ~Jy�x0; z0; ky; !�, respectively, where ,
and ,0 are the observation and source angles tan-
gent to the grating profile, respectively. The two-

dimensional free-space Green’s function is ~G �

�1=4j�H�2�
0 k?

�������������������������������������������
�x� x0�2 	 �z� z0�2

p
� where k? �����������������

k2 � k2y
q

and the operators acting on it are

A � k2 cos�,� ,0� 	 cos, cos,0@2
x 	 sin, sin,0@2

z

	 sin�,	 ,0�@xz; (10a)

B � �jky�cos,@x 	 sin,@z�; (10b)

C � �jky�cos,0@x 	 sin,0@z�; (10c)

D � k2?: (10d)

The special case of ky � 0 results in ~Einc
y � 0 and Eqs. (8a)

and (8b) are reduced to ~Jc as a function of ~Einc
c , in agree-

ment with the two-dimensional TEy polarized SPR de-
scribed in [9].

The unknown surface currents in Eqs. (8a) and (8b) were
solved by dividing the grating profile into N straight seg-
ments of �n length and assuming a piecewise constant
current in each one,

~Jc�x; z; ky;!� �
XN
n�1

an�ky; !�gn�x; z� (11a)

~Jy�x; z; ky;!� �
XN
n�1

bn�ky; !�gn�x; z�; (11b)

where gn�x; z� � 1 at the nth segment and zero out of it.
Thus, Eqs. (8a) and (8b) were approximated by a set of 2N
linear equations�

Ecm
Eym

�
�

�
Amn Bmn
Cmn Dmn

��
an
bn

�
; (12)
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where Ecm and Eym are the incident electric components
given by Eq. (9) at the center of the mth observation seg-
ment. The matrix diagonal terms, related to the Hankel
function singularity, are given by the closed form [25]

Ann �
Z0k

2
?�n

8k

�
1�

j
�

�
2 ln

�
1:781k?�n

4

�
� 3

	
16

�k?�n�
2

��
	 �ky=k?�

2Dnn; (13a)

Bnn � 0; (13b)

Cnn � 0; (13c)

Dnn �
Z0k

2
?�n

4k

�
1�

j
2�

�
2 ln

�
1:781k?�n

4

�
� 1

��
; (13d)

and the other terms are calculated numerically.
The far-field vector potential approximated for a large

argument r � r0 is

Afar�r; �; �;!� ’
e�jkr

4�r

Z
C

�Z W=2

�W=2
J�r0; !�ejkyy

0
dy0

�

� ejkxx
0	jkzz0dc0; (14)

were kx � k sin� sin�, ky � k cos�, and kz �
k sin� cos�. Under the assumption of a sufficient grating
width

RW=2
�W=2 J�r

0; !�ejkyy
0
dy0 �

R
1
�1 J�r0; !�ejkyy

0
dy0 �

~J�x0; z0; ky; !�, Eq. (14) becomes

A far�r; �;�;!� ’
e�jkr

4�r

Z
C

~J�x0; z0; ky; !�ejkxx
0	jkzz0dc0;

(15)

where ~J�x0; z0; ky; !� � x̂~Jc cos,
0 	 ŷ~Jy 	 ẑ~Jc sin,

0. The
magnetic component of the far field is approximated by

H �r; �;�;!� ’ �jk�Afar; (16)

and the power spectrum is

Ps��;�;!� � Z0r2jH�r; �;�;!�j2: (17)

The angular distribution of the average radiated energy per
groove is given by Parseval’s theorem,

EAV��;�� �
1

Ng�

Z 1

0
Ps��;�;!�d!; (18)

where for coherent radiation it is sufficient to calculate up
to a maximum frequency of! � 2�c=*x where the bunch
form factor is very small. The integration range in Eq. (18)
can be varied in order to calculate the energy in a specific
range of frequencies for each observation angle, in order
to obtain the contribution from a given SPR order, such
as 0:5!n < !< 1:5!n, where !n � 2�nc=Dg���1 �

sin� sin��.

B. Periodic solution

In this subsection the finite-length formulation is reder-
ived for the special case of an infinitely long periodic
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structure in order to validate its consistency with
van den Berg’s model [4]. In an infinitely long periodic
grating ~J�x	 pDg; z; ky; !� � ~J�x; z; ky; !�e�jkx0pDg ,
where kx0 � k=� is the bunch free-space wave number
determined by its velocity in the x̂ direction.

