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Two-plane focusing of sheet electron beams will be an essential technology for an emerging class of
high-power, 100 to 300 GHz rf sources [Carlsten et al., IEEE Trans. Plasma Sci. 33, 85 (2005)]. In these
devices, the beam has a unique asymmetry in which the transport is emittance dominated in the sheet’s
thin dimension and space-charge dominated in the sheet’s wide dimension. Previous work has studied the
stability of the transport of beams in the emittance-dominated regime for both wiggler and periodic
permanent magnet (PPM) configurations with single-plane focusing, and has found that bigger envelope
scalloping occurs for equilibrium transport, as compared to space-charge dominated beams [Carlsten
et al., this issue, Phys. Rev. ST Accel. Beams 8, 062001 (2005)]. In this paper, we describe the differences
in transport stability when two-plane focusing is included. Two-plane wiggler focusing degrades the
transport stability slightly, whereas two-plane PPM focusing greatly compromises the transport. On the
other hand, single-plane PPM focusing can be augmented with external quadrupole fields to provide weak
focusing in the sheet’s wide dimension, which has stability comparable to two-plane wiggler transport.
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I. INTRODUCTION

A new need for high-frequency, high-power rf sources
has been emerging for advanced radar and communica-
tions, with frequencies in the band between 100 and
300 GHz and peak powers as high as several hundreds of
kilowatts, and with bandwidths of up to 10%. Previous
work has indicated that a sheet-beam driven traveling-
wave tube (TWT) can meet this need [1-3]. Because of
the extremely small dimensions required (0.5 mm or less in
the sheet’s thin dimension), stability of sheet-beam trans-
port has been recognized as one of the key technologies
required for this type of TWT, in addition to rf mode
control in these highly overmoded structures.

We have analytically and numerically studied the trans-
port of a sheet beam, mostly for the nominal parameters of
a 20-A, 120-kV beam with elliptical cross section 1 cm by
0.5 mm. This type of beam is unique because the dynamics
are space-charge dominated in the wide dimension but
emittance dominated in the thin emittance, requiring strong
focusing in that dimension. Some focusing is still required
in the wide dimension, because the relatively weak space-
charge force is still strong enough to expand the beam to an
unacceptable level. A previous analysis of single-plane
focusing in the emittance-dominated regime [4] repro-
duced earlier results of stability based on the Mathieu
equation for space-charge dominated beams [5,6], and
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additionally showed that an emittance-dominated beam
has much greater envelope scalloping than a space-charge
dominated beam which can lead to unacceptable intercep-
tion in narrow beam tunnels.

In this paper, we extend the analysis of an emittance-
dominated beam to include two-plane focusing, of both
wiggler and permanent magnet (PPM) focusing configura-
tions. We find that two-plane focusing with a wiggler
configuration maintains most of the stability of single-
plane wiggler focusing, but two-plane PPM focusing re-
quires use of an external quadrupole field to maintain good
beam stability. We first review the key results of the earlier
analysis [4] in this Introduction before we begin the two-
plane analysis.

In general, the magnetic field for a planar focusing array
can be expressed as [7]

B=-Vx,, (1)
where

B, .
Xm =2 cosh(k,x) cos(k,z)[a sinh(k,y) + b cosh(k,y)],

2

where k, is 27 divided by the focusing period L. The
cosh(k,x) term is typically introduced by shaping of the
magnets or pole pieces. The wave equation relates the wave
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numbers, and gives k + k7 = k2. Here we assume the
beam motion is in Z, the beam is narrow in y and wide in
X. B,, is used to denote the peak field, to be consistent with
previous work from the free-electron laser community. In
Eq. (2), we use the parameters a and b to differentiate
between a wiggler field (¢ = 1, b = 0) and a PPM field
(a = 0,b = 1). (Only the PPM field exists with cylindrical
symmetry.) This potential gives us these field components:

ky . .
B,=— k_BW sinh(k,x)cos(k,z)[asinh(k,y) + bcosh(k,y)],

4

k
B,=— k—wa cosh(k,x) cos(k,z)[acosh(k,y) + bsinh(k,y)]
Z

B, = B,,cosh(k,x)sin(k,z)[asinh(k,y) + bcosh(k,y)]. (3)

When k, = 0, B, and B, are independent of horizontal
position, and B, vanishes. This leads to only focusing in
the 9 plane, which in the free-electron laser community has
been known as ‘‘natural focusing.” With k, # 0, there is
horizontal focusing of the beam in addition to vertical
focusing, which is known as two-plane focusing. For real
transport sections, some horizontal focusing will always be
needed due to the space-charge fields of the beam. For the
type of sheet beam we are concerned with, the horizontal
focusing required is well over an order of magnitude
smaller than the vertical focusing. Because the required
horizontal force for this example (and many other practical
cases) is so small, there are several options in how it can be
produced, some of which we will describe in later sections
of this paper.

