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This paper demonstrates that transverse beam halos can be controlled by combining nonlinear focusing
and collimation. The study relies on one-dimensional, constant focusing particle-in-cell (PIC) simulations
and a particle-core model. Beams with linear and nonlinear focusing are studied. Calculations with linear
focusing confirm previous findings that the extent and density of the halo depend strongly upon the initial
mismatch of the beam. Calculations with nonlinear focusing are used to study damping in the beam
oscillations caused by the mismatch. Although the nonlinear force damps the beam oscillations, it is
accompanied by emittance growth. This process is very rapid and happens within the first 2—3 envelope
oscillations. After this, when the halo is collimated using a system of four collimators, further evolution of
the beam shows that the halo is not regenerated. The elimination of the beam halo could allow either a
smaller physical aperture for the transport system or it could allow a beam of higher current in a system
with the same physical aperture. This advantage compensates for the loss of particles due to collimation.
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L. INTRODUCTION

A major issue facing the functioning of high current
accelerators is beam halo formation. High current accel-
erators find applications in heavy ion fusion, nuclear waste
treatment, production of tritium, production of radio iso-
topes for medical use, and spallation neutron sources [1].
The halo is formed by a small intensity distribution of
particles surrounding the core of the beam. When such
particles drift far away from the characteristic width of the
beam, their loss will lead to the production of residual
radioactivity of the accelerating system. Many of the above
applications require that the number of particles lost to the
system must be less that one part in 10°—10°. With such a
stringent requirement, methods to control the beam halo
can prove very useful. However, there has been relatively
less effort spent on devising such methods when compared
to the extensive study that has already been done to under-
stand the physics of beam halo formation. The methods
employed to study beam halos include analytic models,
multiparticle simulations using mainly the particle-core
model and PIC simulations [2—21], and also experimental
studies [22,23].

The dependence of the extent of beam halos and the
initial beam mismatch has been studied by Wangler et al.
[15], where it is shown that the maximum dimensionless
particle amplitude X,,,., which is the distance with respect
to the matched beam width, can be described by an ap-
proximate empirical formula, which is,

Xpnax = A + BlIn(w)l. (1)

Here, A and B are weak functions of the tune depression
ratio approximately given by A = B = 4 [15], and w is the
initial beam mismatch ratio. This result is not a good
estimation of maximum amplitude for w close to 1. It
has also been shown [24] that in addition to increased

1098-4402/05/8(6)/064202(10)

064202-1

PACS numbers: 29.17.+w, 29.27.Bd, 41.75.—1

halo extent, the number of halo particles grows with in-
creased initial mismatch ratio. Batygin [25] showed that
one can obtain a better match through nonlinear focusing
for a prescribed charge distribution leading to reduced
halo. Thus, it is already well established that reducing
the beam mismatch can be an important factor in halo
mitigation.

O’Connell et al. [3] traced the trajectories of various test
particles with different initial conditions for a beam in a
constant, linear focusing channel. This led to the discovery
of “hybrid” trajectories, which undergo a resonant inter-
action with the core which was later analyzed by
Gluckstern [2]. The discovery of these hybrid trajectories
reveals the limitations on the effectiveness of a one time
beam collimation because the continued resonant interac-
tion causes the halo to almost always regenerate [2]. This
issue will be addressed in this paper. The removal of halo in
periodic linear focusing systems has been studied previ-
ously [24] where a series of 14 collimators were used.

In the present paper, we propose reducing mismatch by
damping the transverse oscillations of the beam through
nonlinear focusing before collimation to avoid the need for
repeated collimation. Collimation still becomes essential
in this process due the emittance growth accompanying the
nonlinear damping. Our studies are based on a radial
particle-in-cell (PIC) code along with some preliminary
studies using a modified particle-core model. This paper is
organized as follows. Section II describes a modified
particle-core model for nonlinear focusing and examines
the effect of nonlinear focusing on beams through this
model. In Sec. III, the PIC algorithm and the physical
model used to represent the beam has been described and
simulation results of beam halo formation with different
initial mismatches have been presented. In addition, results
showing damping and emittance growth due to nonlinear
focusing are also presented. The PIC simulation results are

© 2005 The American Physical Society



KIRAN G. SONNAD AND JOHN R. CARY

Phys. Rev. ST Accel. Beams 8, 064202 (2005)

then compared with the particle-core model results.
Finally, Sec. IV shows results of a combination of non-
linear focusing and collimation.

