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Beam-ion instability
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In this paper the results of the experimental measurements at Berlin electron storage ring for
synchrotron radiation (BESSY-II) are presented. Grow/damp measurements of the transverse coupled-
bunch instabilities were performed using a multibunch feedback system and a synchronized time-domain
bunch motion recorder. The results of these experiments are described and explained by the beam-ion
instability. Simplified simulations and revised theory of the instability extended to a nonlinear regime are
used for the interpretation of the results.
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TABLE I. BESSY-II parameters for transverse instability mea-
surements.

Parameter Nominal Calculations

Energy, GeV 1.70 1.72
Beam current, mA 250 50
Bunch population 3:5� 109 0:7� 109

Circumference 2
R, m 240 240
Harmonic number h 400 400
Vertical tune, Qy 6.73 6.73
�x=y, �m 230=23 230=23
Beam pipe radius, b, cm 1.1–3.75 1:5
I. INTRODUCTION AND MEASUREMENTS

Experimental measurements of the coupled-bunch insta-
bilities in the longitudinal and transverse planes are im-
portant for both understanding the driving mechanisms and
for developing feedback techniques to combat such insta-
bilities. The transverse beam stability at BESSY-II has
been investigated experimentally using the longitudinal
bunch-by-bunch feedback system as a diagnostic tool.
The main motivation for this study was to perfect a mea-
surement technique which uses the downsampled longitu-
dinal feedback (LFB) system as a synchronized data
recorder to observe transverse beam motion. Even though
the bunch motion is aliased in this process the knowledge
of the transverse fractional tune allows one to reliably
recover the beam motion in postprocessing [1]. The loop
closure of the transverse bunch-by-bunch feedback system
was controlled by the LFB in order to generate the grow/
damp transients.

The main relevant BESSY-II parameters, both nominal
and the values used for calculations in this paper, are given
in Table I.

In this paper, we describe the grow/damp experiments at
BESSY-II and suggest an explanation of the results. In the
experiments the vertical instability of the beam has been
observed. Dipole oscillations of each bunch in the ring
were recorded during approximately 16 ms between the
moments when the transverse feedback (FB) has been
turned off and on again. A typical result is shown in
Fig. 1 where the red and blue colors correspond to the
largest and smallest amplitudes, respectively. The mea-
surements were performed below the longitudinal dipole
coupled-bunch instability threshold (around 70 mA). Thus
the beam was longitudinally stable at all times.
Measurements presented here were made at beam currents
between 50 and 60 mA. The high-frequency amplitude
modulation with approximately 16 bucket periodicity is
due to the filling unevenness of the individual buckets.

One of the intriguing features of Fig. 1 is the suppression
of oscillations. The last may be seen as the tilted blue bands
in the figure which correspond to the minimum amplitude
05=8(6)=064402(12) 06440
of bunch oscillations shifting towards the following
bunches almost linearly in time.

Recording of the displacements of each bunch in time
allows analysis of the data in terms of the (full ring)
coupled-bunch (CB) modes and their time dependence.
Results of such an analysis illustrated in Fig. 2 show, first
of all, that only few low order CB modes are excited.
Because of filling pattern modulation at the 16 bucket
periodicity there are sidebands in the modal spectrum
separated by 400=16 � 25 revolution harmonics. The side-
bands are more prominent in the 400 bunch fill due to
higher bunch filling unevenness.

Time dependence of the five largest CB modes is shown
in Fig. 3. This figure clearly shows that the amplitudes of
these modes grow exponentially only for a small initial
period of time. This period is smaller for the ring fully
filled and larger for the fill with a gap in the bunch train.
The character of the time variation depends significantly on
the length of the gap. Useful information can be extracted
by fitting a polynomial to the logarithm of modal ampli-
tudes lnx�t� in each case. From the polynomial fit one can
numerically compute the effective growth rate vs ampli-
tude. In this approach the modal amplitude is represented
in the following analytical form:

Cm�t� � Amep�t�t
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FIG. 1. (Color) Variation of the amplitudes of all bunches with
time in the grow/damp experiment at BESSY-II. The transverse
feedback system is turned off at t � 0 and then turned on 16 ms
later. The ring was fully populated with 400 bunches.
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where Am is the initial modal amplitude and p�t� is a
polynomial defining growth rate variation with time.
Such fits are presented in Fig. 4. Note the dramatic differ-
ence between a gradual drop in the growth rate with
increasing oscillation amplitude for the case of 320
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FIG. 2. (Color) Average modal amplitudes (arbitrary units) vs mo
experiments at BESSY-II. (a) 320 bunches in the ring with an 80 bu
clearing gap; (d) Plot (c) zoomed in.