The single-particle transverse equation of motion with
natural focusing becomes

e

2 B2
Vo= —(—) —[a cosh(k,,y) + b sinh(k,,y)]
my) k,

X [asinh(k,,y) + b cosh(k,,y)]cos(k,, z)
+ space charge force, (@)

where we use k,, = k, = k,, and where the first term in
brackets is from the horizontal motion of the beam v, and
the second term is from B, . For small y, cosh(k,,y) = 1 and
sinh(k,,y) = k,,y,andifa =1,b =0o0ra=0,b = 1, we
end up with linear focusing in y and recover the same
equation of motion for both PPM and wiggler focusing.
For emittance-dominated transport, the space-charge force
can be neglected altogether, and we recover the Mathieu
equation for the cases where eithera = 1, b = Qora = 0,
b=1:

y+ y<miy>233v0052(kw2)(a +b) = 0. (5)

The stability of a Mathieu equation is well known. The
trajectory described by it is stable as long as the Mathieu
parameter «, defined for natural focusing by

EGE

is less than 0.66. Using this equation of motion, we can
derive the envelope equations [4], which, for natural focus-
ing, become

1 I/IA 1 szc,norm
X' = 323 32327 )
vBX+Y Xy B
Y,,_I/IA 1 N &3 norm € 2B g
.33 3222 - ©®
vBX+Y YyB Bcmy) 2

We can identify the first term on the right hand side as a
space-charge term, the second term as an emittance term,
and, for the vertical motion, the third term as the focusing
term from the planar magnetic structure. At 120 kV, vy is
1.235 and yB is 0.724, and for the nominal Los Alamos
design [1], the normalized beam emittance is 1.35 uwm and
the current is 20 A. For a 10 by 0.5 mm beam, Y is
0.125 mm and X is 2.5 mm, the focusing term is
40.9 m~! times B2 in Tesla, the space-charge term is
1.18 m~! (both horizontal and vertical envelope equation),
and the emittance term is 1.79 m~' (and 8.9 X 10™* m™!
for the horizontal envelope equation). Even for this low
emittance, the emittance term dominates in the vertical
dimension (and is negligible in the horizontal dimension).
This transverse asymmetry is unique for sheet beams, and
is more pronounced for larger emittance cases.

The required focusing strength in the vertical dimension
for these parameters is 0.266 T. With just the emittance
(ignoring the space-charge force), the magnetic field
strength required for equilibrium flow would need to be
0.206 T, and with just the space-charge force, the magnetic
field strength would need to be 0.168 T. Equating the
focusing part of the envelope equation to the emittance
part, we find that the required peak field for an emittance-
dominated beam is given by

mc

Breq = \/zsy,norm Y_2€ (9)

Note that the required field does not depend on the beam

energy at all. Relating the field required for force balance
to the Mathieu parameter a we find

2
€y,norm 1 /L\?

Requiring that @ must be less than 0.66 puts a relation
between the beam emittance, focusing period, and beam

width. The maximum allowable focusing period given the
beam emittance and size is then

L. =2m/066-2P v (11)

€y, norm

Because of physical limitations in permanent magnets,
the period typically cannot be much smaller than 5 to
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10 mm. In addition, the maximum allowable rms beam size
Y is proportional to the rf wavelength for rf generation
sources. With these constraints, Eq. (11) emphasizes the
need for having a low-emittance beam to be able to trans-
port a beam in a high-frequency rf source.

In contrast to a space-charge dominated beam, the beam
envelope of an emittance-dominated beam undergoes large
amplitude scalloping in the vertical dimension well before
the stability limit is reached [4]. In Fig. 1 we plot the
amplitude of the envelope ripple [peak to peak, normalized
to the equilibrium radius from Eq. (8)] as a function of the
Mathieu parameter, for both wiggler and PPM focusing,
for both the cases of an emittance-dominated beam and a
space-charge dominated beam.

Surprisingly, the addition of space charge stabilizes the
flow, resulting in much lower envelope scalloping. The
increased ripple amplitude for wiggler focusing at the
same focusing strength (or &) makes it much less desirable
for transport than does PPM focusing. Note the beam
transport in the wiggler field becomes unstable for o
slightly larger than 0.3.

Equations (9) and (10) and Figs. 1 also point out a
significant difference between the transport of a space-
charge dominated beam and an emittance-dominated
beam in an rf tube. Both as the beam is bunched, causing
local increases in the beam current, and as rf power is
extracted from a space-charge dominated beam, the
space-charge forces increase and a greater magnetic field
is required to maintain the same equilibrium beam radius.
As a result, it is common that the magnetic field of a PPM
or wiggler structure is designed to be greater than that
required for an unmodulated beam. However, from
Eq. (9) we see that the required confining magnetic field
for an emittance-dominated beam is unchanged both as the
beam is bunched and as power is extracted from it (as long
as the transverse forces are small enough that the unnor-
malized emittance does not change). Additionally from

ra

0.4

Normalized Envelope Ripple Amplitude

(a)

FIG. 1.
dominated beam. (a) Wiggler focusing. (b) PPM focusing.

Eq. (10), we see that as the beam loses energy, the
Mathieu parameter « increases, which leads to larger
amplitude beam envelope rippling.

Although the ab cross terms in Eq. (4) introduce non-
linear terms, numerical calculations of transport with non-
zero cross terms show no emittance growth, as shown in
Fig. 2 for a 2/3 wiggler, 1/3 PPM field split. In these and
the following figures, 4 times the rms beam size is plotted,
for both the vertical and horizontal dimensions, because
this equals the full beam size for a hard-edged uniform-
density beam in both the space-charge and emittance-
dominated regimes, and is a good measure of effective
beam size for a nonuniform-density beam.

