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A sheet-beam traveling-wave amplifier has been proposed as a high-power generator of rf from 95 to
300 GHz, using a microfabricated rf slow-wave structure [Carlsten et al., IEEE Trans. Plasma Sci. 33, 85
(2005)], for emerging radar and communications applications. The planar geometry of microfabrication
technologies matches well with the nearly planar geometry of a sheet beam, and the greater allowable
beam current leads to high-peak power, high-average power, and wide bandwidths. Simulations of
nominal designs using a vane-loaded waveguide as the slow-wave structure have indicated gains in
excess of 1 dB=mm, with extraction efficiencies greater than 20% at 95 GHz with a 120-kV, 20-A electron
beam. We have identified stable sheet-beam formation and transport as the key enabling technology for
this type of device. In this paper, we describe sheet-beam transport, for both wiggler and periodic
permanent magnet (PPM) magnetic field configurations, with natural (or single-plane) focusing. For
emittance-dominated transport, the transverse equation of motion reduces to a Mathieu equation, and to a
modified Mathieu equation for a space-charge dominated beam. The space-charge dominated beam has
less beam envelope ripple than an emittance-dominated beam, but they have similar stability thresholds
(defined by where the beam ripple continues to grow without bound along the transport line), consistent
with the threshold predicted by the Mathieu equation. Design limits are derived for an emittance-
dominated beam based on the Mathieu stability threshold. The increased beam envelope ripple for
emittance-dominated transport may impact these design limits, for some transport requirements. The
stability of transport in a wiggler field is additionally compromised by the beam’s increased transverse
motion. Stable sheet-beam transport with natural focusing is shown to be achievable for a 120-kV, 20-A,
elliptical beam with a cross section of 1 cm by 0.5 mm, with both a PPM and a wiggler field, with
magnetic field amplitude of about 2.5 kG.

DOI: 10.1103/PhysRevSTAB.8.062001 PACS numbers: 41.85.2p
I. INTRODUCTION
A new need for high-frequency, high-power rf sources

has been emerging for advanced radar and communica-
tions, with frequencies in the band between 100 and
300 GHz and peak powers as high as several hundreds of
kilowatts, and with bandwidths of up to 10%. After inves-
tigation of different high-frequency gain mechanisms in-
cluding dielectric Cherenkov masers [1] and two-beam
amplifiers, we determined that planar, microfabricated,
traveling-wave tube (TWT) amplifiers could best satisfy
the needs of these new missions [2]. This type of source
consists of a very thin sheet-electron beam passing through
a periodic slow-wave structure that could be either single
or double sided [3]. We have focused our technical efforts
on understanding the underlying physics and technology of
the double-sided interaction and developing a demonstra-
tion experiment.
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Earlier work [4] has identified the key enabling technol-
ogies as (i) the sheet-beam formation and transport and (ii)
the rf mode control in the structure. (For our purposes, we
use the term ‘‘sheet beam’’ to specifically refer to an
elliptical beam with a high aspect ratio.) Our analytic
and experimental program has focused on these two issues,
mostly for the nominal parameters of a 20-A, 120-kV beam
with elliptical cross section 1 cm by 0.5 mm, in a vane-
loaded waveguide with period 0.5 mm and gap 0.75 mm,
synchronous at 95 GHz.

Sheet-beam transport in either planar periodic perma-
nent magnet (PPM) or wiggler structures has been shown
to be resistant to the diocotron and other velocity shear
instabilities [5,6], which disrupt sheet-beam transport in
solenoidal fields. In addition, periodic magnetic structures,
like wigglers and PPM stacks, built with permanent mag-
nets, are significantly smaller and lighter weight than
1-1 © 2005 The American Physical Society
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conventional solenoid magnets. These considerations have
motivated us to study the applicability of these types of
permanent magnetic configurations for the transport of
emittance-dominated sheet-electron beams. Previous
work has also shown space-charge dominated beams in
these structures to obey stability criteria associated with
the Mathieu equation [7], similar to the case for cylindrical
periodic permanent magnet (PPM) focusing [8]. However,
little previous work has been done on effects that arise
when the transport is emittance-dominated instead of
space-charge dominated, particularly in regards to modifi-
cations to stability thresholds and beam envelope ripple,
and that is the purpose of this paper. To understand the
issues associated with stable sheet-beam transport for an
emittance-dominated beam, analytic expressions are de-
rived for the transverse beam dynamics for the case of
‘‘natural focusing’’ (focusing only in the beam’s narrow
direction) and confirmed with numerical simulations. We
derive the envelope equation for sheet-beam focusing in
periodic structures, including both emittance and space-
charge effects, which leads to simple design formulas.
Stability regions are found which agree with the stability
bands of the Mathieu equation. Surprisingly, the beam
envelope ripple even below the stability threshold is found
to be significantly larger for an emittance-dominated beam
than for a space-charge dominated beam.