06440
bunches and the fast falloff in the case without a gap. It
is interesting to point out that while amplitude of oscilla-
tion of mode 399 in Fig. 3(a) grows nearly exponentially,
there is a significant frequency shift with the amplitude of
oscillation.

Comparing Figs. 3(a) and 3(b) another qualitative
difference is evident between the system behavior
with and without the gap. Note that without the gap
the initial (steady-state) oscillation amplitudes of modes
395–398 are significantly above the noise floor. It is
possible to explain such behavior if we assume that
instability growth rates have a strong dependence on
dipole oscillation amplitude. Then, as the feedback
system damps the motion, the growth rates of the relevant
modes increase up to the point where they equal the
damping provided by the transverse feedback system.
Such balance determines the steady-state oscillation am-
plitudes of the CB modes in question. This hypothesis is
further supported by Fig. 4(d) showing a significant in-
crease in instability growth rate at lower oscillation
amplitudes.

First we will try to model the observed bunch oscillation
amplitude variations as the beating of unstable coherent
modes. Such modeling provides further insight into the
mechanisms driving the instabilities and allows one to
home in on the actual sources of the observed dynamic
behavior.
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FIG. 3. (Color) Variation of the amplitudes of several CB modes vs time for two grow/damp experiments at BESSY-II. (a) 320 bunches
in the ring, 20% gap; (b) 400 bunches, no ion-clearing gap.
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II. SIMPLE MODEL FOR BUNCH AMPLITUDE
VARIATION

The simplest model explaining the observed variation in
bunch oscillation amplitudes can be obtained considering
just two coherent coupled-bunch modes with the mode
numbers �1 and �2, coherent frequencies �1;2 and the
growth rates �1;2. For simplicity, let us take equal initial
amplitudes a for both modes. Then, the vertical displace-
ment of the Nth bunch in the train of h equidistant bunches
is
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yN�t��afe�1tcos��!y��1�t�2
�N�1��1=h	

�e�2tcos��!y��2�t�2
�N�1��2=h	g; (1)

where !y � Qy!0 is the betatron frequency. The ampli-
tude of the bunch varies in time as

AN�t� � a2fe2�1t � e2�2t � e��1��2�t cos���1 ��2�t

� 2
N��1 ��2�=h	g: (2)
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FIG. 5. (Color) Amplitude growth due to RW instability. All 360
modes are taken into account.
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The beating is due to the cosine term. First, we notice
that this term is independent of the tuneQy and depends on
the coherent shift �. The minimum amplitude corresponds
to the phase equal to multiple of 
. Such minima are
separated by

�N �
h
2
��1 ��2�: (3)

The beating requires comparable growth rates of two
modes e�1t ’ e�2t. For an instability with a distinguished
strongest mode, both interfering modes have to be close,
�1 ��2 � �1. In this case, two bunches having mini-
mum amplitudes simultaneously would be separated by
h=2 � 200 bunches. For modes with substantial difference
in the growth rates, the last term in Eq. (2) becomes
negligible with time and the time dependence of the beat-
ing may disappear. Still, the amplitude variation along the
train may remain provided initial amplitudes of bunches
were different. In this case, the depression bands in Fig. 1
would go vertically without slope. Equation (2) shows that
the slope of the depression bands is given by the difference
in the coherent frequencies of the modes �� � j�1 �
�2j. A constant phase of oscillation is found for a bunch
number N�t� which varies in time with the rate

dN
dt

�
h��1 ��2�

2
��1 ��2�
: (4)

Observation of the slope may provide useful information
on the parameters of the coherent modes.

The transient excitation of the beam oscillations [2,3] is
another model which would have some features similar to
that observed at BESSY in the case of a train with a large
gap. Suppose that the first bunch in the train has a small
amplitude of betatron oscillations a. If there is coupling,
each bunch would drive oscillations of the following
bunches. If betatron frequencies of all bunches are the
same, the amplitude of the second bunch would grow
linearly in time until saturation. In the simple daisy-chain
model, where a bunch is coupled only to the following
bunch,

d2xn
dt2

� 2�d
dxn
dt

�!2
bxn � �xn�1; (5)

the amplitude of the nth bunch varies as

a�n; t� /
1

n!

�
�t
2!b

�
n
e��dt: (6)

The maximum amplitude at the moment t has the bunch
with the bunch number nmax�t� � �t, where � � �=�2!�.
The amplitude of the bunch with the fastest growth grows
exponentially, a�nmax��t� / e

����d�t. The factor � gives
also the growth rate of coupled-mode instability for the
ring without the gap. The position of the bunch with the
largest amplitude is shifted along the train with the rate
dnmax=dt � � equal to the growth rate of the instability �.
06440
The growth of the amplitude at BESSY is more compli-
cated with beating and several bands. It is not clear whether
BESSY results can be explained as transients in the more
elaborated modes where the betatron frequency variation
along the train and in time is included.
III. RESISTIVE WALL AND HEAD-TAIL
INSTABILITIES

The beam instability causing the beating has to have the
growth rate fast enough to be observed on the time scale of
16 ms.