Although natural focusing provides good linearity
and virtually no emittance growth, it does not
provide adequate horizontal focusing. For the example of
the Los Alamos sheet beam, with only natural focusing and
a peak magnetic field of 0.266 T, the beam expands
significantly in the horizontal direction because of the
horizontal space-charge force, also affecting the focusing
in the vertical direction, Fig. 3. To control this expansion,
two-plane focusing must be included in the focusing

structure. . . .
The goal of this paper is to understand the changes in

stability from natural focusing as shown in Fig. 1, when
two-plane focusing is included. This is described in detail
in the following four sections. In the next section, Sec. II,
we develop a two time scale description of particle orbits
using two-plane focusing as described by Egs. (1) and (2),
following [7,8]. This development is used to develop trans-
verse equation of motions for both two-plane PPM and
wiggler focusing and yields expression we can use to find
the needed ratio of k,/ ky, for balanced two-plane focusing.
The longitudinal velocity modulation is then derived for
both two-plane PPM and wiggler focusing in Sec. III,
which shows that longitudinal velocity is constant (aver-
aged over a wiggle period), for both field profiles, impor-
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Normalized Envelope Ripple Amplitude

Envelope ripple amplitude versus focusing period, solid line for emittance-dominated beam, dashed line for space-charge
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tant to maintain phase coherency of rf generation. In
Sec. IV, two-plane focusing transport is numerically inves-
tigated for both PPM and wiggler focusing, for a low-
emittance case. We show that the wiggler field stability is
mostly unchanged with two-plane focusing, but we find
that the beam transport in a PPM field is greatly degraded
with two-plane focusing, especially if the beam has a very
large aspect ratio. It is determined that the poor transport is
due to the nonlinearities in the force that particles experi-
ence towards the horizontal edges of the beam, at least
partly arising from the sinh(k,x) term in B,. In Sec. V, we
compare two-plane wiggler focusing with two alternative
two-plane PPM focusing schemes, where the PPM struc-
ture has only natural focusing and the horizontal focusing
is added either by a uniform quadrupole structure or by a
periodic quadrupole structure. These schemes are com-
pared to two-plane wiggler focusing, for a higher emittance
case. Good transport stability is found with the uniform
quadrupole field, but the transport is less stable with a
periodic external quadrupole field. This is compared to
earlier work studying PPM focusing augmented by uni-
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(a) Vertical beam size versus axial distance for a 2/3 wiggler, 1/3 PPM field split. (b) Vertical emittance versus axial

form and by periodic quadrupole fields [6] for zero-
emittance beams and short focusing periods.

II. WIGGLE-AVERAGED EQUATIONS OF MOTION

The purpose of this section is to derive expressions we
can use to find the ratio k,/k, for balanced two-plane
focusing, as a function of beam emittance and current.
These expressions will be used in the following sections
for designing two-plane focusing schemes.

We can improve the “natural focusing” by providing
focusing in both transverse dimensions by curving the pole
pieces [8], offsetting the wiggler magnets [9], notching the
wiggler magnets [10,11], or external quadrupole focusing
[9]. Two-plane focusing was developed for emittance-
dominated round electron beams intended for free-electron
lasers (FELs), where the beam is transported and focused
in a wiggler field. For sheet beams, there is much less
horizontal defocusing, but even for the nominal case used
here, two-plane focusing is needed, as seen in Fig. 3.

To understand the particle equation of motion with two-
plane focusing, we need to wiggle average the motion.

Horizontal Beam Size (m)

0.005 1 1 1 1 1
0 0.02 0.04 0.06 0.08 0.1

z(m)

0.12

(a) Vertical beam size, for the nominal natural focusing case (emittance of 1.4 mm, 20 A, 0.266 T wiggler focusing field). (b)
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Scharlemann [8] did this first for wiggler fields, and
Booske [7] extended this for PPM focusing. We will do
this slightly differently by following both components of
the field (wiggler and PPM) simultaneously, so we can
compare them directly. Wiggle averaging removes the
Mathieu equation in the particle equation of motion—we
need to remember the Mathieu stability regions still exist,
although the stability regions will shift. The goal of this
section is to derive the vertical and horizontal equations of
motion for both two-plane PPM and wiggler focusing,
which, in turn, can be used to design two-plane focusing
configurations for specific beam parameters. One impor-
tant result is that the wiggler configuration has much
greater horizontal focusing, for similar B, field strengths.
This, in turn, has consequences on emittance growth from
nonlinear field components, which we will see in Sec. I'V.

We will consider the lowest Fourier component of the
field as described in Egs. (1)—(3). Since we are most
concerned with focusing the beam vertically, where the

beam is emittance dominated, we will use particle equa-
\

tions of motion without space charge,
" e . . " e . .
'x:_(yBZ_ZBy)r y:_(ZBx_-XBz))
my my
y (12)
= _(xBy - yBx)
my

The dynamics are too complicated to solve exactly, so
following [7,8], we use a two-time scale solution:

X =X+ xq, y=yoty, (13)

where the x, motion is gradual (variations on the axial
scale of the natural focusing) and the x; motion goes as
cos(k,z). Our approach will be to (i) find x;(z) and y,(z)
assuming x, and y, are constant, then (ii) using the x,(z)
and y,(z) we found, use the full equation of motion to find
xo(z) and y((z), using wiggle-period averaging to simplify
the calculation, and (iii) finally add in the space-charge
force.
The transverse equations of motion are

k,
io+ ¥ = miy{(yo + y1)B,, cosh(k,x) sin(k,z)[a sinh(k,y) + b cosh(k,y)] + (zo + z,)B,, k_y cosh(k,x) cos(k,z)

X [a cosh(k,y) + b Sinh(ky)’)]},

Z

(14)
k
Jo + ¥, = i{_(zo +z,)B,, k—" sinh(k,x) cos(k,z)[a sinh(k,y) + b cosh(k,y)] + (Xo + X1)B,, cosh(k,x) sin(k,z)
my z
X [a sinh(k,y) + b cosh(kyy)]}.
We will use z, > z,, X, and x;, xo > x;, and d/dt = zy(d/dz).
The fast time scales are dominated by the z, terms:
" eZO ky .
¥, = ——B,, = cosh(k,x) cos(k,z)[a cosh(k,y) + b sinh(k,y)],
my "k,
k
X = %Bw k—; cosh(k,x) sin(k,z)[a cosh(k,y) + bsinh(k,y)],
z
k
X = - e, B, —; cosh(k,x) cos(k,z)[a cosh(k,y) + bsinh(k,y)],
myzy = k; ' (15)
? k
¥, = — @BW — sinh(k,x) cos(k,z)[a sinh(k,y) + b cosh(k,y)],
my "k,
k
Y1 = ——— B, =% sinh(k,x) sin(k,2)[a sinh(k,y) + b cosh(k,y)],
my k; ’
k
vy = L.BW—;‘ sinh(k,x) cos(k,z)[a sinh(k,y) + b cosh(k,y)].
myzo kz - i

