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Autocorrelation is applied to analyze sets of finite-sampling data such as the turn-by-turn beam position
monitor (BPM) data in an accelerator. This method of data analysis, called the independent component
analysis (ICA), is shown to be a powerful beam diagnosis tool for being able to decompose sampled
signals into its underlying source signals. We find that the ICA has an advantage over the principle
component analysis (PCA) used in the model-independent analysis (MIA) in isolating independent modes.
The tolerance of the ICA method to noise in the BPM system is systematically studied. The ICA is applied
to analyze the complicated beam motion in a rapid-cycling booster synchrotron at the Fermilab.
Difficulties and limitations of the ICA method are also discussed.
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I. INTRODUCTION

Data mining and analysis play an important role in
uncovering underlying physics principles in complex dy-
namical systems. Using high precision closed orbit data
of an accelerator storage ring with small known-
perturbations, one can attain a vast data array of the orbit
response matrix, which has been successfully applied to
model and uncover problems associated with high intensity
storage rings [1].

The model-independent analysis (MIA), an analysis of a
massive data set obtained from beam position monitors
(BPM) using a large number of pulses, can be used to
untangle eigenmodes [2]. The spatial and temporal func-
tions can be used to identify betatron motion and other
sources of perturbations in linac transport systems.
Recently, the method has been extended to study beam
dynamics in high brightness storage rings using coherent rf
dipole field excitation [3,4].

The data sampled by BPMs reflect the beam transverse
motion, which is a combination of betatron motion, syn-
chrotron motion (coupled through dispersion) and pertur-
bations from other sources, such as noise, ground motion,
vibration source, wake field, etc. If the BPM system is
linear, the sampled data can be considered as a linear
mixture of a few physical source signals. The ultimate
goal of data analysis is to uncover these independent
source signals.

The MIA is essentially a principal component analysis
(PCA), which tries to find a linear transformation of the
samples to uncover the maximum amount of variance in
the least number of uncorrelated components. Only when
these source modes are weakly coupled or nondegenerate
(unequal eigenvalues), can the MIA properly isolate these
independent modes. When these conditions are met, the
address: xiahuang@fnal.gov or
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MIA can be successfully used to identify various beam
modes. When eigenmodes are coupled, one needs to apply
narrowband filtering to isolated relevant modes [4].

For high intensity rapid-cycling accelerators, the source
modes are normally found to be strongly coupled. For
example, the turn-by-turn beam position monitor (BPM)
data obtained from the Fermilab Booster, which acceler-
ates high intensity proton bunches at 15 Hz from 400 MeV
to 8 GeV beam kinetic energies, show that the synchrotron
motion is strongly coupled to the betatron modes. The
contaminated signal data should be removed by averaging
before the PCA analysis can be properly carried out. Even
so, a global perturbing signal can severely degrade the
betatron modes, and other source signals can still leak
into the betatron modes.

The independent component analysis (ICA) methods
provide a remedy for MIA’s limitation by identifying the
independent source signals from the samples using unequal
time correlations. Once identified, The source signals can
provide information on the betatron and synchrotron mo-
tion and other perturbation modes according to their spatial
and temporal functions. This new method is more immune
to mode mixing and noise signals. Because of its ability in
mode isolation, the ICA can be used to identify and study
the unknown beam motions due to various perturbing
sources. Implementation of ICA algorithms depends on
the nature of the source signals [5–7]. The time-correlation
based method is particularly efficient in isolating narrow-
band source modes and is used in this study.

Turn-by-turn BPM data of a synchrotron are normally
composed of coupled betatron and synchrotron oscilla-
tions, contaminated with noises. If the transfer function
of the BPM system is linear, the BPM readings can be
considered as a linear combination of contributions of all
physical processes. These contributions, each driven by a
certain physical cause, are referred to as source signals. It
would be convenient to study the physical sources if we
could separate these source signals from the raw data. Both
1-1  2005 The American Physical Society
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the MIA [2] and the ICA [7] are model independent in the
sense that no a priori knowledge of the underlying physical
processes is assumed.

The ICA method assumes that source signals have non-
overlapping power spectra, which often holds because the
signals are usually harmonic oscillation with different
tunes. The assumption assures that the unequal time-
correlation matrices of the source signals are diagonal.
The demixing matrix, which transforms the sample data
vector to the source signal vector is found as the joint
diagonalizer of the unequal time-correlation matrices of
the sample data with selected time-lag constants. Since the
source modes can be isolated, their origin can be identified.
Some of these modes in accelerator physics are horizontal
and vertical betatron and synchrotron oscillations. These
modes enable us to study not only the betatron motions but
also linear coupling and synchrotron motion from BPM
data.