Therefore, only the strongest of the conventional trans-
verse wakes, the resistive wall (RW) coherent instability,
and the beam-ion instability can be relevant to the
observations.

The RW instability is well known and substantially
depends on the beam pipe aperture. For this reason, it is
difficult to get an accurate estimate of the growth rate of
instability for BESSY-II where the aperture has large var-
iations along the ring. Assuming the average 1.5 cm radius
of the aluminum beam pipe, the maximum growth time for
400 uniformly spaced bunches is about 16 ms, equal to the
total time of recording in the experiment. However, the
aperture in the undulators is 1 cm, and the growth time may
be reduced by a factor of 3 and become noticeable in the
measurements.

Calculations give the maximum �� ’ 100 Hz for b �
1:5 cm. Hence, for �� � 1, the depression minimum
shifts by �N ’ 70 in 10 ms.

The result of calculations where all RW modes are taken
into account are shown in Fig. 5. The eigenmodes were
2-4
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calculated assuming that 360 buckets out of the available
400 are filled leaving a 10% gap. Initial amplitudes for all
modes were taken equal. Although some bunch-to-bunch
modulation is visible, the overall variation does not look
similar to the experiment.

Several other factors argue as well against the observed
instabilities being caused by the resistive wall. As de-
scribed in the introduction the growth behavior of this
instability depends strongly on the presence or absence
of the gap. Instabilities driven by the resistive wall imped-
ance should be relatively insensitive to the length of the
ion-clearing gap. Secondly, the strong tune shift versus
oscillation amplitude observed in a 320 bunch pattern is
inconsistent with the resistive wall constant impedance
model.

There is frequency shift both for the resistive wall and
the beam-ion interactions. The parameter defining the shift
is the ratio of the amplitude of oscillations to the beam pipe
aperture for the RW case and to the transverse beam rms
for ions. Therefore, the frequency shift for ions is substan-
tially stronger for ions.

For all of the above reasons, we consider below only
beam-ion instability.
IV. BEAM-ION INSTABILITY

The beam-ion instability has been studied analytically
by many authors [4,5] and numerically [6]. The instability
is due to ions which keep memory of the offset of the
generating bunch and transfer this information to the fol-
lowing bunches. For large rings, where the revolution
frequency is small compared to the ion frequency, the
instability becomes the fast ions instability described re-
cently [7]. Let us recall the basic results of the linear
theory.

Ions are produced in collisions with the residual gas with
the rate

S0 � ��
i ngas

Nb
�b
: (7)

Here ��
i is ionization cross section, ��

i ’ 2 Mbarn, and
ngas is residual gas density,

ngas � 3:2� 107
p

nTorr
cm�3 (8)

at normal temperature. S0 ’ 108 �cms��1 for BESSY-II
parameters at 5 nTorr.

Ions with atomic weight Ai and initial amplitudes small
compared to �x, �y, oscillate within the beam with the ion
frequency

�2
0 �

2Nbrpc20
Ai�x�ysb

: (9)

Here rp is classical proton radius and c0 is velocity of light.
For BESSY-II parameters, �0=!0 � 4:2 and 15:6 for CO
06440
and H2, respectively. The coasting beam approximation is
valid if �0sb=c0 � 1. Otherwise, ions are unstable due to
over-kicks from the bunches and cannot be trapped.

For the full ring, ions are accumulated until the space
charge of ions becomes comparable with the average den-
sity of the beam. The ion density at saturation

nsat �
2Nb

sbb

2 ln
�
b
�x

�
(10)

for BESSY-II parameters and 5 nTorr pressure, nsat ’
107 cm�3 and may be reached after approximately 35
turns.

The gap in the train makes most of ions unstable pro-
vided the gap length Lg is large enough, �0Lg=c0 > 1. For
BESSY-II and CO, that means Lg=sb > 15. An ion shifts
transversely during the first gap by �0�Lg=c��y. The
following passes of the gap drive ions toward the wall in
a random walk filling the beam pipe uniformly. The esti-
mate of the equilibrium density ngap can be obtained equal-
izing diffusive losses at the wall and the production rate.
That gives

ngap �
2S0

!0hr
2i��0Lg=c�

2 ; (11)

where hr2i is the average distance of ions from the beam
squared.