With small argument expansions, y; = (e/myz)B,,(kz/k3)x cos(k,z)(ak,y + b). For a high-aspect-ratio sheet beam,
we expect k, is significantly larger than k,, however, depending on the actual horizontal width of the beam k,x may be
much larger than k,y. The X, term is on the order of unity for a wiggler field and on the order of k,y for a PPM field,
whereas y; is on the order of k,yk,x for a wiggler field and on the order of k,.x for a PPM field. This means that t; > y; ina
wiggler field, but X; ~ y; in a PPM field. For the ¥, J, terms, we use the full equations of motion:
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e e ky .
Xo = —< — — B}, —5sin? (k,2){[k(xo + x)](1 + k3xox)}
my kZ

k
X [asinh(k,y) + bcosh(k,y)]* + z'OBwk—y(l + k2xpx1)

x cos(k,2){a(l + K2yoyy) + bk, (o + yl)]), (16)

where we used cosh(k,x) = 1 + (k,x)?/2 =1 + k2(x, +
x1)?/2 = 1 + k3xox, because we can drop the k2x3/2 part
when compared to the unity term. Also, sinh(k,x) = k,x.
Since sin?(k,z) averages to 1, the first term in Eq. (16)
becomes —(e/my)*B2(k2/k?)(xob*/2) (the a term is
higher order, and we have dropped ab cross terms)
The second term in Eq. (16) is rewritten as

€ ky 2 2
m—,yBWE cos(kzz)[a(l + kxxoxl + kyyOyl)

+ b(kyyokixox; + kyyi)]

k,
+ byo(—e ; Bw 3 kxx0b>}
myzy  k

Z
e\2 k1
=[—\)\B22_(-—
("W) "k, >
where we have used the fact that y; < x; if a = 1 and we

have again dropped the small terms. Combining these
terms, we have

e\2 .1k k2 K2
iy = —(—) B! ( et b2k2> o (8)
J

k,,
a’ + bz)kﬁxok—é, (17)
Z

So the horizontal focusing for the wiggler and PPM
cases are similar, but since k, is smaller than k, for cases
of interest to us, the PPM field will tend to have much less
horizontal focusing. Recall that we need to add in the
space-charge defocusing (if space charge is not negligible),
and we need to recall the Mathieu stability (which is
hidden because of the averaging).

For the ji;, equation, we get pretty much the same thing,
starting with

k
w k—x sinh(k,x) cos(k,z)[a sinh(k,y)
Z

+ bcosh(k,y)] —

. e .

Yo= — {_ZOB
my

X1 B,, cosh(k,x) sin(k.z)

X [a sinh(k,y) + b cosh(kyy)]]f (19)

or

e k,
yo=+ﬁﬁwﬁwm+xmuﬂhdbh@o+w)
my k

k
+b(1 + Kyoy)] — B}, = (1
my kz

+ k2xox;)*sin’(k,z)(a + bkyyo)(ak,y + bo)}.

[k xi(akyyg + b) + kyxolak,y; + bksygyi)]cos(k,z)

=- _Z'OBW_X{a(kxxlkyyO + koxokyyi) + blkxy + koxoksyoyi)}
my k,

e

k, e \B ky, e \k, B,
= %ZOB 3 {akxk)y()( m—y); cos(k,z)a—= 0 + bk < )k% ™ cos(k, z)k)yob}

e \2B2 k, k. k3 kK3
= _(7> _-_w 7(_a2 . — b2 3Y>y0y
my) 2 k, k3 k

where we have again used the fact that y; < x; if a = 1.
The second term is —(e/my)*(B%/2)(k,/k?) X
(k30 + BPhyyo) = ~(e/myP(B:/2)(03 /1) %
(a* + b?)yo.

Putting term 1 and term 2 together we have

2

2B2 k3
Vo= _<i> = 2 (a?

2 kz
+ b 1 -2 21
) 5 ))’0< ) 1)

k2

(20)
The first term in Eq. (20) is
|
or, since 1 — k3/k2 = k3 /kZ,
e \2B2 ks k5
jo=——) 2 -2 2(a®+ by, 22

The PPM and wiggler configurations have equal vertical
focusing strengths. These are a factor of k2 /k% and (k?/k2)*
stronger than the x focusing strength for wiggler and PPM
focusing, respectively. For emittance-dominated beams,
this equation is all that is needed to understand the dynam-
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ics, and for space-charge dominated beams, the space-
charge force must be added.

Comparing these transverse equations of motion to the
envelope equation, Eqs. (7) and (8), we recognize that
balanced flow can be achieved in the vertical dimension if

e \BLKki I/, 1 1 € .om
(Gom) 3 = yp Ty T @
Bemy : VB Y B

for both wiggler and PPM focusing, and in the horizontal
dimension if

e \BLKMG I/, 1 1

(ﬁcmy) 2 KK yBX+YX

+ 8)2c,n0rm (24)
X4 '}/2 :82

for a wiggler-focused beam and if

e ZB_a/ k_i — I/IA 1 l + 8)25,n0rm (25)
Bemy) 2 k' yBIX+YX X*yp?
for a PPM-focused beam.