This paper is intended to study the applicability and
limitations of the ICA method in accelerators. We organize
this paper as follows. In Sec. II, we introduce the ICA
method, and demonstrate the applicability of ICA by ap-
plying it to analyze simulated data derived from simple
models, and a model of tracking data obtained by the MAD

program of the Fermilab Booster. We also explore the
limitation of all finite data sampling methods. In Sec. III,
we apply ICA to experimental data of the FNAL Booster
taken under the condition of the normal ramping cycle.
Betatron tunes are measured and compared to model cal-
culation throughout the cycle [8]. The synchrotron tune is
also measured and compared to direct measurements [9].
Beta functions and phase advance are also measured.
Finally we use the result to correct the Fermilab Booster
MAD model [10]. The conclusion will be addressed in
Sec. IV.

II. THE ICA DATA ANALYSIS METHOD

The linear response of a dynamical system is repre-
sented by the relation between the m-dimensional obser-
vation vector X�t� and the n-dimensional source signal
vector s�t� by

X �t� � As�t� �N �t� (1)

where A 2 <m�n is the mixing matrix with m � n (n is
unknown a priori) and N �t� is the noise vector, assumed
to be stationary, zero mean, temporally white, and statisti-
cally independent of the source signal s�t�. The task is to
determine both the mixing matrix A and the source signals
s�t� from the sample signal X�t�.

For most of the physical processes, the source signals are
assumed to be mutually independent and temporally corre-
lated, i.e., the time-lagged covariance matrix Cs��� 	
hs�t�s�t� ��Ti is diagonal, i.e., hsi�t�sj�t� ��Ti �
Si���	ij. Here h� � �i stands for mathematical expectation
and � is the time-lag constant. The source signal separation
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of the ICA method jointly diagonalizes the covariance
matrices with selected time-lag constants � and uses data
whitening as a necessary preprocessing procedure. The
algorithm that we use is listed as follows [5,7].

First, compute the m�m sample covariance matrix
CX�0� 	 hX�t�X�t�Ti. Perform singular value decomposi-
tion (SVD) on CX�0� to obtain

CX�0� � �U1;U2�
�
�1 0
0 �2

��
UT
1

UT
2

�
; (2)

where �1;�2 are diagonal matrices withmin�diag
�1�� �
�c >max�diag
�2�� � 0, �c is a cutoff threshold set to
remove the singularity of the data matrix, and �1 is n� n
diagonal matrix with eigenvalues �1 � �2 � � � � � �n �
�c. Using the matrix

V 	 ��1=2
1 UT

1 ; (3)

we construct an n-component vector as � � VX. The
vector � is called white because h��Ti � I, where I is
the n� n identity matrix. This step reduces the dimension
of the data space, reduces the noise in the original data, and
decorrelates and normalizes the data to facilitate the next
step.

For a selected set of time-lag constants f�kg �k �
1; 2; . . . ; K�, compute the time-lagged covariance matrices
fC���k� � h��t���t� �k�Tig, form symmetric matrices
C���k� � �C���k� �C���k�T�=2, and find a unitary matrix
W that diagonalizes all matrices C���k� of this set, i.e.,
C���k� � WDkWT , where Dk is diagonal. In practice,
joint diagonalization can be achieved only approximately.
Algorithms for approximate joint diagonalization can be
found in Ref. [11].

Finally, the source signals and the mixing matrix are s �
WTVX and A � V�1W, respectively, where V 	

��1=2
1 UT

1 and V�1 � U1�
1=2
1 .

For digitized sample data Xi�t�, the time-lag constants �k
are discrete integers. The expectation functional h� � �i is
replaced with sample average in practice. Improvements
on the above algorithm have been studied by using robust
whitening in Refs. [12,13], or a combination of nonstatio-
narity and time-correlation algorithms in Ref. [12]. In
accelerator application, we find that our algorithm is suffi-
cient to isolate all independent signals.

The application of ICA to beam diagnosis involves three
phases: data acquisition and preprocessing, source signal
separation, and beam motion identification. To gain more
information of the beam lattice, the beam needs to undergo
coherent transverse motion in the time when the turn-by-
turn data are taken. A pinger or rf resonant excitation
kicker should be fired once or periodically to excite the
beam.