With the 20% gap and the same 5 nTorr pressure, even
for hr2i � �x�y we get ngap ’ 103 cm�3, much smaller
than the space-charge limit. This overestimates the clean-
ing effect of the gap not taking into account that some ions
in the ring remain stable even with the long gaps although
the number of such ions decreases with Lg.

Therefore, for the long gap, the ion density is mostly
defined by ions generated in one-turn ions with the ion
density ni � S0T0=�2
�x�y�, of the order of 3� 105 cm3

at the pressure 5 nTorr. That sets the lowest limit on the ion
density for the last bunch in the bunch train.

The beam-ion instability is usually analyzed in the lin-
earized approximation. Details can be found in the appen-
dix. Oscillation of a bunch at the distance z from the head
of the bunch train yc�t; z� in the linear theory is described
by the superposition of the CB modes ym�t; z� �
a sin��t� qmz�, where qm � 2
�m� 1�=h and the coher-
ent frequency � � !y � �!m. The growth rate �m �

Im�!m is not zero at the resonance frequency ��A�
defined by condition !y ��i�A� � m!0. After averaging
over the distribution of ions over amplitudes A, the linear
growth rate of the mode q, � is proportional

� �

rec

2
0

�!y�y
������������������
�2
x �#2

x

p �0

��

�
dNi
ds

�
: (12)

Here, � is the relativistic factor of the beam, #x is the
rms size of the ion distribution, ��=�0 is the frequency
2-5
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spread of ions. It is large, about 1=6:0 due to strong
nonlinearity of the beam-ion potential.

In this limit, the growth time for such a machine as
BESSY-II can be as fast as 0:35 �s for the last bunch
even assuming the relatively low one-turn ion density.

Equation (12) shows that the growth rate depends on the
ion density. Therefore, the growth rate is higher in the fully
filled ring. As a result, the exponential growth lasts longer
in the train with a large gap as it was mentioned in Sec. I.
FIG. 6. (Color) Variation of the amplitudes of individual
bunches for the beam-ion instability in the simple model of
the nonlinear regime. P � 10, J0 � 10, 2� 104 turns.
V. NONLINEAR REGIME OF BEAM-ION
INSTABILITY

The basic equations of the beam-ion instability are
reproduced in Sec. 1 of the appendix. In the case of
equidistant bunches, motion of the bunch centroid can be
described as the superposition of the modes

yN��� �
X
n

�ane
�iQy��iqnzN � c:c:	; (13)

where qn � 2
n=h, n � 0; 1; . . . ; nb � 1. (In the case
where each m-s bucket is filled, the harmonic number h
should be replaced by h=m.)

yN��;s���� �
X
n

�ane�i'n��2
ins=�hsb� � c:c:	; (14)

where 'n � Qy � n.
That suggests the form of the distance (i��; s� �

Yi��; s� � yN��;s���� between the displacement Yi of an
ion at the location s and the offset yN of the bunch
N��; s� which happens to be at the location s at the moment
�,

(i��; s� �
X
n

�Ai;ne
�i'n��2
ins=�hsb� � c:c:	: (15)

The system of equations for the amplitudes an and Ai;n is
derived in the appendix:

dAi;n
d�

�
i

2'n
�%&�jAi;nj

2; r� � '2n	Ai;n �
i'n
2
an: (16)

dan���
d�

�
i�
2Qy

1

Nion

XNion

i�1

Ai;n���&
�X
m

jAi;mj
2; r

�
: (17)

In the linear approximation, these equations give well
known results, in particular, the growth rate Eq. (12).
However, the growth rate defined in the linear regime is
high and, usually, the linear regime cannot be observed in
the experiment.

In the nonlinear regime the system of equations (16) and
(17) can be solved numerically. We used approximation of
Eq. (A6) for & and 12 modes An, an, n �; 1; . . . ; 12 with
initial conditions an�0� � 0:1 and An�0� � 0. The results
of calculations shown in Fig. 6 are in good agreement with
tracking results. More details are given in the appendix.
06440
VI. SIMULATIONS

The linear regime, therefore, is too fast to be observed
and the nonlinear theory is needed to describe experiments.
Some estimates are given in the appendix.

We developed a simple code and used it for simulations.
In the code, each bunch is described as a single macro-
particle interacting with ions localized in a single slice in
the ring. Each bunch passing through the slice generates a
macroparticle with the vertical offset equal to the position
of a bunch and the rate equal to the production rate of ions
in the ring. A bunch gives to and receives kicks from ions
existing in the slice. Between bunches, ions are free but get
additional kick from the rest of ions to simulate the space-
charge effect. Ions are killed when they reach a certain
cutoff distance simulating loss at the beam pipe wall. In
addition to the interaction with ions, macroparticles per-
form betatron oscillations described as a linear map. A
resistive wall effect may be added as an additional trans-
form. To do that, the displacement of a bunch is expanded
in a sum of the CB modes which are transformed with the
known growth rate and then the new coordinate is calcu-
lated for the bunch.