II. RESULTS FROM A PARTICLE-CORE MODEL

The particle-core model in this paper serves the purpose
of obtaining a qualitatively similar result with a simpler
model, thus exhibiting the general nature of the phenomena
of damping and emittance growth due to nonlinear focus-
ing. For a linear focusing system, the core is generally
represented by the envelope equation, which is not valid
for a nonlinear focusing system. Since nonlinear focusing
is used in this study, the core is simulated using a different
method.

The envelope equation will still be used as a reference to
determine parameters such as mismatch ratio and tune
depression ratio. Consider a uniform, round, thin beam
moving in the axial direction and with a constant axial
velocity in a linear and constant focusing channel. Under
these conditions, the envelope equation describes the os-
cillation of R, the radius of the beam with respect to the
axial distance s which is a timelike variable for a beam with
constant axial velocity. This can be expressed as (see, for
example, [26,27])

2
IR G r-S_K_y )
ds? R} R
The focusing force is represented by ky, K is the space
charge perveance which depends upon the intensity, axial
velocity, and charge to mass ratio of the particles [26,27].
The rms emittance of the beam € is given by

€ = 4w — (), 3)

where the angle bracket represents an average over the
particle distribution in position space, x is displacement
along the horizontal axis, and v, = dx/ds. For a matched
beam, the radius remains constant at R = R satisfying the
condition, d’R/ds* = 0. It was shown by Sacherer [28]
that the envelope equation can be generalized to even
nonuniform distributions having elliptic symmetry (in
this case, azimuthal symmetry). In such a case, the radius
may be generalized to R = 2a and Ry, = 2a,, where a is
the rms width of the beam, and a, is the matched rms
width. We define a dimensionless displacement by X =
x/ay, a dimensionless velocity by V, = v,//k,a,, a di-
mensionless axial distance given by S = /kys and a di-
mensionless rms width given by M = a/a,. The initial
mismatch ratio, which is the initial value of M is repre-
sented as w. All calculations will be made with respect to
these dimensionless quantities.

The tune depression ratio, n = €/+/kgR3 is a dimen-
sionless quantity which gives a measure of the ratio be-
tween the wave numbers (or equivalently, frequencies) of a
particle oscillating with and without the effect of space

charge, respectively. While this ratio is exact for any in-
core particle in a uniform distribution core, the definition
may be extended to provide information on a general
beam, especially to determine if a beam is space charge
dominated or emittance dominated. A tune depression ratio
close to unity represents an emittance dominated beam
while if n is much less than unity, it is a space charge
dominated beam.

In this paper, the core was simulated through a series of
600 infinitely long charged cylindrical “‘sheets” which
could move radially inward or outward. The field on test
particles and the sheets of the core were calculated from
Gauss’s law using a flux weighted averaging scheme [29].
The test particles did not contribute to the field. The sheets
representing the core were advanced in the radial direction
while the test particles were moved along the “x”” and “‘y”’
coordinates. In both the cases, the leap frog scheme was
used.

The sheets representing the core, and the test particles, in
units of mass m = 1, satisfy the following equation,

2
Cr_pir, 4k )
ds® r
where r is the radial distance and s is still the distance
along the axis, F is the focusing force, F. is the space
charge force, and L is the angular momentum which is set
to zero for the sheets. The purely linear focusing force had
the form

F = —kgyr, 5)

while the focusing force with the nonlinearity included had
the form

F = —klr - k2r3. (6)

The corresponding space charge densities that balance the
focusing force will be equal to

€
p =22k, (7
e
and
p =20k + k), (®)
e

respectively, for r < R,, and equal to zero for r > R,
where R, is the radius of the matched beam. Here, e is
the charge on the particle and ¢ is the permittivity in free
space. A mismatch is introduced by expanding or contract-
ing the core and uniformly scaling the charge density to
ensure conservation of charge. In performing the calcula-
tions in this section, we used a core which was expanded to
1.35 times its matched width. All the sheets comprising the
core were initially at rest. In the absence of a nonlinearity,
the density of the core is uniform, corresponding to a
Kapchinskij-Vladmirskij (KV) distribution [30].