The data sampled by BPMs around the ring are put into a
data matrix
1-2
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X �

x1�1� x1�2� . . . x1�N�
x2�1� x2�2� . . . x2�N�

..

. ..
. . .

. ..
.

xm�1� xm�2� . . . xm�N�

0
BBBB@

1
CCCCA; (4)

where N is the total number of turns, m is the number of
BPMs. The element Xi�j� is the reading of the ith BPM on
the jth turn. BPM gains may be applied to correct the BPM
calibration error if necessary and available.

ICA algorithm is then applied to extract the mixing
matrix A and source signals s from the data matrix X.
Each source signal si and its spatial distribution Ai, where
Ai is the ith column of A, is called a mode. The physical
origin of a mode can be identified by its spatial and
temporal functions.

An oscillating signal (e.g., betatron oscillation) that has
a different phase at each BPM will appear as two modes
with identical frequency spectrum. Coherent betatron mo-
tion excited by the pinger should be dampened by deco-
herence. An important signature of betatron modes is their
tune. Let u�t� be the betatron oscillation component of the
transverse motion, then

u �t� � Ab1sb1�t� �Ab2sb2�t�; (5)

where sb1�t� and sb2�t� are sinelike and cosinelike modes,
respectively. The betatron function and phase advance can
thus be derived

�i � a2�A2b1;i � A2b2;i�; (6)

 i � tan�1
�
Ab1;i
Ab2;i

�
; (7)

where a is a constant depending on initial conditions. The
fractional part of the betatron tune can be obtained by the
fast Fourier transform (FFT) of the temporal function.

The synchrotron mode can be recognized because its
temporal pattern reflects the synchrotron oscillation of
momentum deviation 
p=p0 � 	�t�. The spatial pattern
of the synchrotron mode is dispersion function. Let v�t� be
the synchrotron oscillation component in the transverse
motion:

v �t� � Asss�t�: (8)

Note that there is only one mode because the synchrotron
tune is much smaller than 1. The dispersion D and the
synchrotron coordinate 	�t� are related by

D � bAs; (9)

	�t� � ss�t�=b; (10)

with a constant b. The constant a can be ‘‘determined’’ by
the calibration of kicker strength and the ‘‘modeled’’ �
function at the kicker location through several kicker
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strengths. The constant b can be calibrated through simul-
taneous phase measurement for the synchrotron motion.

In the presence of linear coupling, betatron modes have
two separate eigenfrequencies (�� and ��). Here, Eqs. (6)
and (7) are still applicable. Higher order resonances, if they
appear, can be recognized by their characteristic frequen-
cies. Other signals can also occur. For example, ripples of
magnet power supply can modulate the beam transverse
motion. BPM cables and electronics may pick up an rf
signal of nearby equipment. Some BPMs may insert an
artificial signal to their output due to circuit malfunction.
These signals can be identified and studied. The unidenti-
fied remainder of the original sample signals may be
considered as random noise of the BPM system.

If transverse motion for both the horizontal (x) and
vertical (z) planes can be recorded simultaneously, one

can put them together in a matrix y �
x
z

� �
for analysis.

Linear coupling, including coupling angle between the
horizontal and vertical planes, can be measured. The spa-
tial function can be used to identify the source of linear
coupling.

A. The simulation model with linear coupling

We study an ideal lattice model with known analytic
solution. Let the equations of motion be

d2

d 2
x� �2xx� Cz � 0; (11)
d2

d 2
z� �2zz� Cx � 0; (12)

where �x, �z are betatron tunes, C is the coupling constant,
and  � 2#f0t is the orbital angle with revolution fre-
quency f0. The model assumes continuous, uniform focus-
ing with linear coupling. The solution of the coupled
equations is

x � A1 cos�� � A2 cos�� ;

z � B1 cos�� � B2 cos�� ;

where the eigentunes are given by

�2� �
1

2

�
�2x � �2z �

																																					
��2x � �2z�2 � 4C2

q �
:

The coefficients are determined by initial conditions. For
x�0� � x0, x0�0� � 0, z�0� � z0, and z0�0� � 0, they are
1-3
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given by

A1 �
Cz0 � ��2x � �2��x0

�2� � �2�
;

A2 � �
Cz0 � ��2x � �2��x0

�2� � �2�
;

B1 �
Cx0 � ��2z � �2��z0

�2� � �2�
;