The results of simulations are shown in Figs. 7–11.
Tracking was carried out for pressure 5 nTorr.

Figures 7 and 8 depict time variation of individual
bunches for the train of 320 bunches and for the full ring
(400 bunches), respectively. The amplitude value is indi-
cated by color in the same way as in Fig. 1. Although the
detail pattern differs from that in the experiment, the
qualitative outlook is similar. The suppression bands are
clearly visible and their separation is similar to that in
Fig. 1. We discuss the difference in the results below.
2-6



FIG. 7. (Color) Time dependence of the amplitudes of all
bunches for a train of 320 bunches in tracking. The horizontal
axes gives the bunch number, vertical axes is time sample. Total
time of tracking is 2� 104 turns or 16 ms. The amplitude value
is shown in colors; blue and red corresponding to minimum and
maximum amplitudes.
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FIG. 9. (Color) Amplitude of three bunches vs time. Blue, green,
and red lines correspond to the bunches in the in the head,
middle, and the tail of the train of 320 bunches.
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Variation in time of the amplitudes of three bunches (in
the head, middle, and the tail of the train) is shown in
Fig. 9.

Oscillations of individual bunches yn�t�, n �
1; 2; . . . ; nb can be analyzed in terms of the CB modes of
FIG. 8. (Color) The same as in Fig. 7 for 400 bunches (full ring
fill).
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the full ring Cm�t�, m � 1; 2; . . . ; h,

yn�t� �
X
Cm�t�e2
i�n�1��m�1�=h: (18)

Calculated amplitudes of the CB modes are shown in
Fig. 10 and are similar to those in Fig. 2. For 320 bunches
there are two spectral peaks shown in Fig. 10: at modes 397
and 394. In the case of the uniform fill the peaks are at
modes 398 and 396. In Fig. 2(b) a similar multipeak
structure is seen for the 320 bunch case with peaks at
modes 399 and 397.

Figures 11 and 12 show the time variation of a few
strongest modes. The time variation and the time depen-
dence of the amplitudes of individual bunches are not
exponential. That shows again that the exponential regime
of the linear theory is quickly replaced by much slower
growth of the nonlinear regime [8]; see the discussion in
the appendix. These results are in agreement with simula-
tions [6].
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FIG. 10. (Color) Amplitude of CB modes jCmj vs mode number
taken at the end of tracking (t � 16 ms) for the train nb � 320
(blue) and nb � 400 (red) bunches.
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FIG. 11. Time variation of the strongest modes. 320 bunches in
the ring.
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A. Discussion of simulations

Experiment and tracking results are quite different for
the ring with the large gap (train of 320 bunches) and for
the full ring filled (400 bunches). Such a difference can be
related to the strong dependence of the ion density on the
amplitude of beam oscillations. Figure 13 depicts the time
variation of the ion density for the case of 320 bunches in
simulations. The beam is artificially maintained stable for
the first 1000 turns by turning off the kick from ions to the
beam. The ions are produced by each bunch and the ion
density growth in a few tens of turns to saturation defined
by the space-charge force of accumulated bunches.
Quantitatively, the last agrees with the estimate in
Eq. (10). After 1000 turns, the kicks to the beam are turned
on and the amplitude of the beam oscillations start to grow.

That provides an additional mechanism for ion loss, first,
producing ions at larger distances from the beam axes and,
second, driving ions to the wall due to the beam-ion
interaction. As a result, the density of the ions drops with
time although beam amplitude continues to grow.

The strong dependence of the growth rate on the ampli-
tude of the oscillations mentioned in the introduction is the
result of the dependence of the growth rate on the ion
FIG. 12. The same as in Fig. 11 for the train of 400 bunches.

06440
density which goes down while the amplitude increases.
On top of that, the ion distribution becomes wider and
flatter. The superposition of the strongest unstable modes
generates a complex interference pattern recorded in the
experiment.

It should be also true that, in the experiments, the
fluctuations of the cloud may be stronger in the case of
400 bunches than in the case of the long ion gaps due to a
larger density of the ion cloud. Therefore, the initial am-
plitude of the beam oscillations when the feedback is
turned off can be larger and the instability starts already
in the nonlinear regime. That may explain the results
shown in Fig. 3(b).