The magnetic field required for equilibrium focusing an
emittance-dominated beam is thus

me k?

Breq = ﬁsy,norm E P (26)
y

Comparing this to Eq. (9), we see that the peak field
required for equilibrium flow is larger when two-plane
focusing is added, because of the field splitting between
the vertical and horizontal dimensions. The field increase
can be rewritten as Byyo-plane = Biingle-plancl 1 T (k3/k3)].
Now, the factor of % multiplying the peak magnetic field
in Eq. (23) came from both cos(k,z)? and sin(k,z)? inte-
grations, which is different from the single-plane focusing
case. Because cos(kzz)2 + sin(kzz)2 is unity (so equal mix-
tures of these terms would not add to the Mathieu insta-
bility), we would expect that this mixture will change the
Mathieu parameter somewhat. Inspecting the derivation
closely, we infer that Mathieu parameter « is now

B2/ e \2/L\2 Kk
=% (erp) G (1) @

which is slightly different than « for single-plane focusing
[Eq. (10)]. Expressed in terms of the beam emittance, we
find

2 2 2
oo Bum LLRETE
v v ar) e e

We conclude that the stability regions (in terms of the
Mathieu stability regions) is a little worse with two-plane
focusing (but only a little because k2 < k2), so generally
we expect that the stability analysis in [4] should nominally
apply to two-plane focusing also. One of the key observa-
tions in [4] was that near the Mathieu stability limit, better
beam transport is always found with a larger equilibrium
beam radius, because at a smaller equilibrium beam radius

[formed with a larger applied magnetic field and resulting
in a larger Mathieu parameter, here given by Eq. (27)] the
maximum beam envelope excursion will be much larger
and will in fact exceed the maximum beam envelope
excursion for the beam transport with the larger equilib-
rium radius for cases nearing the stability limit. Also, from
Eq. (26) we find that as the beam is bunched and power is
extracted, the required magnetic field for equilibrium
transport is unchanged (as long as the transverse forces
do not increase the normalized beam emittance). A con-
sequence of these observations is that for emittance-
dominated sheet-beam transport in rf tubes, the peak ap-
plied magnetic field should not be larger than that required
for equilibrium transport, unlike for space-charge domi-
nated beams. Any increase in applied magnetic field from
the equilibrium value decreases the equilibrium radius and
brings the beam closer to the stability limit, leading to
larger envelope ripple amplitudes.

III. LONGITUDINAL VELOCITY MODULATIONS

For good axial coherence of the beam, we want the
longitudinal velocity to be constant during the x, betatron
oscillation. The longitudinal velocity for natural focusing
has been shown to be negligible for both wiggler and PPM
configurations [4]. Additionally, Scharlemann has shown
[8] that the transverse velocity v is constant (wiggle
averaged) over the betatron period, for wiggler focusing
(which means that on average the longitudinal velocity is
constant too, under the influence of only a magnetic field).
We can show the same is true for PPM focusing too.

To show this, we will find v = i} + y? + i3 + y3,
wiggling averaging the fast motion terms. We will use

. e k, .
X = m—wa k—; cosh(k,x) sin(k,z)[a cosh(k,y)
+ bsinh(k,y)],

. e ky . ) _ (29)
y1 = ——B,,— sinh(k,x) sin(k,z)[a sinh(k,y)
my "k ‘

Z
+ b cosh(k,y)]
and write

Xo = Xg cos(kﬁxz + ), Yo =Yg COS(kByZ + ¢)’)’

(30)
where the betatron wave numbers are (from before):
e\B, k k, k
ko = <7>7W J(ai + pox
Bx g
my) 2 k. \ k. k.
z Z z (3 1)

e \ B, k
kg, = — | —= -2 (a + b).
P <m7> Ay
Squaring the velocities and dropping the cross terms (as
we have done before) we have
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- 2B ky
Xt = (—) [ 2(1 + k2x} + k2y3) + bi3yE],
my

2
(32

= _ 2B}, k2 2722 272
i = (my) > k2 Sla*k2xghkeyd + b2 k2xg(1 + k\,yo)]

where the bars indicate an average over a focusing period,
and

BZ k2 kZ kZ
X§ = xpsin (X)(my> ( + b2 2)

2K k2 k
33)
82 k2 k2 (

where we are using X = kﬁxz + ¢, and ¥ = kgyz + ¢,
The transverse velocity squared becomes

- S ST S
vy = X7y T Ag 5

_ (e VB Lk, 2 27 4 K242 cos2
_(m_y> = O{k“[a (1 + kSypcos®Y + kixpcos®X)

+ b2kyypcos’Y] + i (azkyyﬁkzxﬁcoszYcosz)?

K2/ k2 k2
+ bzkzxﬂcoszX) + stmz(X) <a2—) + b2 —x>

R\ k2 k2
_ k2 k2
+ y2ﬁsinz(1/)k—§(a2 + bz)k—;} (34)
Z Z

32 _ _
vl = (m_y> 2 2 {a2k§(k§y%cos2Y + kixpcos’X

+ kyypsin®Y + kixgsin®X)
+ a’kykixgpypeos’Xcos®Y + b*(kyypcos®Y
+ kixécos2X + k4y sin?Y + kﬁxésinz)?)} (35)

and we are left with

B, .
v = (my) %k4 {azkz(kyyﬁ k2x2) + bz(kyyﬁ
K], (36)

The transverse and the longitudinal velocities are con-
stant with wiggle averaging for both wiggler and PPM
fields to first order. This is important for coherent amplifi-
cation—the bunches formed under the influence of the rf
stay bunched. Note that v? is bigger for wiggler focusing
than PPM focusing by a factor of k,/k,.