B2 � �
Cx0 � ��2z � �2��z0

�2� � �2�
:

We generate multiple BPM turn-by-turn data so that we
can compare the results of PCA and ICA with the analytic
solution. We placeM BPMs uniformly around the ring, i.e.,
the phase advances at the ith (i � 0; 1; � � � ;M� 1) BPM
are  �;i � 2#��i=M and  �;i � 2#��i=M. The readings
this BPM will record are

xi�n� � A1 cos���n�  �;i� � A2 cos���n�  �;i�; (13)

zi�n� � B1 cos���n�  �;i� � B2 cos���n�  �;i�; (14)

where n is the revolution index. We can introduce bad-
BPM modes and add white Gaussian random noises to
each individual BPM to simulate the effect of noises.
FIG. 1. The top and the second row are ICA mo
parameters are �x � 6:741 49, �z � 6:691 49, C
�0:0682, B1 � 0:0791, B2 � 0:9209. Top row: t
mode. The second row: the spatial pattern and FFT
and vertical (dash) curves in left plots are spatial f
the temporal functions. The third and the bottom r
PCA analysis. The SVs of the modes 1 and 3 are
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1. The demixing

With the linear coupling model, each BPM detects a
mixture of the normal modes (‘‘�’’ and ‘‘�’’ modes,
referring to signals with frequency �� and ��, respec-
tively). It is desirable to get the pure � modes and �
modes. Since the betatron phase at each BPM is different,
there are two � and two � modes. Using the spatial
function of these modes, we can calculate the coefficients
A1, A2, B1, B2 and the phase advances of the � mode and
� mode. The coefficients allow us to derive beta functions
and the coupling angle. Putting both horizontal and vertical
data in one matrix is a necessary step in achieving mode
demixing.

In our simulation studies we apply both PCA and ICA
methods to compare their ability in mode separation. We
find that the PCA method can separate the modes in most
cases when the singular values (SV) of the � and the �
modes are substantially different from each other.
However, when the SVs approach each other, PCA always
produces modes with mixing. The closer the SVs are, the
stronger the mixing is. On the other hand, ICA does not
show any dependence on the relative magnitudes of the
SVs. Figure 1 shows the spatial functions and tunes of
modes 1 and 3 derived from the ICA and PCA, respec-
tively. We note that the SVs of these modes are about equal,
and the resulting PCA modes are mixed.
des of the linear coupling (LC) model. Model
� 0:05, x0 � y0 � 1:0 A1 � 1:0682, A2 �

he spatial function and FFT of one of the �
of one of the � mode. The horizontal (solid)

unctions. The right plots show FFT spectra of
ows: modes 1 and 3 of the LC model using the

122.0 and 98.8, respectively.
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What PCA essentially does is to decorrelate the sample
data, i.e., to find an orthogonal basis to reinterpret the
sample data. Although there are numerous transformations
that decorrelate the sample data, the result of PCA is
unique because PCA make sure the first component has
the largest variance (corresponding to the first SV) and the
second component has second largest variance and so on.
The unique result of PCA is determined by the variances of
the components, or the relative strength of the signals,
which obviously does not concern the signals’ other prop-
erties such as their power spectra or probability density
functions. For example, let s1 and s2 be two normalized
independent signals with hs1s1i � hs2s2i � 1, hs1s2i �
hs1s2i � 0. Let the data matrix be given by x1 � 2s1 �
s2 and x2 � s1 � 2s2. We can use a set of new basis vectors
w1 � �1=

			
2

p
��s1 � s2� and w2 � �1=

			
2

p
��s2 � s1� or any

orthogonal transform as the basis vectors for the source
signals. However, we prefer the basis s1 and s2 because
they are independent. The additional condition that we
impose is the independence of signals s1 and s2, i.e.,
hs1�t�s1�t� ��i � S1���, hs2�t�s2�t� ��i � S2���, and
hs1�t�s2�t� ��i � hs2�t�s1�t� ��i � 0. The new basis
will inevitably be found to be s1 and s2 when the autocor-
relation condition is imposed.

In the linear coupling model, the sample of each BPM is
a mixture of 4 source signals si�t� (i � 1; 2; 3; 4) among
which are two � modes that make a � mode subspace and
the other two make a � mode subspace. The resulting basis
FIG. 2. PCA modes of the LC model with a localized bad-BPM sig
x0 � 1:0, y0 � 0:0, A1 � 0:9945, A2 � 0:0055, B1 � 0:0736, B2 �
with tune � � 0:575 45 and amplitude D � 0:4. The top row: mode 3
two modes are mixed. the third and the fourth rows are ICA modes o
localized ‘‘bad-BPM’’ mode is completely separated.