Comparing the experiment with the results of tracking, it
is worth noting that the tracking results are quite sensitive
to the choice of parameters such as vacuum pressure,
transverse rms �x;y of the beam, and the cutoff distance.
Some of these parameters are unknown (such as pressure)
or may in reality vary in time (such as �x;y). The choice of
other parameters (such as the cutoff amplitude, number of
ion slices per ring, and variation of the ion frequency
around the ring due to variation of the betatron functions)
affects the time of simulations and may be prohibiting even
in the simplified model we use in simulations. It is also
worthwhile to mention that to simulate the grow/damp
conditions, we keep beam stable suppressing kicks to the
bunches for some number of turns while building the ion
density to saturation. Such simulations do not quite repro-
duce experimental conditions where the turned on trans-
verse feedback does not necessarily mean the zero initial
amplitude of the beam oscillations.

Nevertheless, the simulations display the main features
of the experimental results. We can conclude that the
experiment can be explained by the beam-ion instability.
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Results confirm that the experimentally observable insta-
bility corresponds to the nonlinear regime where the den-
sity of ions has to be defined in a self-consistent way rather
than taken as a constant from separate simulations with a
stable beam. The amplitude depression in the train and the
split of the amplitude spectrum of CB modes are related to
the coherent tune shift and the variation of the ion density
with time. More sophisticated simulations may give quan-
titative prediction in this respect although a comparison
with experiment requires more diagnostics on the vacuum
pressure in the ring and time variation of the beam rms
dimensions.

As it was mentioned in the first section, the exponential
growth takes place only for a limited period of time. The
period is smaller in the fully filled ring than in the case of a
bunch train with a gap. We also noted that the amplitude of
oscillations is significantly above the noise floor level if the
beam has no gap. Both effects can be explained qualita-
tively by the interaction with ions. The gap substantially
reduces initial density of ions and, before the feedback is
turned off, ions have relatively a weak impact on the beam.
The linear exponential regime takes place starting with
small initial beam amplitudes and continues until the am-
plitude of the beam oscillations is built up. In the case of a
fully filled ring, the initial density of ions and noise on the
beam are large. After the feedback is turned off, the growth
starts with larger amplitudes and the linear regime is
restricted in time.

The interaction with ions can also explain why the
strongest mode number is higher without the gap. The
strongest mode in the beam-ion instability is the mode
shifted up from the betatron frequency by the ion fre-
quency. The latter is defined by the ion amplitude where
the ion distribution is maximum. With the large gap, ions
are unstable and most of them are one-turn ions with small
amplitudes corresponding to a higher ion frequency. For
the full ring, most of ions have large amplitudes, lower
frequency, and the strongest mode in the beam spectrum
closer to the betatron line than in the case of a large gap.
VII. CONCLUSIONS

The experimental results obtained in the grow/damp
experiment at BESSY-II show an intriguing interference
pattern and nonexponential dependence of the amplitudes
on time. Understanding of these results could provide a
new method of diagnostic of the beam parameters. We
analyze coherent instabilities looking for a possible expla-
nation of the experimental results. We found that only
resistive wall and beam-ion instabilities may be respon-
sible for the results. Further analysis shows that the resis-
tive wall instability is too weak and can be ignored leaving
the beam-ion instability as the only plausible candidate.
We carried out simplified simulations of the instability
whose results were qualitatively similar to the experimen-
tal results. In the analysis of results, we reproduce the
06440
known results of the linear theory of the instability and
developed an approach which allows us to analyze the
nonlinear regime of the instability.

Simulations are sensitive to the not very well known
parameters such as the shape of the distribution of ions and
the pressure of the residual gas. Although we were unable
to reproduce the interference pattern exactly, this is not
surprising given such a sensitivity to unknown parameters.
We believe that results of the paper confirm the beam-ion
instability as the source of the interference pattern.
Analysis presented in the paper shows, however, that for
quantitative comparison more detailed simulations and
additional experimental information on the pressure and
beam rms size are needed.
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APPENDIX

1. Basic equations

Let us consider a train of bunches with the transverse
rms dimensions �x, �y, �x � �y, the number of particles
Nb per bunch, and bunch spacing sb � c�b. The nth bunch
is at distances zN � �N � 1�sb, N � 1; 2; . . . ; nb from the
head of the train. The position of the Nth bunch in the ring
is sN�t� � �ct� zN�mod�2
R�. Ions at the location s
around the ring are described by the coordinates X; Y and
have a linear density of dNi=ds. We use the dimensionless
time � � !0t, vertical y���, Y��; s�, and horizontal coor-
dinates x���, X��; s� of the bunches and ions, respectively,
measured in units of the bunch rms �y and �x.