The periodic EFIE has a form similar to Eqs. (8a) and
(8b) with the difference of being solved along a single
grating period Dg,

~Einc
c �x; z; ky; !� � j

Z0

k

Z
Dg
~JcA ~Gp 	 ~JyB ~Gp�dc0 (19a)

~Einc
y �x; z; ky; !� � j

Z0

k

Z
Dg
~JcC ~Gp 	 ~JyD ~Gp�dc0; (19b)
07280
and a periodic Green’s function ~Gp��1=4j��P
1
p��1H

�2�
0 �k?

������������������������������������������������������
�x�x0 �pDg�2	�z�z0�2

q
�e�jkx0pDg re-

placing the free-space Green’s function in Eqs. (8a) and
(8b). The periodic surface currents in Eqs. (19a) and (19b)
are found similarly, as described in the previous subsec-
tion, by dividing the single-period integration into linear
segments and approximating the currents as sums of piece-
wise constant functions. Because of the slow convergence
of the periodic Hankel function, the following procedure
was used to accelerate its evaluation [26,27]:
1

4j

X1
p��1

H�2�
0 �k?

����������������������������������������������������������
�x� x0 � pDg�

2 	 �z� z0�2
q

�e�jkx0pDg �
1

4j
H�2�

0 �k?
�������������������������������������������
�x� x0�2 	 �z� z0�2

q
�

	
e�jk?�x�x

0�

�

Z 1

0

exp�k?�Dg 	 x� x0�u2 � j�k? � kx0�Dg� cosk?�z� z0�u
����������������
u2 	 2j

p
�

f1� exp�k?Dgu
2 � j�k? � kx0�Dg�g

����������������
u2 	 2j

p du

	
ejk?�x�x

0�

�

Z 1

0

exp�k?�Dg � x	 x0�u2 � j�k? 	 kx0�Dg� cosk?�z� z0�u
����������������
u2 	 2j

p
�

f1� exp�k?Dgu2 � j�k? 	 kx0�Dg�g
����������������
u2 	 2j

p du; (20)
where the right-hand-side first term is related to p � 0 and
the other two are related to the summation of p �
�1; . . . ;�1, and p � 1; . . . ;1, respectively. The advan-
tage of this procedure is that the self-term argument singu-
larities are evaluated as in Eqs. (13a)–(13d), and the partial
derivatives in Eqs. (10a)–(10d) can be applied analytically
on the second and third terms of Eq. (20).

Defining axial and transverse periodic wave numbers

kxn � kx 	 2�n=Dg and kzn � �
�������������������
k2? � k2xn

q
��, respec-

tively, where � �� denotes a complex conjugate value, the
periodic vector potential can be represented as a sum over
the propagating Floquet harmonics Re�kzn� � 0 which
correspond to the spectral grating orders:

A �x; z; ky; !� �
X

Re�kzn�>0

An�x; z; ky; !�

�
Z
Dg

~J�x0; z0; ky; !�
X

Re�kzn�>0

~Gpndc0: (21)

In this equation the periodic Green’s function is repre-
sented by its Poisson sum transformation [26]

~Gp �
X1

n��1

~Gpn �
X1

n��1

�
e�jkxn�x�x

0��jkznjz�z0j

2jDgkzn

�
: (22)

Thus, for observation points above the grating (z > b)
and real values of kzn, the nth SPR order of the magnetic
field is
H n�x; z; ky; !� � �
e�jkxnx�jkznz

2Dgkzn

Z
Dg

kn

� ~J�x0; z0; ky; !�ejkxnx
0	jkznz0dc0; (23)

where kn � x̂kxn 	 ŷky 	 ẑkzn. Wood-Rayleigh anoma-
lies [28] are expected at wavelengths satisfying k2zn � k2 �
k2y � k2xn � 0, where the wave numbers are functions of �
and � according to the SPR relationship described in
Eq. (1). These anomalies will appear at real angles ful-
filling

�n � sin�1

�
��1�n� 1� � sin�

n sin�

�
; (24)

where 0� <�< 180� and n � 2; 3; . . . ;1.
The nth-order radiated energy per groove is found from

Eq. (23) as

En��;�� �
2n2

�0Dg
jHn�ky; !�j

2 cos2�sin2�

���1 � sin� sin��3
; (25)

where jHn�ky; !�j2 � jHxnj2 	 jHynj2 	 jHznj2 is inde-
pendent of the �x; z� coordinates, ky � k cos�, and ! is
related to � and � by Eq. (1).