In general, the magnetic field for a planar focusing array
can be expressed as [6]

B � �r�m; (1)

where

�m �
Bw
kz

cosh�kxx� cos�kzz��a sinh�kyy� � b cosh�kyy��;

(2)

where kz is 2� divided by the focusing period. The
cosh�kxx� term is typically introduced by shaping of the
magnets or pole pieces. The wave equation relates the wave
numbers, and gives k2

x � k2
y � k2

z . Here we assume the
beam motion is in ẑ, the beam is narrow in ŷ and wide in
x̂. Bw is used to denote the peak field, to be consistent with
previous work from the free-electron laser community. In
Eq. (2), we use the parameters a and b to differentiate
between a wiggler field (a � 1; b � 0) and a PPM field
(a � 0; b � 1), which are the only two possibilities with
planar symmetry. (Only the PPM field exists with cylin-
drical symmetry.) This potential gives us these field com-
ponents:

Bx��
kx
kz
Bw sinh�kxx�cos�kzz��asinh�kyy��bcosh�kyy��;

By��
ky
kz
Bwcosh�kxx�cos�kzz��acosh�kyy��bsinh�kyy��;

Bz�Bwcosh�kxx�sin�kzz��asinh�kyy��bcosh�kyy��: (3)
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When kx � 0, By and Bz are independent of horizontal
position, and Bx vanishes. This leads to only focusing in
the ŷ plane, which in the free-electron laser community has
been known as ‘‘natural focusing.’’ With kx � 0, there is
horizontal focusing of the beam in addition to vertical
focusing, which is known as two-plane focusing. For real
transport sections, some horizontal focusing will always be
needed due to the space-charge fields of the beam, but for
the type of sheet beam we are concerned with, the hori-
zontal focusing required is over an order of magnitude
smaller than the vertical focusing, and some key insights
can be made into planar sheet-beam transport just consid-
ering natural focusing.

Our goal in this paper is to quantify the stability of
natural focusing with both PPM and wiggler field configu-
rations of emittance-dominated beams, space-charge
dominated beams, and beams with both space-charge and
emittance effects. This material is described in the follow-
ing five sections. The following section, Sec. II, contains a
review of the stability of cylindrical PPM focusing, which
has been previously investigated in detail for the space-
charge dominated case. This review material is included
because new material in later sections relies heavily on the
stability concepts of this well-known case. The transverse
equation of motion for this type of focusing becomes a
modified Mathieu equation, which still maintains the basic
Mathieu equation’s regions of stability. We analyze natural
(single-plane) focusing of sheet beams in Sec. III, which
leads to a transverse equation of motion very similar to the
case for the cylindrical focusing case reviewed in Sec. II,
resulting in a modified Mathieu equation. The transverse
envelope equation is then derived in Sec. IV. The envelope
equation is used to analyze the transverse equation of
motion, and allows us to derive simple stability limit ex-
pressions for the maximum period of the focusing for a
given transverse beam emittance and size, and conversely
for the maximum transverse emittance given the period of
the focusing. Simulations of natural focusing are presented
in Sec. V verifying the envelope equation results, using a
ray-tracing code. Stability of the natural focusing is ana-
lyzed using simulations in Sec. VI, for various cases of
space-charge dominated, emittance-dominated, and mixed
beams. We find that, in general, emittance-dominated
beams have much greater envelope ripple than do space-
charge dominated beams, but both their stability thresholds
(in terms of field strength or focusing period) are about the
same, and can be predicted by the Mathieu equation. In
addition, the stability of wiggler-focused beams is de-
graded by about 25% due to the large transverse beam
velocities.
II. REVIEW OF PERIODIC FOCUSING