06400
s contains only 4 nontrivial components. The source sig-
nals are considered separated if two components of s are in
the � subspace and the other two are in the � subspace.
However if there is a component which crosses the � and
� subspace, the modes are still mixed.

From the above discussion, we see that PCA does not
guarantee separation of the source signals. The basis w
vectors are orthogonal transformation of the source signal
basis vectors s depending on the strengths of the source
signals in the sample data. The result depends on the
distribution of the components of x or z in the space
spanned by s. On the other hand, ICA makes use of the
fact that the power spectra of source signals are distinct and
the autocorrelation covariance matrices are diagonal to find
the source signals.

2. The effects of bad-BPM signals

To further illustrate the behavior of PCA and ICA, we
introduce a narrowband bad-BPM harmonic oscillation at a
frequency far away from the betatron frequencies. This
signal is added only to one BPM, i.e., the spatial vector
of this mode is localized at a ‘‘bad’’ BPM. By changing the
amplitude of this noise signal we can change the SVof this
mode. We observed that as the SVof this bad-BPM mode is
near that of the � modes or � modes, the mode mixing
occurred. However the ICA mode is immune of such mode
mixing. The top two rows of Fig. 2 show that the betatron
and the narrowband noise modes are mixed in PCA, where
nal. Model parameters: �x � 6:74149, �z � 6:69149, C � 0:05,
�0:0736. A harmonic oscillation signal is added to BPM V37
with SV � 9:4. The second row: mode 5 with SV � 7:5. These

f the LC model with a bad-BPM harmonic oscillation signal. The
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the SVs are 9.4 and 7.5 for the betatron and noise modes,
respectively. The bottom two rows of Fig. 2 show clearly
that the ICA analysis is immune to mode mixing.

Another type of bad-BPM signal is white Gaussian
noise. Applying the noise to a single bad BPM and adjust-
ing the noise level so that its SV is about the same as that of
the betatron mode, we find that the PCA modes are mixed
again. The results for both PCA and ICA are shown in
Fig. 3, where the mode mixing occurs for PCA if the SVs
of these two modes are close to each other. In the PCA, the
betatron mode has leaked into the bad-BPM mode as
shown in the second row of Fig. 3. The ICA can easily
isolate these two modes as shown in rows 3 and 4 of Fig. 3.

Since the PCA depends on the strengths of the source
signals, it is sensitive to bad BPMs which are often noisy
and strong. Thus it is absolutely necessary to exclude the
bad BPMs before applying the PCA method. On the other
hand, the ICA is more robust to bad BPMs. This is an
advantage, especially for on line applications.

3. The effects of low level noises

In reality BPM readings always contain random noises
which affect the results of data analysis. We insert white
Gaussian noises into the simulation data matrix. The rms
errors of the resulting beta functions and phase advances of
both the ICA and PCA methods are estimated as shown in
Fig. 4. The result agrees well with the analytic error
FIG. 3. The top and the second row are PCA modes of the LC mo
Model parameters: �x � 6:741 49, �z � 6:691 49, C � 0:05, x0 �
�0:0736. The signal added to BPM V37 is white Gaussian noise. Th
row is the mode 5 with SV � 6:1. The two PCA modes are mixed. Th
localized bad-BPM Gaussian white noise. The localized ‘‘bad-BPM
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estimation of PCA in Eq. (17) of Ref. [3]. It turns out
that PCA and ICA have equal performances with respect to
random noises. This is reasonable because ICA takes PCA
as its first step (whitening) and white noises play little role
in diagonalization of the unequal-time covariance
matrices.