IV. NUMERICAL ANALYSIS OF STABILITY WITH
TWO-PLANE FOCUSING—LOW-EMITTANCE
CASE

The purpose of this section is to give a quantitative
comparison between two-plane focusing with a wiggler

configuration and a PPM configuration. We will see that
two-plane wiggler focusing has similar stability to natural
wiggler focusing, but two-plane PPM focusing is greatly
degraded from natural PPM focusing.

It has been pointed out in [9] that it may not be practical
to produce enough horizontal focusing for some cases with
two-plane PPM focusing. From Eq. (9), we see that the
vertical focusing for an emittance-dominated beam is in-
dependent of beam energy, but the defocusing space-
charge force decreases with increasing energy. For a suffi-
ciently high energy beam, it is possible to generate large
enough transverse magnetic fields for equilibrium focusing
with a two-plane PPM configuration.

Equations (23)—(25) give us the ability to estimate the
amount of two-plane focusing required for stable flow. The
simulations in this section include all beam effects—space
charge and emittance effects in both the horizontal and
vertical dimensions. In Fig. 3, we plotted the horizontal
beam-size expansion with just natural focusing. The beam
expands to about 3 cm over a 10 cm drift. The first thing we
need to do is to determine how much horizontal focusing
we need to confine the beam.

In the Sec. I, we showed that for the nominal beam
parameters of a 10 mm by 0.5 mm beam, with ¥ =
0.125 mm and X = 2.5 mm, the space-charge term is
1.18 m~! (both horizontal and vertical envelope equation),
and the emittance term is 1.79 m~! for the vertical enve-
lope equation (and 8.9 X 10™* m~! for the horizontal en-
velope equation), and that a peak magnetic field of 0.266 T
is needed to vertically focus the beam with natural focus-
ing. Using Egs. (23)—(25), we find that k./k, = 0.14,
ky/k, = 0.99, and k,/k, = 0.138 for matched two-plane
focusing with wiggler focusing, and that the peak magnetic
field must be 0.268 T. Likewise, we find that k,/k, =
0.375, ky/k, =0.936, and k,/k, = 0.351 for matched
two-plane focusing with PPM focusing, and that the peak
magnetic field must be 0.284 T.

For wiggler focusing, the best transport was found with a
slightly different peak field (0.263 T), but with the proper
ratio of the focusing wave numbers (k,/k, = 0.14). The
transport is shown in Fig. 4.

The slight variation in peak field is due to the phase of
the entrance condition of the beam relative to the focusing
period (the beam is injected at a vertical width of 0.5 mm,
but depending on the phase of the orbit, the actual equi-
librium radius can be the same, larger, or smaller). This
variation is typically on the order of a few percent.

The peak magnetic field needed for equilibrium flow
with PPM focusing is numerically found to be about
0.2725 T (shown in Fig. 5 with natural focusing and where
the horizontal space-charge force has been suppressed).
The slight different field (0.2725 T instead of 0.284 T) is
due to the starting phase of the oscillation.

In Fig. 6 we show the calculated flow for the nominal
high-aspect-ratio beam with a peak field of 0.291 T and a
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with a peak field of about 0.2725 T.

wave number ratio of k,/ ky, = 0.375 (numerically found to
give the best possible transport), with full transverse dy-
namics. The transport is very poor, and significantly worse
than that with wiggler focusing.

The poor focusing is due to fact that for a 1-cm wide
beam, the term k,x is greater than 2 (for PPM focusing),
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which introduces large nonlinear focusing forces, exacer-
bated by the fact that y can significantly increase due to the
PPM flutter motion. This can be easily seen in the final x-y
beam distribution, shown in Fig. 7. The beam distribution
has even folded over a couple of times.

In order to investigate this phenomena better, we next
reduce the horizontal beam space-charge force by a factor
of 26, which lets us use a wave number ratio of k,/ ky =
0.14, as was used for the wiggler transport. The transport is
significantly better, and shown in Fig. 8.

Even with the reduced wave number, though, there still
are enough nonlinear terms to cause distortion of the beam.
This indicates that the vertical flutter motion of the beam
(absent for wiggler focusing) is contributing to the
nonlinearities.

In Fig. 9, we compare the normalized envelope ampli-
tude versus focusing period with two-plane wiggler focus-
ing to that with the same vertical effects but suppressing
the horizontal space-charge force. Some minor degradation
of the equilibrium is seen, and the stability threshold is
slightly decreased, for a transverse wave number ratio of
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FIG. 6. Nominal two-plane focusing case for PPM focusing, with peak field of 0.291 T and a wave number ratio of 0.375. (a) Vertical
beam size versus axial position. (b) Horizontal beam size versus axial position.
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0.14. It should be noted that as the period of the focusing
increased, the effective vertical focusing is also increased,
because of the nonparaxial horizontal beam motion [4]. As
a result, the peak magnetic field in these simulations was
decreased to maintain the best equilibrium flow (by about
15% at a 2.75-cm focusing period).
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V. COMPARISON OF DIFFERENT HORIZONTAL
FOCUSING SCHEMES—HIGH-EMITTANCE
CASE

An alternative to two-plane focusing of a sheet beam of
the form shown in Eq. (3) is to have natural focusing
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FIG. 8. Two-plane focusing case for PPM focusing with reduced horizontal space-charge force, with peak field of 0.295 T and a wave
number ratio of 0.14. (a) Vertical beam size versus axial position. (b) Horizontal beam size versus axial position. (c) Final x-y beam

distribution. (d) Vertical emittance versus axial position.
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FIG. 9. Envelope ripple amplitude versus focusing period for
wiggler focusing, for two-plane focusing (solid line) and for
single-plane focusing (dashed line), both with vertical emittance
and space-charge effects.

augmented by linear focusing introduced by a quadrupole
field, where the added field is of the form

B, = yBj cos(k,2),
B, = —xyk,Bjsin(k,z),

B, = xB/ cos(k,z),
y 0 q (37)

where k, is 27 divided by the period of the quadrupole
field. Note that if the field is axially constant (k, = 0), the
axial field vanishes. It is well known that an axially con-
stant quadrupole field produces linear forces, although it is
also known that a quadrupole field in a constant axial field
of a solenoid can cause significant emittance growth [12].
The PPM field looks like an alternating solenoid, so there is
a potential emittance growth mechanism, which we nu-
merically quantify here. For the parameters studied here,
this emittance growth is negligible, but this may be a
concern for other types of beams.