Based on the parameter a,, the matched rms width
according to the envelope equation, we set the linear and
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FIG. 1. Linear oscillations. (a) Oscillation of the rms width of
the core with u = 1.35, (b) test particle distribution at last
minimum rms width when S = 300, (c¢) test distribution at last
maximum rms width when S = 300.

nonlinear focusing parameters such that they satisfied the
conditions

koay = kiag + kya} )
and
ky
Fa% =4, (10)

Equation (9) indicates that the linear and nonlinear focus-
ing forces were equal at the characteristic distance a, and
Egs. (9) and (10) together give a measure of how much the
linear force was reduced before introducing the nonlinear
component. To study the distribution of the particles,
10000 test particles were used which had an initial
Gaussian distribution in four dimensional phase space
with an rms width equal to half the initial radius of the
core. In the linear case, this makes the core and particle
distribution equivalent according to the envelope equation.
The initial distribution was identical for the linear and
nonlinear case corresponding to a tune depression of 0.1
in the linear focusing channel. The initial mismatch of the
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FIG. 2.
of the core with w = 1.35, (b) particle distribution at last
minimum rms width when S = 300, (¢) distribution at last
maximum rms width when § = 300.

Nonlinear oscillations. (a) Oscillation of the rms width

test particle distribution as predicted by the envelope equa-
tion for the linear focusing case was 1.35, identical to that
of the core.

Figure 1(a) shows about 70 oscillations of the rms width
of the core. These oscillations are sustained in the linear
focusing case because all the sheets in the core are oscil-
lating in phase and at the same frequency. The correspond-
ing phase space distribution of the test particles that are
moving under the influence of the core are plotted when the
rms width of the core is at its minimum and its maximum,
respectively. Over here, we choose the last minimum and
maximum point that appears in Fig. 1(a), i.e., when § =
300. Figure 1(b) shows the phase space distribution at this
minimum rms width, while in Fig. 1(c), the distribution is
at the corresponding maximum rms width.

When nonlinearity is introduced, not only does the
density become nonuniform, but the frequency distribution
of the oscillations of the charged sheets for a mismatched
beam also becomes nonuniform. This is expected to lead to
damping of the oscillation in the rms width of the core as
seen in Fig. 2(a). The mechanism is well known in many
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FIG. 3. Oscillation of the rms width of the beam for
u = (a) 1.5, (b) 1.35, (c) 1.2.

branches of physics as Landau damping. In the damping
process, the velocity spread of the beam increases (the
beam is heated). Figure 2(b) shows the corresponding
phase space distribution of test particles moving under
the influence of this core (a) when the rms core width
was at the last minimum seen in Fig. 2(a), and in
Fig. 2(c), the core was at the last maximum rms width
when S = 300.

It is easily noticed that the width of the core does not
change significantly due to the damping of the oscillations.
This would simplify the task of collimating the halo. Since
the collimator radius has to be larger than the radius of the
core, the phase of the core oscillation becomes an impor-
tant factor in the linear focusing case, where the core is
seen to expand up to twice its minimum size. Figures 2(b)
and 2(c) also show that the beam spreads out in velocity
space, while the spread in position space is comparable to
the linear focusing case. The spread in velocity is due to a
transfer of energy from the mismatched core to the velocity
distribution of the particles. However, due to the nonlinear
focusing, the particles having a higher kinetic energy must
also overcome a stronger potential gradient as they drift
away from the core. This restricts the spread in position
space, which helps restrict the radius of the collimator.

ITI. RESULTS FROM PIC SIMULATIONS

The evolution of the beam is now simulated using a
radial PIC code. In these calculations, the charge distribu-
tions and forces used were azimuthally symmetric, a sim-
plified model for which a one-dimensional field solver is
sufficient. Since the fields vary along the radial direction,
they are solved using Gauss’s law over a radial grid. The
particles, however, are advanced using the leap frog
scheme in Cartesian coordinates along the x and y axis.
This helps avoid problems arising due to singularities at the
origin if radial and azimuthal motion was used [31]. The
particles are distributed over the grid using area weighting
while the fields were assigned to the particles using flux
weighted averaging [29].