4. The effects of number of turns

Both PCA and ICA are subject to deficiencies due to the
finite sampling points. Both methods assume diagonal
covariance matrix of the source signals, which is true
only asymptotically, i.e., the number of sampling points
goes to infinity. In reality, the results of both PCA and ICA
are affected by the number of sampling points. The off-
diagonal elements of the covariance matrix of two har-
monic signals can be estimated by

hs1�t�s3�t�i �
1

Nt

XNt�1
n�0

sin�2#��n� sin�2#��n�

�
1

2Nt

sin#
�Nt
sin#
�

cos#
��Nt � 1�

where s1�t� and s3�t� are the two signals with tune �� and
��, respectively, 
� � �� � ��, and Nt is the number of
sampling points. The effects of Nt to PCA and ICA can be
simulated. Figure 5 shows the dependence of Cs�1; 3� �
hs1�t�s3�t�i on the sampling turns Nt and the resulting error
del with a localized bad BPM with Gaussian white noise signal.
1:0, y0 � 0:0 A1 � 0:9945, A2 � 0:0055, B1 � 0:0736, B2 �
e top row corresponds to mode 3 with SV � 8:4, and the second
e third and the fourth rows are ICA modes of the LC model with a
’’ mode is completely separated.
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FIG. 4. Estimation of errors of ICA (cross) and PCA (square) methods with various random noise levels in the LC model. The model
parameters are the same as Fig. 2. Data of 1000-turn are used to calculate )�=� (left plot) and ) (bottom plot). The estimation at each
noise level )noise (x axis) is made by repeating the measurement of � and  10 times with white Gaussian random noises added to each
BPM.

FIG. 5. Effect of number of the sampled turns (Nt) in the LC model with �� � 6:7447 and �� � 6:7372. Top: off-diagonal elements
of source signals Cs�1; 3�. Bottom: )�=� vs Nt for ICA (solid) and PCA (dashed).
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in )�=� with respect to Nt. The ICA method is less
affected by Nt because its results are based on diagonaliza-
tion of several autocorrelated matrices instead of only one.

B. Application to tracking data

To explore the capability of ICA in actual data analysis,
we employ the ICA technique to process BPM data pro-
duced by tracking programs such as MAD. In this model
analysis, we have also compared and verified the salient
features and limitations of the ICA and PCA methods as
discussed in the previous section of a special solvable
linear coupling model.

Since the ICA method can isolate beam modes, we
employ this method to identify nonlinear resonance modes
in tracking data. We find that higher order resonance
signals can indeed be easily separated. Using the
Fermilab Booster as an example, including excitation of
sextupoles and skew quadrupoles, we can easily separate
modes associated with resonances such as �x � �z, 2�x,
2�z, 2�x � �z, and 2�x � �z. Figure 6 shows an example
of a third order resonance mode corresponding to ��x �
2�z � 1 � 0. Although the tracking data can be used to
construct the Poincaré surface of section [14], the physical
meaning of the spatial vector has not been fully under-
stood. Since the signals of higher order resonance in the
nominal operational condition of the Fermilab Booster are
usually buried under the noise floor, we will not study its
importance in this study. The ICA method may provide an
alternative to the frequency map analysis as suggested in
Ref. [15].

III. ICA ANALYSIS FOR THE FERMILAB
BOOSTER

The main task of this paper is to use the ICA method in
the study of beam dynamics at the Fermilab Booster. The
Fermilab Booster is a fast ramping accelerator at 15 Hz.
The circumference is 474.2 m. The betatron tunes are about
FIG. 6. Third order resonance signals corresponding to ��x � 2�z
the signals is 0:021 07, while �x � 6:657 53, �z � 6:839 29. The cu
Left plot: Amplitude of the resonance signal at horizontal (solid cros
of the two resonance signals.
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�x � 6:7 and �z � 6:8. We applied the ICA analysis to the
booster turn-by-turn BPM data taken in normal cycles,
from which we derived betatron tunes, beta functions and
phase advances at different stages of the cycle. We also
separated out synchrotron signals which enable us to see
the evolution of synchrotron tune in a normal cycle. At the
normal operation settings, the booster was running with all
of its correctors (trim dipoles, trim quads and skew quads,
etc.) on. These settings, including their ramping compo-
nents, were recorded to build a lattice model as realistic as
possible.

Four data sets were taken with 1-turn injection and three
were taken with 4-turn injection, corresponding to extrac-
tion intensity 0:5� 1012 and 2:0� 1012 protons per pulse,
respectively. The horizontal pinger at the section L9 was
fired periodically every 0.5 ms to excite beam transverse
motion. The pinging strength was ramped up from 0.6 kV
at injection to 2.4 kV at extraction to partially compensate
the momentum increase.

The total 33.3 ms ramping cycle contains 20 000 turns.
Because the beam momentum changes swiftly, we divide
the cycle into small pieces so that each piece (about 250
turns) contains one burst of transverse motion caused by
the pinger.