The field shown in Eq. (37) is the lowest magnetic field
multiple that occurs by either the addition of a large
external quadrupole, by offsetting the wiggler magnets as
in [9], notching the wiggler magnets as in [10,11], or by
adding nonsymmetric quadrupole focusing to the wiggler
or PPM array as in [6,9]. Nonsymmetric configurations
will induce additional magnetic multiples in addition to the
field shown in Eq. (37), which will increase the beam
emittance for the same amount of horizontal confinement.
As aresult, we will limit our study to field augmentation of
the form shown in Eq. (37), with the understanding that this
is the ideal field augmentation (in terms of minimizing
beam emittance growth), and that physical realizations of
this field may include high-order multiples which are not
desirable. It should also be noted in terms of comparing
practical designs that a somewhat higher PPM field is
possible than a wiggler field, for the same period and
same magnet field strength.

Previous work simulating the effect of quadrupole aug-
mentation of PPM focusing [6,9] studied transport of

space-charge dominated beams, mostly for short PPM
periods well below the Mathieu limit. It was found that
(i) an elliptical beam can be matched into such a two-plane
focusing configuration but a rectangular cross-section
beam cannot, (ii) the maximum period of the PPM struc-
ture with a uniform quadrupole field augmentation is con-
sistent with the Mathieu limit, and (iii) for short periods,
the PPM augmentation with a periodic quadrupole field is
somewhat better than augmentation with a uniform field,
due to a horizontal beam mismatch (leading to oscillations
in the horizontal beam size) for the case simulated. As
shown in [9], the space-charge field from a rectangular-
shaped beam is nonlinear, so it is not surprising that a
space-charge dominated beam (with nonlinear horizontal
defocusing forces) cannot be matched well by horizontal
quadrupole focusing (with linear horizontal restoring
forces). From Figs. 1(a), 1(b), and 9, we anticipate verify-
ing that in the emittance regime that the transport stability
of the quadrupole-augmented PPM structure is also con-
sistent with the Mathieu stability and that the stability of
the two-plane wiggler structure is somewhat less, due to
the nonparaxial horizontal beam motion in the wiggler
field [4].

Here we compare the transport of a relatively high
emittance beam (normalized rms emittance of 4 um,
with other beam parameters the same as before), using
two-plane wiggler focusing, to natural focusing augmented
by a quadrupole field applied external to the PPM structure.
In order to achieve somewhat more stability, the vertical
equilibrium beam size was allowed to grow larger than
0.5 mm. The initial beam size was assumed to be 0.6 mm,
and the phase of the betatron oscillation was numerically
adjusted so the betatron oscillation was at a local maxi-
mum at particle injection. Because natural wiggler focus-
ing is inferior to natural PPM focusing, wiggler focusing
augmented by quadrupole fields was not studied.

We see in the following simulations that two-plane
wiggler focusing is roughly equivalent to single-plane
PPM focusing augmented with a constant quadrupole field,
whereas single-plane PPM focusing augmented with a
periodic quadrupole field is inferior to both other options.

A. Baseline two-plane wiggler focusing transport

This case is similar to the one in Sec. IV, but with higher
peak field and a lower ratio of transverse to vertical focus-
ing (because the vertical defocusing is larger with the
greater emittance, but the horizontal space-charge force
is the same). From Eq. (9), the equilibrium field for a 0.6-
mm wide beam is 0.43 T. Numerically, equilibrium trans-
port is found with a 0.40 T peak field and with k,/k, =
0.090. The vertical beam size is plotted versus axial posi-
tion in Fig. 10, for wiggler periods from 8§ to 16 mm. The
horizontal beam size is very constant, and there is no
appreciable emittance growth for the 14-mm period case,
shown in Fig. 11, which would be an acceptable design
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point. From Figs. 10(d) and 10(e) it is observed that the
stability limit for this combination of parameters is reached
with a wiggler period of about 15 mm. From Eq. (27), this
corresponds to a limiting value of the Mathieu parameter «
equal to 0.31, which is consistent with the stability limit
predicted in Fig. 1(a).

B. Natural PPM focusing augmented by a constant
quadrupole field

The external quadrupole field focuses horizontally, but
defocuses vertically. As a result, the peak PPM field needs

to be higher than in the wiggler case in the previous part.
Equilibrium flow is found with a peak PPM field of ap-
proximately 0.475 T and a quadrupole field of 0.59 T/m. In
Fig. 12, we plot the vertical beam size as a function of axial
position, for PPM periods of 8 to 18 mm. In Fig. 13, we plot
the horizontal beam size and vertical emittance for the 14-
mm period case, which is roughly comparable to the 14-
mm period wiggler case in terms of overall beam envelope
scallop. The observed stability threshold at a period of
about 17 mm in Fig. 12 correspond to a limiting value of
the Mathieu parameter « of about 0.54. We note that there
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FIG. 12. Vertical beam size for PPM focusing augmented by uniform quadrupole, high-emittance case (a) 8-mm period, (b) 12-mm
period, (c) 14-mm period, (d) 16-mm period, and (e) 18-mm period.