We examine the halo generated for beams with different
initial mismatch ratios. The beam had an initial Gaussian
distribution in four dimensional phase space. The tune
depression calculated from the corresponding envelope
equation was chosen to be 0.1 for all the cases, which
implies that the beam was space charge dominated. We
used 100000 particles in all the PIC simulations, which
was large enough for the particle distributions to retain the

FIG. 4. Phase space distribution at last minimum rms width
when S = 300 for u = (a) 1.5, (b) 1.35, (¢) 1.2.
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FIG. 5. Phase space distribution at last maximum rms width
when S = 300 for u = (a) 1.5, (b) 1.35, (¢) 1.2.

desired azimuthal symmetry. These particles were distrib-
uted over 500 radial cells distributed over a length 10ay.

Figure 3 shows about 70 oscillations of the normalized
rms width of the beam with an rms mismatch ratio u of (a)
1.5, (b) 1.35, and (c) 1.2. It may be noticed that there is
some initial damping of the oscillations after which a
steady pattern emerges. The small initial damping could
be attributed to the fact that a Gaussian distribution does
not correspond to a Vlasov-Poisson equilibrium, so in the
initial stage of the beam oscillation, one could expect some
remixing of the distribution in phase space.

To examine the halo formation in these beams, the phase
space distribution of the particles is then taken toward the
end of the oscillations for two cases, which are (i) when the
rms width of the distribution is a minimum, shown in Fig. 4
and (ii) when it is a maximum, shown in Fig. 5. The
minimum and maximum points were the last ones seen
in Fig. 3, that is, when S = 300. The relative change
between the maximum and minimum width of the core
agrees very well with that obtained using the particle-core
model for the corresponding initial mismatch of 1.35. It can
also be seen that the extent and intensity of the halo
increases with increased mismatch, which confirms the

need to obtain a reduced mismatch in order to control
halo formation.

Figure 6 shows about 90 rms oscillations along with
initial damping caused by the nonlinear focusing. The
nonlinear focusing is of the same form as Eq. (6) satisfying
the condition given by Egs. (9) and (10), where q is the
matched rms width of the beam. The initial distributions
were identical to the ones used in the linear focusing case.
The parameter p when defined for a nonlinear focusing
case corresponds to the mismatch ratio in the linear focus-
ing channel for the same initial distribution. It may be
noticed that the damping takes place in the first 1-2 rms
oscillations while it takes about 5—6 oscillations in the
particle-core model. Also, the final amplitude of the oscil-
lation after the damping is seen to decrease with a decrease
in w, the initial “mismatch.”

Figures 7 and 8 show the corresponding phase space
distributions of the particles when the rms width was a
minimum and a maximum, respectively. Once again, the
minimum and maximum points are the last ones seen in
Fig. 6 for the corresponding mismatch. The observations
show good agreement with the particle-core model results.
That is, the rms width of the beam does not change
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FIG. 6. Oscillation of the rms width of the beam with nonlinear
focusing for u = (a) 1.5, (b) 1.35, (¢) 1.2.
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FIG. 7. Oscillation of the rms width of the beam with nonlinear
focusing at the last minimum rms width when S = 300 for
p = (a) 1.5, (b) 1.35, (¢) 1.2.

significantly, as a consequence of the damping, and the
particles spread far in velocity space while their spread in
position space is comparable to the linear focusing case.

Despite the fact that the space charge force in the
particle-core model is created by an oscillating core, while
in the PIC simulations, the particles are influenced by a
self-consistent space charge force, both the models in
general show a remarkably similar response to nonlinear
focusing. However, we see in Fig. 6 that the damping is
more rapid in the PIC simulations. For the same initial
conditions used in both the models, which is u = 1.35, the
size of the core and the extent of the halo was the same for
both linear and nonlinear focusing.

IV. COLLIMATION WITH NONLINEAR
FOCUSING

This section will show that the combination of nonlinear
focusing and collimation eliminates the beam halos per-
manently. For the sake of consistency, the rms width of the
beam was at a maximum when collimation was started for
all the cases. However, it has been shown previously in this
paper that the phase of the oscillation is not a critical factor

O N

FIG. 8. Oscillation of the rms width of the beam with nonlinear
focusing at last maximum rms width when § = 300 for
© = (a) 1.5, (b) 1.35, (c) 1.2.

due to the nonlinear damping, so collimation could have
been performed at another phase of rms oscillation to get
similar results.