A. Betatron modes

The betatron modes of a typical horizontal modes are
shown in Fig. 7. Using the spatial function of the betatron
modes in Eqs. (6) and (7), one obtains betatron amplitude
functions and phase advances at each BPM. Figure 8 com-
pared the measured betatron amplitude function with that
obtained from MAD modeling.

The fractional part of the betatron tune can be derived
from the FFT on the temporal function, shown in Fig. 9 for
the entire ramping cycle. The betatron tunes calculated
from the realistic model machine parameters are also
shown as solid and dashed lines for comparison.
� 1 � 0 in tracking data (500 turns) of the booster. The tune of
rrents in sextupole families are ISEXTL � 20A, ISEXTS � 5A.
s) and vertical (dash square) BPMs. Right plot: the FFT spectrum
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FIG. 8. Using the spatial function of two horizontal modes, one can calculate the betatron amplitude function at each BPM and phase
advance between BPMs. The measured BPM is compared with the MAD model. The error bars were estimated with the standard
deviation of the betatron function derived from the four data sets.

FIG. 7. Two modes of horizontal signal are shown on the left plots, and the corresponding FFT spectra are shown as the horizontal
betatron tune. The ICA extracts a single betatron mode from data of all BPMs. The betatron mode is a purer sinusoidal signal and the
tune evaluation method in Ref. [18] can be used to achieve higher precision. Note that the decoherence is not an independent signal,
and thus cannot be isolated.
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FIG. 9. The horizontal (square) and vertical (cross) betatron tunes in a booster cycle. Tunes calculated by MAD model are compared
to measurements (solid and dashed lines).
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B. Synchrotron modes

Dispersion function can be measured at the beginning
and near the end of the cycle where large momentum
deviation naturally occurs. The derived dispersion function
is compared with the MAD modeling in Fig. 10. Similar
agreement can be obtained in the orbit response matrix
analysis [16]. The synchrotron tune is obtained from the
FIG. 10. The measured dispersion function is compared with the M

lattice. The error bars were estimated with the standard deviation o
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FFT of the temporal functions. Figure 11 shows the evo-
lution of synchrotron tune in a cycle, excluding the tran-
sition crossing zone, where the synchrotron tune is nearly
zero.

In the middle of the ramping cycle, the observed syn-
chrotron modes are considerably weaker. There are two
synchrotron modes, where their temporal patterns give the
AD modeling (dotted line) based on a realistic Fermilab Booster
f the dispersion function derived from the four data sets.
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FIG. 11. The synchrotron tune in a booster cycle. The squares are measured from turn-by-turn data with ICA method. The crosses
are measured from phase signal with synchrotron phase detector (SPD) as in Ref. [9]. Note that the SPD method has difficulty in
measuring the synchrotron tune above the transition energy at around the 14.5 ms.
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synchrotron tune as shown in Fig. 11. However, their
spatial functions often do not resemble the dispersion
function. To understand these data, we show the mode
function
FIG. 12. The turn-by-turn data, divided by the dispersion function,
revolutions, starting from the revolution number 3001. The normal
variable. Each square box represents one revolution.

064001

p=p�s; t� �
1

D�s�
�As1�s�s1�t� � As2�s�s2�t�� (15)

from turn 3001 to 3050 for a total of 50 turns in Fig. 12,
of the synchrotron mode is plotted at each BPM for a total of 50
ized vertical axis is equivalent to the fractional off-momentum
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where the each square box corresponds to one turn in the
booster and D�s� is the dispersion function shown in
Fig. 10. Using the fact the E � 1:855 GeV at turn 3001
and amplitude of the energy oscillation is about 3:5� 10�5

as shown in Fig. 12, we estimate that the mode function has
an amplitude of energy deviation of the order of 
E �
�2E�
p̂=p0� � 50 keV. This agrees well with a recent
estimate of the one-turn energy gain/loss of about 60 keV
in the longitudinal damper [17]. The one-turn energy gain
at turn 3001 is about 340 keV, i.e., the average energy gain
of each rf cavity is about 20 or 40 keV per pair.

Figure 13 shows the spatial and temporal functions of
two synchrotron modes. The behavior of the spatial pattern
of synchrotron modes could be a consequence of (1) beam
energy gain and loss by the longitudinal damper, (2) mis-
matched ramping curves of the energy gain in rf cavities
and the dipole fields. Figure 14 shows the spatial function
divided by the dispersion function. This can be thought of
as the amplitude of the off-momentum coordinate at each
BPM location. Since the beam energy changes rapidly by
about 340 keV in one revolution, each BPM can see differ-
ent momentum deviation.