The beam-ion interaction is just electrostatic Coulomb
force. At the moment t, ions interact with the bunch
numbered N��; s� � 1� �c�=!0 � s�=sb. To simplify
consideration, we assume that ions are independent of
the time Gaussian distribution in X with the average hXi �
0 and the rms #x reducing the problem to the 1D case. We
also assume a Gaussian distribution for the beam in the
vertical plane with the bunch centroid at yN�t�.

The equation of motion for the bunch centroid yN of the
Nth bunch is obtained by averaging the force over the ion
distribution in X and the bunch distribution

d2yN���

d�2
�Q2

yyN���
Z
dY-i�Y;�;sN���	�yN���

�Y	&
�
yN�t��Y���

2
p ;r

�
: (A1)
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Here -i�Y; �; s� is normalized to one distribution function
of ions at the location s in the ring,

R
dy-i�y; �; s� � 1,

sN��� � c�=!0 � zN ,

r �
�y������������������

�2
x �#2

x

p ; � �
2rec

2
0

�!2
0�y��x � �y�

�
dNi
ds

�
;

(A2)

and

&��2;r��
1�r
2

Z 1

0

d.

�1�.�3=2
�������������
r2�.

p e��.=�1�.�	�2
;

�

������������������������



4�2

�
1�r
1�r

�s
er

2�2=1�r2
�
Erf

� �������������
�2

1�r2

s �

�Erf
� �������������

�2r2

1�r2

s ��
: (A3)

Equation of motion for an ion with atomic number A is
defined by the Coulomb interaction with passing bunches.
In the 1D model, the interaction is

d2Yi��; s�

d�2
� �%0

X
k

0
�
�

�
!0sb
c0

k
�
(i��; s�&

�
(2i ��; s�

2
; r
�
; (A4)

where (i��; s� � Yi��; s� � yN��;s����. The parameter

%0 �
2Nbrpc0
A!0�x�y

#x
�1� r�#x;t

; (A5)

where #x;t �
������������������
�2
x � #2

x

p
.

The sum over 0 functions can be expanded over the time
harmonics. For small bunch spacing, only zero harmonics
can be retained. Equation (A4) written in terms of (��; s�
takes the form

d2(i��; s�

d�2
�%(i��; s�&

�
(2i ��; s�

2
; r
�
� �

d2

d�2
yN��;s����:

(A6)

Here

% �
c0
!0sb

%0 �

�
�0

!0

�
2
�

2#x
�1� r�#x;t

�
: (A7)

A good approximation for &��2; r� can be written as

&��2; r� �
1

1� 1�2 ; (A8)

where 1 � �1=3��1� 2r�=�1� r�.
In the extreme case of large r� � 1, & ’�

�1� r�=�2r�2�.
In the case of equidistant bunches, motion of the bunch

centroid can be described as the superposition of the modes
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yN��� �
X
n

�ane
�iQy��iqnzN � c:c:	; (A9)

where qn � 2
n=h, n � 0; 1; . . . ; nb � 1. (In the case
where each m-s bucket is filled, the harmonic number h
should be replaced by h=m.) Then, the right-hand-side in
Eq. (A6) is proportional to

yN��;s���� �
X
n

�ane
�i'n��2
ins=�hsb� � c:c:	; (A10)

where 'n � Qy � n.
That suggests the form of (i��; s�,

(i��; s� �
X
n

�Ai;ne
�i'n��2
ins=�hsb� � c:c:	: (A11)

Let us replace (i��; s�2 in the argument of
&f�(2��; s�=2	; rg by the average value

(2i ��; s� ’ h(2��; s�i � 2
X
n

jAi;nj
2: (A12)

With the additional condition A0
i;ne

�i'n��2
ns=�hsb� �

c:c: � 0, Eq. (A6) for ions is transformed to

dAi;n
d�

�
i

2'n
�%&�jAi;nj

2; r� � '2n	Ai;n �
i'n
2
an: (A13)

Let us rewrite Eq. (A1) as the sum over all Ni ions at the
location s:

d2yN���

d�2
�Q2

yyN �
�
Ni

XNi
i�1

2i;N���&
�22

i;N���

2
; r
�
; (A14)

where 2i;N��� � Yi��; sN���	 � yN���. Using identity
N��; s�js�sN��� � N, and the definition of (i��; s�, it is
easy to see that 2i;N��� � (i��; sN���	. Then, Eq. (A11)
gives

2i;N��� �
X
n

�Ai;ne�iQy��iqnzN � c:c:	: (A15)

Using the additional condition a0ne�iQy��iqnzN � c:c: �
0, we get from Eq. (A14) equation for the bunch ampli-
tudes,

dan���
d�

�
i�
2Qy

1

Nion

XNion

i�1

Ai;n���&
�X
m

jAi;mj2; r
�
: (A16)