In this section, we summarize the well-known analysis
for cylindrical focusing of an cylindrical electron beam
with periodic permanent magnet (PPM) focusing, de-
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scribed by Mendel, Quate, and Yocum [8] (their motivation
was to order to reduce the weight of a traveling-wave tube
relative to a tube focused with an electromagnetic solenoid,
which is important if the tube is to be used as a radar
system in a plane). Cylindrical periodic focusing is well
known, and has been used in microwave tubes for decades.
The stability properties of the transport are well understood
in relation to the transverse equation of motion, which is a
modified Mathieu equation. We will extend this analysis in
subsequent sections to emittance-dominated beams and to
a planar geometry.

We start with assuming this form for the axial magnetic
field:

Bz�z� � Bp cos
�

2�z
L

�
; (4)

where Bp is the peak axial field on axis and L is the
periodicity of the field profile. An electron’s azimuthal
velocity is given by the paraxial form of Busch’s theorem
(or conservation of canonical angular momentum) [9]:

_� �
e

2m�

�
�Bp cos

�
2�z
L

�
�
r2
c

r2 Bc

�
; (5)

where Bc is the axial magnetic field at the cathode, rc is the
electron’s radius on the cathode, m is the electronic mass,
and � is the relativistic mass factor. With no field on the
cathode, the particle radial equation of motion becomes

�r �
I
IA

2c2r

��3r2
b

�
1�

B2
p

B2
BR

cos2

�
2�z
L

��
; (6)

where IA � 4�"0mc
3=e (about 17 kA), rb is the beam

edge radius, and the Brillouin field BBR is given by BBR �

�mc=erb�
�������������������
8I=��IA

p
[9]. The Brillouin field is the uniform

field strength needed to provide balanced flow (for a space-
charge dominated beam). Numeric calculations by Mendel
et al. [8] showed a minimum beam ripple if Bp �

���
2
p
BBR

(the same rms focusing strength as for the uniform focus-
ing case).

This is often rewritten as

d2r

dT2
� ��1� cos2T�r� ~�r � 0; (7)

with T � 2�z=L, � � �L2=�2��2��I=IA��
�B2

p=�3�3r2
bB

2
BR� � �L

2=�2��2��e2B2
p=�2�28m2c2� (note

that � is independent of beam current and only a function
of the focusing parameters) and ~� � 2�L2=�2��2r2

b��
�I=IA��1=�

3�3�, which represents the space-charge force.
If the flow is approximately balanced and the beam enve-
lope is mostly constant (in other words, rb is mostly
independent of T), then ~� is a constant of the motion (�
is independent of rb and always a constant of the motion).
Also for mostly balanced flow for a laminar (space-charge
dominated) beam, the cos2T term will average to zero and
we have �d2rb=dT2� � �rb � ~�rb � 0 for the edge of the
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beam, which has a balanced flow solution if � � ~�, which
is equivalent to Mendel’s balance condition 2B2

BR � B2
p. In

the emittance-dominated regime, where space charge can
be neglected, the equivalent single-particle equation of
motion can be written as

d2r

dT2
� ��1� cos2T�r � 0; (8)

which is recognized as a Mathieu equation. In this limit, we
can picture the beam as a collection of intersecting trajec-
tories, and that no single trajectory overlaps the beam edge
for more than a short time.

In both limits, the transport can be unstable if �> 0:66.
For the emittance-dominated limit, it is well known that the
solution to the Mathieu equation is stable if �< 0:66 or
1:72<�< 3:76 or �> 6:10. Surprisingly, in the space-
charge limit, when � 	 ~�, roughly the same stability
threshold is found [7,8].

If we write a plasma wavelength �p as �p � 2�vz=!p,
where !p is the beam’s plasma frequency, the lowest order
stability criteria for a space-charge dominated beam can be
rewritten as

�p > 1:15L: (9)

In the microwave tube literature, �p=L is sometimes
called the ‘‘beam stiffness factor.’’