III. NUMERICAL EXAMPLE

A numerical example of SPR from a finite-length
echelle grating is presented in the following section. The
bunch and grating parameters are as listed in Table I, unless
specified otherwise.
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FIG. 3. Contour plot of the first-order average radiated energy
per groove in nJ=sr vs observation angles � and �.

TABLE I. Smith-Purcell radiation parameters.

Bunch charge q 50 pC
Bunch relativistic factor  36
Height above the grating, bmin 0:6 mm
Bunch length *x 300 �m
Grating period Dg 2.5 mm
Blaze angle , 30�

Number of periods, Ng 20
EFIE resolution �n <�=10
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The surface currents along the 20-period grating profile,
~Jc�x; z� and ~Jy�x; z�, calculated at a Fourier frequency of
120 GHz and at � � 85�, are presented in Fig. 2 by solid
and dashed lines, respectively. These currents are normal-
ized to a unit charge of q � 1 C and a bunch form factor of
F�k� � 1. The inset shows the corresponding currents
along one period of an infinitely long grating. It is seen
that the 20-period currents, ~Jc and ~Jy, have a general
structure per groove which is similar to the infinitely
long currents, respectively. However, the envelopes of the
20-period ~Jc and ~Jy are large in the first groove. These
envelopes approach the values of the infinitely long cur-
rents, respectively, toward the last groove.

The solution of the average first-order (n � 1) radiated
energy per groove EAV��;�� is shown in Fig. 3 as contours
in nJ=sr vs � and �. The calculation is symmetric around
� � 90� (ky � 0), thus EAV��; 180��� � EAV��;��.

The average first-order radiated energy per groove by the
20-period grating is shown in Figs. 4(a) (solid line) and
4(b) for angular ranges of �60� � � � 60�; � � 90� and
� � 0�; 30� � � � 90�, respectively. This energy is com-
pared to the first-order radiated energy per groove calcu-
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FIG. 2. (Color) Surface currents ~Jc (thin line) and ~Jy (thick line)
along the profile of the 20-period grating at a Fourier frequency
of 120 GHz and at � � 85�. Inset: corresponding surface
currents by the periodic solution plotted along a single period.

07280
lated by van den Berg’s model for an infinitely long grating
[4] (dotted line) and by the surface current model which is
based on the image-charge approximation [7] (dashed
line). Under the infinitely long grating assumption, the
periodic EFIE results (not shown) agree with
van den Berg’s model with <10% difference between the
two, thus demonstrating that the EFIE model is consistent
with van den Berg’s model.

The sharp energy variations seen in the periodic solution
in Fig. 4(a) are caused by the Wood-Rayleigh anomalies.
Following [5], the radiated energy was calculated at steps
of 1�, except near these anomalies, where offsets of
��10�7; 10�4; 10�3� from the angles calculated by
Eq. (24) were used. In Fig. 3, it is seen that the energy
contours curve strongly in the region 20� < �< 30� and
50� <�< 70�. The locations of these energy variations
agree with the predicted values of the Wood-Rayleigh
anomalies described in Eq. (24) except that for the finite-
length grating they do not show up near � � 90�.

It is seen in Fig. 4(a) that the image-charge approxima-
tion and the infinite-length assumption result in an energy
per groove which is an order of magnitude too high and too
low, respectively, compared to the finite-length EFIE cal-
culation. Figure 4(b) shows that for � & 60� (i.e. ky=k *

0:5), the difference between the energy per groove emitted
from the 20-period and the infinitely long grating becomes
smaller.