The factor Jn � jAnj2 is proportional to the action vari-
able of the nth mode. We can write the argument of & in
Eq. (A16) as the sum over the coherent modes Am and
replace the sum over incoherent ions by the integral with
the distribution function f�J�,

R
dJf�J� � 1,

dan���
d�

�
i�
2Qy

Z
dJf�J�An�J�&

�
J�

X
m

jAmj
2; r

�
:

(A17)

Equations (A13) and (A17) are the basis for further study
below.
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FIG. 14. Dimensionless coherent frequency �=!0 of the
beam-ion instability in the linear approximation.
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2. Linear approximation

In the linear approximation, 1jAnj2 � 1, we can neglect
the contribution of the coherent modes, assuming Ai;n �
An�Ji�e

�i�� and the same time dependence for an.
Equation (A13) relates amplitudes of ions and the beam:

An�J� � �
'n
2

an
�� �1=2'n��%&�J; r� � '2n	

: (A18)

Substituting that in Eqs. (A17) we get the dispersion
relation for the coherent shift �. Using approximation
Eq. (A8), we get

�n �
�'2n
2Qy

Z dJf�J�

�'2n � 2�'n��1� 1J� �%
: (A19)

Here � has to be understood as having a positive
imaginary part, �! �� i4, 4 > 0. The contribution
of the pole then defines the growth rate � � Im���.
For '� �,

�n � �

�
21Qy

f�Jrn	Sign�'	; (A20)

where the resonance amplitude

Jrn �
%� '2n
1'2n

: (A21)

Resonances are possible only for Jrn > 0, or �2
0 > �!y �

n!0�
2. The growth rate is positive and a mode is unstable if

'n < 0. Hence, unstable modes are within the range !y <
n!0 <!y ��0. For the ion distribution function f�J�
which rolls off with J, the maximum growth rate is ob-
tained for modes with the minimal Jrn > 0, that is for the
mode '2n ’ %. Therefore, the strongest mode is the mode
with

n!0 ’ !y ��0: (A22)

The latter conclusion may be sensitive to the shape of the
ion distribution.

The principal value of the integral in Eqs. (A19) defines
the coherent shift of a mode.

For BESSY-II parameters, there are several unstable
modes. Figure 14 shows the growth rate and the coherent
tune shift of these modes. In calculations, we assumed
Gaussian distribution f�J� � �1=Jo�e�J=J0 with J0 �
�#y;i=�y�

2 � 10, and pressure 10 nTorr. Other parameters
are defined in Table I.

3. Nonlinear regime

Equation (A17) shows what can be expected in the
nonlinear regime. If the coherent amplitudes vary slowly,
then Eq. (A18) would retain its form with &�J� being
replaced by &�J� jAnj2�. Respectively, the factor �1�
064402
1J� in Eq. (A19) would be replaced by �1� 1J� jAnj
2�.

The growing coherent modes jAnj2 shift the position of the
resonance Jrn, Eq. (A21), to

Jrn �
%� '2n
1'2n

� jAnj
2: (A23)

At the same time, the instability increases the beam
rms dimensions reducing �0 reducing %. Both factors
reduce the right-hand-side in Eq. (A19) and, when it is
negative, the resonance is impossible and the mode is
stabilized.

For ions oscillating in the potential well of the
beam, each coherent mode is equivalent to periodic per-
turbation with the coherent frequency � � Re��n�. Such a
perturbation generates a separatrix where ions may be
trapped. For large enough coherent amplitudes coherent
modes cannot be considered independently due to over-
lapping of the separatrices. The ion motion becomes ran-
dom and ions give random kicks to the beam. The
exponential linear regime of the instability then is replaced
by the diffusive linear growth of the beam amplitude with
time [8].

In the extreme case of large coherent amplitudes, where
jAnj2 is large compared to the incoherent spread of ampli-
tudes, Eq. (A17) can be again simplified. Neglecting inco-
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herent J in the argument of & and using the normR
dJf�J� � 1, we can reduce Eqs. (A13) and (A17) to

the system of equations for the interacting coherent modes,

dan���
d�

�
i�
2Qy

An&
�X
m

jAmj2; r
�
: (A24)

dAn
d�

�
i

2'n
�%&�jAnj2; r� � '2n	An �

i'n
2
an: (A25)

The system can be solved numerically. We used an
approximation of Eq. (A8) for & and 12 modes An, an, n �
1; . . . ; 12 with initial conditions an�0� � 0:1 and An�0� �
0. The results of calculations shown in Fig. 6 are in good
agreement with tracking results.
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