The Mathieu stability criteria arises from the thin lens
focusing stability. We can see this by thinking of the PPM
field as a series of thin lenses, separated by a distance L=2
[10]. Ignoring space charge, the radial equation of motion
inside the lenses is [from Eq. (6)]

r00 � �
rB2

pe
2

4�2�2m2c2 cos2

�
2�z
L

�
: (10)

We consider the lens’ focal length as �1=f� � ��r0=r�,
which we calculate by direct integration (here we assume
the particle radius is not changing much over the length of
the lens— this approximation is poor for the case the
focusing is nearly unstable, but still gives a surprisingly
accurate result):

1

f
�

B2
pe2

4�2�2m2c2

Z L=4

�L=4
cos2

�
2�z
L

�
dz �

B2
pe2

4�2�2m2c2

L
4
;

(11)

which must be less than 8=L for stability (from simple ray
tracing), which gives the discrete lens stability criteria as

B2
pe

2

4�2�2m2c2

L2

32
< 1: (12)

Written this way, the Mathieu stability equation looks
like

B2
pe2

4�2�2m2c2

L2

8�2 < 0:66 (13)
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and we see the thin lens analysis is actually pretty good (the
Mathieu stability criteria leads to a lens period of about
0.75 times the thin lens minimum period). Hence, we can
interpret the stability criteria more-or-less as the simple
ray-tracing stability of lenses.
III. SINGLE-PLANE FOCUSING OF SHEET BEAMS
(NATURAL FOCUSING)

In this section, we derive the equivalent single-particle
equation of motion [Eq. (8)] for the planar case, following
Booske et al. [5,6]. We point out that without horizontal
focusing the analysis is simplified by the existence of a
conserved canonical horizontal momentum. The nonzero
magnetic field elements for natural focusing are

Bz�y; z� � Bw�a sinh�kwy� � b cosh�kwy�� cos�kwz�;

By�y; z� � Bw�a cosh�kwy� � b sinh�kwy�� sin�kwz�;

(14)

where here kw is 2� divided by the focusing period and as
before we use the parameters a and b to differentiate
between a wiggler field (a � 1; b � 0) and a PPM field
(a � 0; b � 1). This field is generated by the vector po-
tential

Ax�y; z� � �
Bw
kw
�a cosh�kwy� � b sinh�kwy�� cos�kwz�:

(15)

There is no space-charge force in x̂ if we consider an
infinitely wide beam, and then

�m
d
dt

_x � e� _yBz � _zBy� � e
�
� _y

@
@y
Ax � _z

@
@z
Ax

�

� �e
d
dt
Ax; (16)

leads to

��� _x� � �
e
m

�Ax; (17)

which is the planar version of Busch’s theorem (the con-
servation of canonical angular momentum with cylindrical
symmetry).

If there is no field on the cathode and no initial horizon-
tal motion [using ��@=@y�Ax � Bz]

_x �
e
m�

Z y

0
Bzdy (18)

or

_x � �
e
m�

Ax

�
e
m�

Bw
kw
�a cosh�kwy� � b sinh�kwy�� cos�kwz�: (19)

Using �y � �e=m���vzBx � vxBz� � space charge force,
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we have

�y �
�
e
m�

�
2 B2

w

kw
�a cosh�kwy� � b sinh�kwy���a sinh�kwy�

� b cosh�kwy��cos2�kwz� � space charge force:

(20)

For a uniformly filled ellipse, the space-charge force
is proportional to y. For small y, cosh�kwy� � 1 and
sinh�kwy� � kwy, and if a � 1; b � 0 or a � 0; b � 1,
we end up with linear focusing in y and recover the same
modified Mathieu equation from the previous section. For a
mix of nonzero a and b, we need to numerically demon-
strate that the force is sufficiently linear as to prevent any
emittance growth, which we do in Sec. V. For emittance-
dominated transport, the space-charge force can be ne-
glected altogether, and we recover the Mathieu equation

�y� y
�
e
m�

�
2
B2
wcos2�kwz��a� b� � 0; (21)

where now the Mathieu parameter � is given by

� �
B2
w

2

�
e

mc��

�
2
�
L

2�

�
2
: (22)

There is an additional feature of wiggler focusing that
needs to be recognized. For small amplitude motion, the
transverse motion in a wiggler field is

_x �
e
m�

Bw
kw

cos�kwz� �wiggler only�; (23)

which is a maximum at z � n�=kw, with amplitude
vx;max � �e=m���Bw=kw�. This transverse motion cannot
exceed the total velocity of the beam, �c [6]. This results
in the inequality

B2
w

�
e

mc��

�
2
�
L

2�

�
2
< 1 �wiggler only�: (24)

Comparing this to Eq. (22) for the Mathieu parameter �,
where the quantity on the left-hand side must be less than
1.32, this requirement puts about a 15% stricter limit on the
applied magnetic field or period of the focusing.