In addition to the consistency between the periodic EFIE
and van den Berg’s model, the minimum number of
grooves Nmin to provide less than 10% difference between
the radiated energy per groove by the finite-length and the
infinitely long grating was calculated. It was found that
Nmin was strongly dependent on �. For � � 90� (ky � 0)
it required more than 250 grooves, in agreement with the
convergence described in [9]. However, for � � 80�, 70�,
and 60�, Nmin was �100, 20, and 10, respectively.
1-5



FIG. 4. (Color) Comparison of average first-order radiated en-
ergy per groove by the 20-period grating (solid line) with the
energy per groove by the image-charge model (dashed line) and
by the infinitely long grating assumption (dotted line). The
energies are plotted versus � when � � 90� (a) and versus �
when � � 0� (b).
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FIG. 5. (Color) First-order average radiated energy per groove
vs observation angle � (when � � 90�), plotted for bunch
lengths of 300 �m (solid line), 360 �m (dashed line), and
420 �m (dotted line).
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In order to illustrate bunch-length measurement by
Smith-Purcell radiation, the first-order average radiated
energy per groove vs observation angle � (when � �
90�) was calculated for bunch lengths of 300, 360, and
420 �m. The results are presented in Fig. 5 by solid,
dashed, and dotted lines, respectively. As expected from
the bunch form factor, F�k�, as the bunch gets longer the
radiation at large observation angles decreases more than at
small angles. Such a plot could be used to determine the
bunch length by comparing the measured radiation pattern
to several theoretical curves, as in [21].

IV. DISCUSSION

The EFIE model in [9] was extended to the three-
dimensional case of a bunch moving above a finite-length
07280
grating. The results were compared to those of an infinitely
long grating in which periodic boundary conditions are
assumed [4] and to those by the image-charge approxima-
tion [7]. A considerable error in the strength of the radiated
energy per groove is introduced by either assumption, and
especially for transverse angles �� 90�. The results by
the EFIE model approach those by van den Berg [4] when
Ng is increased. In addition, using an infinitely long grating
approximation the periodic EFIE is consistent with [4].

For ky * 0:5 good agreement is obtained between the
finite-length and the infinitely long approaches for gratings
as short as ten grooves. This agreement could be intuitively
understood by the coupling between the propagating wake-
field and the reflected waves as the bunch moves above the
grating [9]. As the bunch is passing above the first groove it
induces a surface current. This current generates reflected
fields. The radiation towards the x direction induces cur-
rent on the second groove which occurs, for relativistic
velocities, at about the same time as the bunch is above the
second groove, thus, changing the amount of current on the
second groove. The radiation from the n	 1 groove is
therefore different from that of the previous one until the
solution approaches a stable value, as seen in Fig. 2. Thus, a
maximum coupling occurs for kx0 � k? ! 0. This ex-
plains the large error by the periodic solution at � � 90�

as well as the reason for not seeing the Wood-Rayleigh
anomalies in Fig. 4(a).

The image-charge approximation resulted in an order of
magnitude difference in the radiated energy, as shown in
Figs. 4(a) and 4(b). Six orders of magnitude difference
were reported by Kube et al. [13] comparing the SPR
experimental results from an electron beam energy of
855 MeV to a surface current model similar to the
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image-charge approximation by Brownell et al. [7], while
fair agreement was obtained with van den Berg’s model. A
possible reason for the inaccuracy of the image-charge
approximation for high beam energies may be due to the
scale of the beam height above the grating compared to the
length of each facet of the grating. The electrostatic limit of
a stationary charge requires a perfectly conducting facet to
be an order of magnitude longer than the height of the
charge above it in order that most of the field lines from the
charge will connect through the metal to form the image
below it. As the charge travels at a relativistic velocity ,
the time required for the information to be updated to form
the exact image is  times longer. Thus, a failure to include
that may result in an error on the order of 2 higher energy,
in agreement with [13].

The EFIE model in this paper assumes a grating of
sufficient width W=2 � �=k and W=2 � b. The radia-
tion from a narrow grating which does not meet these
criteria is expected to be lower in energy because only
part of the bunch transverse evanescent wave would be
diffracted from the grating. In addition, the radiation pat-
tern is expected to become broader over the transverse
observation angle �.

While a bunch-length measurement was obtained in
[2,21] by comparing, on a relative scale, the measured
radiation pattern to several theoretical lines, a further
improvement in the accuracy may be obtained by an
absolute-scale measurement. For the example in Fig. 5,
such improvement may be achieved by positioning a de-
tector at an angle of maximum expected radiation � � 12�.
Calibrating the detector at a the corresponding wavelength
� ’ 2 mm, may result in an alternative setup in which the
radiation is measured on an absolute scale in order to
optimize accelerator parameters to produce the shortest
bunch and determine its length without any mechanical
sweeping of observation angles as in [21]. Thus, this
method may have a better accuracy, be simpler to imple-
ment, and will provide a real time, nondestructive, mea-
surement feature.
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