062002-13



B.E. CARLSTEN et al.

Phys. Rev. ST Accel. Beams 8, 062002 (2005)

0.02

0.015 | =

0.01 =

0.005 L =l

Horizontal Beam Size (m)

0 1 1
0 0.01

1 1
0.04 0.05 0.06

(a)
FIG. 13.

is a slight decrease in stability from the Mathieu limit of
0.66 (using the limit « = 0.66, the transport should be
stable for focusing periods less that about 18.8 mm), but
overall, the simulations in Fig. 12 are mostly consistent
with that shown in Fig. 1(b).

C. Natural PPM focusing augmented by a periodic
quadrupole field

A uniform external quadrupole surrounding a PPM stack
will tend to be relatively large physically. It has been
proposed [6] to alternatively add quadrupole magnets to
the PPM stack, and produce a periodic quadrupole field of
the form in Eq. (37), where the quadrupole period is equal
to the PPM period, k, = k.. Because the quadrupole field
is periodic, the focusing is of second order, and the quad-
rupole strength must be increased as the period is de-
creased to maintain an equal amount of horizontal
focusing. For the PPM periods analyzed, the peak quadru-
pole field is 60.0 T/m for a 4-mm period, 40.6 T/m for a 6-
mm period, 30.6 T/m for a 8-mm period, 24.3 T/m for a
10-mm period, and 21.0 T/m for a 12-mm period. The
vertical beam size versus axial position is shown in Fig. 14
for these periods. The horizontal beam size versus axial
position is shown in Fig. 15 and the vertical emittance
for a nominal case (8-mm period) is shown in Fig. 16.
The peak PPM field was also 0.475 T for these simulations.
No emittance growth is seen due to the coupling of
the axial and quadrupole fields (probably due to the
small periodic angular beam rotation). However, much
poorer transport stability is seen than previously reported
in [6], probably because the case studied there had a
very short period and low field strength (the emittance
was assumed to be zero), which leads to a very small
Mathieu parameter.

VI. DISCUSSION

Our major conclusions are (i) with two-plane focusing,
emittance-dominated beams have larger envelope scallop-
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(a) Horizontal beam size and (b) vertical emittance for a 14 mm period.

ing than space-charge dominated beams, (ii) although PPM
focusing is clearly superior for single-plane focusing, two-
plane PPM focusing is unacceptable for wide elliptical
beams, (iii) single-plane PPM focusing augmented by a
uniform quadrupole focusing is roughly equivalent to two-
plane wiggler focusing, and (iv) single-plane PPM focus-
ing augmented by periodic quadrupole focusing has a
greatly degraded stability threshold, because of the first-
order cancellation of the horizontally focusing quadrupole
fields. The limiting factor for both two-plane wiggler fo-
cusing and quadrupole-augmented natural PPM focusing is
a Mathieu-type stability threshold due to the length of the
focusing period instead of actual emittance growth.

We see from Eq. (15), where the vertical betatron motion
is given by 1= (E/m'}’Z.())BW (k)zc/kg)x COS(kzZ)(akyy + b),
the high-order PPM flutter motion (a = 0, b = 1 for PPM
motion). The combination of weaker horizontal focusing
with the same k, for the PPM field configuration (which in
turns requires k, to be larger) plus the larger vertical beam
movement leads to large arguments in the sinh functions in
the vertical force term, which in turn leads to significant
vertical emittance growth.

We see from Sec. V that the transport stability of a high-
emittance beam in a two-plane wiggler structure and in a
PPM structure augmented by a uniform quadrupole is
mostly predicted by the Mathieu stability parameter, in
agreement with previous analyses. More precisely, we
have seen about a 10% decrease in the maximum focusing
period as compared with just natural focusing. However,
we see that the transport stability of a high-emittance beam
in a PPM structure augmented by a periodic quadrupole is
greatly degraded as the focusing period is even moderately
increased. Numerically, we were able to easily horizontally
match a high-emittance beam into a PPM structure aug-
mented with a uniform quadrupole structure. We suspect
the horizontal beam-size oscillations seen in [6] were due
to difficulties in tuning the quadrupole field strength sepa-
rately from the natural focusing, as the quadrupole field
was not added in separately but was included with the PPM
structure as part of a magnetics simulation.
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FIG. 14. Vertical beam size for PPM focusing augmented by periodic quadrupole (a) 4-mm period, (b) 6-mm period, (c) 8-mm

period, (d) 10-mm period, and (e) 12-mm period.

For the case of natural PPM focusing augmented
with a constant quadrupole field, the vertical defocusing
effect of the quadrupole field requires a larger PPM field
(about 20% larger than the two-plane wiggler field).
Mathieu-type instability is reached with a period about
10% greater than for two-plane wiggler focusing, but
with roughly equivalent envelope scalloping for the
same focusing period. One key design issue for

practical devices is getting a large enough field
(wiggler or PPM) in the beam gap, due to both the size
of the beam gap and the size of individual magnets. As
the period is increased, a larger field is possible, and for
the Los Alamos case, the advantage of the weaker re-
quired field with two-plane wiggler focusing is essentially
canceled by the disadvantage of the shorter focusing
period. In addition, for the same gap size, the PPM
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) 10-mm period, and (e) 12-mm period.
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FIG. 16. Vertical emittance, 8-mm period.

configuration yields a slightly larger peak field than a
wiggler configuration. As a result, both configurations
are roughly equivalent in terms of practical fabrication
and performance.
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