In this case, we used a series of four collimators that
were separated by a dimensionless axial distance of § =
0.75. Thus the total length of the collimation section is
S = 2.25. This is less than one period of the rms oscillation
which had an approximate value, S = 3.3. This separation
between adjacent collimators, which is a small fraction of
an rms oscillation, is possible because the halo particles,
which have high amplitudes are also oscillating at a greater
frequency due to the nonlinear component in the focusing.
Since the size of the core does not change significantly
between maximum and minimum as shown in the previous
section, the adjacent collimators can be placed close
enough without the concern that the core radius would
exceed the collimator radius. The point of collimation
was always chosen to be the first maximum rms width
after a period of S = 50 which corresponds to about 15 rms
oscillations.

There is no established quantitative definition as yet of a
beam halo although recent efforts are being made to quan-
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FIG. 9. Phase space distribution of particles just before colli-
mation for a beam with nonlinear focusing for u = (a) 1.5, (b)
1.35, (¢c) 1.2

tify such a halo [32]. This leads to some uncertainty in the
optimum choice of the collimator radius. In this study, the
edge of each of these four collimators satisfied the equation

X2+ Y2 =2 (11)

The value ¢ was chosen as 2.5 which was based on an
assumed requirement that the final maximum extent of the
beam did not exceed the dimensionless radial distance of
3.0 for any the three mismatch values. This is roughly half
the maximum extent of the beam for the highest mismatch
of u = 1.5 used in our study and in the absence of colli-
mation. A slightly larger collimator radius produced a
distribution that exceeded this limit. Table I in this section
shows that the number of particles lost due to collimation
decreases with reduced mismatch for the same collimator
system. Thus, having a small initial mismatch is still an
advantage but this is not possible to achieve in most
practical applications.

Figure 9 shows the distribution of the particles just
before collimation. The distribution of these particles is
very similar to that seen in Fig. 8 although they were taken
at a much earlier stage, i.e., after about 15 rms oscillations

X

FIG. 10. Phase space distribution of particles just after colli-
mation for a beam with nonlinear focusing for u = (a) 1.5, (b)
1.35, (c) 1.2.

as opposed to about 90. This shows that there is little
change as the beam propagates once the damping has
been achieved.

Figure 10 shows the distribution just after collimation. It
is noticeable that the velocity distribution has been effi-
ciently scraped off with the set of four collimators together
lying well within one rms oscillation period. As mentioned
previously in this section, this is a consequence of the
increase in frequency of oscillation of the particles with
an increase in amplitude which would not occur with
purely linear focusing.

Figure 11 shows the oscillation of the beam along with
the collimation. The rms size of the beam abruptly drops
due to the elimination of particles far away from the center.
It may be noticed that the damping is not affected and is
sustained even after the collimation is performed which is
an important phenomenon that ensures that the halo is not
reproduced, i.e., the advantages of reduced mismatch are
retained.

Figure 12 shows the distribution of particles at the point
of the last maximum rms width seen in Fig. 11. It is clear
that the particles that stray far away from the core are
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TABLE I. The mismatch and corresponding particle loss due
to collimation.

m =15 Particle loss = 19.1%
m=13 Particle loss = 13.7%
n=12 Particle loss = 8.2%

completely eliminated. These figures may be compared
with the corresponding ones in the previous section for
the same mismatch with linear focusing. Although the
distributions were taken when the rms width was a maxi-
mum, this would not make a significant difference from
another phase of the rms oscillation since their amplitudes
are already well damped. The extent of the beam remains
the same after this process regardless of the initial mis-
match, while, the number of particles lost in the collima-
tion increases with increased mismatch.

The large spread in velocity space, which is a result of
the nonlinear damping implies that more particles need to
be collimated away. Despite this drawback, the absence of
a halo would enable one to have a broader beam that would
more than compensate for the additional loss in particles.
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FIG. 11. Oscillation of the rms width of the beam with non-
linear focusing showing collimation for u = (a) 1.5, (b) 1.35,
(c) 1.2.