IV. MODELING THE BOOSTER

The ICA method provides a means to measure the linear
optics functions such as beta functions, phase advances,
and dispersion. These functions can be used to correct the
accelerator model (e.g., MAD) by tuning the model to
minimize the difference between calculation and measure-
FIG. 13. Synchrotron modes in the middle of a booster cycle. The
provide us the synchrotron tune shown in Fig. 11. The spatial patte
spatial function crosses zero. The effective amplitude of the off-m
longitudinal damper or mismatch between the beam energy and the
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ment. In the booster modeling, the available parameters are
quadrupole gradients K1 of the 96 main magnets.

We define the merit function

f�q� � +2 �
1

2

X240
i�1

r2i ; ri �
yi�q� � ydi

)i
;

y � �w1�x; w2
 x; w3�z; w4� z; w5Dx�;

(16)

where q is a 96� 1 vector consisting of the body quads
corrections (i.e., 
K1), �x, � x, �z, � z, Dx are all row
vectors with 48 components at 48 BPM locations, y�q� and
yd are both 1� 240 vectors containing the model and
measured linear optics functions, respectively, )i is the
corresponding error estimation of ydi serving as weight in
the definition. The additional weights wi, i � 1; 2; . . . ; 5
are used to account for our confidence over the five cate-
gories of fitting data. We may set them to w1 � w3 �
w5 � 1 and w2 � w4 � 4 to put more weights on the
phase advances because they are independent of BPM
calibration.

This nonlinear least square problem can be solved iter-
atively by Levenberg-Marquardt method. In each iteration
we compute the Jacobian matrix defined as

Jij �

yj

qi

;

and solve

�JTJ� �I�
q � �JTr0 (17)
turn range is 3001 to 3400 (see Fig. 12). The temporal signals
rn does not resemble the dispersion function. Furthermore, the
omentum coordinate is about 10�5. This may result from the
main dipole field.
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FIG. 14. The spatial function of the synchrotron modes shown in Fig. 13 divided by the dispersion function. The resulting function
can be thought of as the amplitude of the off-momentum deviation at each BPM location. The locations of rf cavities are shown as dots
on the horizontal axis.
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to obtain a new set of fitting parameters, where I is the
identity matrix and � is an adjustable nonnegative parame-
ter to control the behavior of the algorithm.

This fitting scheme works well with MAD simulation
data. But the result obtained from the real experimental
data does not converge to a reasonable model, probably
because the BPM resolution of about 100 /m is too large
so that the measured data contain too much error for
accelerator modeling (see Figs. 4 and 5). The modeling
method could be more useful for electron machines where
the BPM resolution is about 1 /m. Combining the ICA
derived optical functions with the orbit response matrix
modeling, one may be able to provide better constraints on
accelerator modeling.
V. SUMMARY

In this study we carried out simulations to study the
performance and limitation (BPM noise and the number of
digitizing turns) of the ICA and PCA methods on data
analysis. We find that the ICA can resolve coupled modes
that PCA cannot resolve. We have studied the effect of
BPM noises and a finite number of sampling points. We
find that the ICA method is more robust in mode separation
and is less affected by the number of sampling points. The
two methods have a similar behavior under low level
random noises. We showed that ICA has potential in the
064001
study of nonlinear resonances. The meaning of the non-
linear spatial function has not been fully studied.

The main goal of this paper is to use the ICA method to
analyze experimental turn-by-turn data of the Fermilab
Booster. The method enables us to measure the betatron
and synchrotron tunes throughout the fast ramping cycle.
We observed an interesting phenomenon that the spatial
function of synchrotron modes crosses zero within one turn
around the accelerator. The resulting ‘‘
p=p0’’ is about
10�5. This means that the beam has different fractional off
momentum at each BPM position. We believe that this may
have resulted from either the longitudinal feedback system
or the mismatch between the energy gain in rf cavities and
the dipole ramping curve of a fast ramping accelerator.

Finally, the measured beta functions, phase advance,
linear coupling angle, and dispersion function can be
used for accelerator modeling in conjunction with the orbit
response matrix method. The additional constraint on the
measured phase advance and linear coupling angle can be
incorporated in the orbit response matrix accelerator
modeling.
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