For example, assume that particles cannot be allowed
beyond a distance of X = 3. The particle distributions
shown in Fig. 12 clearly satisfy the restrictions, while the
ones shown in Figs. 4 and 5 do not because of the extended
halo produced due to linear focusing. In addition to this,
the core itself stretches to X = 3 for linear focusing as seen
in Fig. 5 while Fig. 12 shows that even the at maximum rms
width, the beam is restricted to well within a distance of
X = 3. All this implies that the initial beam will have to be
considerably narrower in the case of linear focusing in
order to restrict the halo to within a distance of X =3
and thus allowing fewer particles in the channel. Another
point to be noted is that the nonlinear focusing allows a
more efficient collimation process. The large frequency of
oscillation of the halo particles enables the collimators to
be placed close to each other which also helps to reduce the
number of collimators required, while the damped rms
oscillations ensures that the positioning of the collimator
does not depend upon the phase of the rms oscillation of
the beam in order to avoid scraping into the “core.” These
factors help achieve the required collimation in less that
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FIG. 12. Phase space distribution at the end of of oscillations
shown in Fig. 11 at the last maximum rms width when § = 300
for u = (a) 1.5, (b) 1.35, (c) 1.2.
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one complete rms oscillation of the beam and with just four
collimators.

V. SUMMARY

In this paper, we have proposed a new method that
combines nonlinear damping and collimation to control
beam halos. Our results showed that particles oscillating
with large amplitudes compared with the width of the core
can be completely eliminated with this mechanism making
the need for repeated collimation unnecessary.

Particle-core and PIC simulations showed that nonlinear
focusing leads to damping, thus reducing the beam mis-
match. However, the damping was accompanied by the
particle distribution spreading in the velocity space. This is
a result of transfer of energy stored in the mismatch to the
velocity distribution of the particles. The high velocity
particles are prevented from straying far away from the
beam due to the strong focusing force exerted by the non-
linear component at large radial distances. The beam was
collimated using a four collimator system soon after the
nonlinear damping was achieved, and the damped oscilla-
tions prevented further halo formation. Results showed that
the particles with large amplitude oscillations were com-
pletely eliminated. A possible drawback of this process is
the spread of particles in velocity space because of which
the collimation process results in a loss of particles.
However, we have argued that the knowledge that beam
halos are controlled would enable one to extend the beam
closer to the walls of the channel, thus increasing the beam
current that would more than compensate for the loss in
collimation.

It must be mentioned that the model used here was
idealized in many respects because it had constant focusing
and was purely radial. While this system is nearly inte-
grable in the absence of space charge, this would not
typically be true in real systems with nonlinear focusing
components. This is because the Courant-Snyder invariants
[33] are broken when nonlinear focusing components such
as sextupoles or octupoles are used. This will cause the
orbits to be chaotic leading to poor confinement even in the
absence of space charges. However, it has been shown that
[34] it is possible to reduce the nonlinear system to an
equivalent, continuous, and radially focusing one upon
averaging over the lattice period given that the nonlinear
components are arranged in a specific manner along with
an alternate gradient quadrupole focusing system. It has
also been shown that this symmetry can be retained in the
presence of space charge forces [35] and an equivalent
equilibrium distribution exists for such a lattice. We pro-
pose the use of such a lattice for further study involving a
two dimensional study.

Since the method proposed in this paper is not specific to
a particular application, different applications will demand
conditions that may be different from the ones used in this
paper. For example, collimation of the halo is being studied

for the Spallation Neutron Source accumulator ring [36].
The collimators use scrapers and absorbers to clean the
transverse halo. The accumulator ring already has a
straight section dedicated to the collimation system.
Applying the proposed method proposed to such a system
will require more extensive study. This is because the tune
depression in this ring is close to unity, in contrast to the
ones chosen in this paper. In addition to this, including
nonlinear components in a ring will not be straightforward
due to the effect of resonances and beam instabilities.
However, one of the advantages of the proposed method
is the fact that the nonlinear damping is only a transient
process. Once the collimation is achieved, the system may
be adiabatically matched to a linear focusing system. The
possibility of such a matching has been analyzed by
Batygin [37] and could be considered in such a study.

Less effort has been spent in devising methods to elimi-
nate beam halos when compared to the extensive study of
the properties of halo production itself. This paper could be
an important step toward this direction. The results are
encouraging enough to perform simulations in higher di-
mensions using nonlinear focusing components such as
sextupoles or octupoles along with realistic designs for
collimators.
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