More importantly, though, this feature (large-order hori-
zontal motion) leads to greater degradation of the transport
before the stability limit (we will see this in the stability
simulations in Sec. V). The derivation for the vertical
equation of motion earlier in this section used the paraxial
approximation that the axial motion was independent of
the transverse motion, which, for the wiggler geometry
fails as the limit in Eq. (24) is approached. (In particular,
the relationship between d=dz and d=dt was assumed to be
independent of z.)

Even though this analysis predicts that the wiggler con-
figuration has more limited stability than the PPM configu-
ration, it is still preferable for some regimes. In PPM
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focusing, the beam’s vertical motion is of higher order than
in wiggler focusing, which could cause added beam inter-
ception. This larger vertical motion can also lead to sig-
nificant emittance growth, for high aspect-ratio beams.
IV. BEAM ENVELOPE EVOLUTION WITH
NATURAL FOCUSING

In this section, we derive the envelope equation for the
edge of an elliptical beam, with both space-charge and
emittance effects. After finding the balance condition for
a beam in the emittance-dominated regime, we develop
relations between the required wiggler/PPM peak field
strength and beam emittance, and limitations on the period
length to maintain orbit stability.

Now let us consider the average focusing force where
the betatron period, or focal length, is long compared to the
wiggle period,

�y � �y
B2
w

2

�
e
m�

�
2
� �yK�2c2; (25)

where we have introduced a focusing wave number K.
Sheet beams are unusual—most microwave tubes operate
strictly in the space-charge dominated regime. However,
sheet beams can operate in both the space-charge and
emittance regimes because of the large differences in the
horizontal and vertical beam sizes. We will show this for
the practical example of the Los Alamos experiment [11] at
120 kV, with a 20 A beam with a transverse cross section of
10 mm by 0.5 mm.

We will start by deriving the sheet-beam envelope equa-
tion, and then use the average focusing force, beam emit-
tance, and space-charge force to define matched flow
(where the envelope is matched in an rms sense). We will
define rms beam sizes as

X � hx2i1=2; Y � hy2i1=2: (26)

We will take the axial derivatives of Y to get the
vertical envelope equation—to get the X envelope
equation, just substitute X for Y. Starting with
Y2 � hy2i, we take an axial derivative to get
2YY0 � h2yy0i or YY0 � hyy0i, which gives us Y0 �
hyy0i=Y. A second axial derivative yields YY00 � Y02 �
hyy00i � hy02i, or Y00 � ��Y02=Y� � ��hyy00i � hy02i�=Y� �
�hyy00i=Y� � ��hy2ihy02i�=Y3� � �hyy0i2=Y3�, which can be
rewritten as

Y00 �
hyy00i
Y
�
"2
y

Y3 ; (27)

where "2
y � hy2ihy02i � hyy0i2 is the square of the unnor-

malized emittance.
Next, we will find the force term. Lawson’s approximate

form for the space-charge field for an elliptical beam is
[12]
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Ex �
m
e

�
e�
"0m

�
Y

X� Y
x; Ey �

m
e

�
e�
"0m

�
X

X� Y
y;

(28)

where � is the uniform density of the ellipse. Together, the
focusing and space-charge terms lead to (for a laminar,
quasilaminar, or emittance-matched uniform density
beam):

�y � �y
B2
w

2

�
e
m�

�
2
� y

e�

�3m"0

X
X� Y

� �yK�2c2 � y
eI

�3m��4XY��c"0

X
X� Y

; (29)

where we have used the definition of the focusing wave
number K and the (4XY) is the product of the ellipse major
and minor axes. Also note for a paraxial beam

y00 �
d2y

dz2 �
d
dz

�
dy
dz

�
�
dt
dz

d
dt

�
dt
dz

dy
dt

�
�

�y

�2c2 : (30)

This leads to

hyy00i
Y
�
hy2i

Y

�
�K �

eI

�3m��4XY��3c3"0

X
X� Y

�

� Y
�
�K �

I=IA
XY�3�3

X
X� Y

�
(31)

and the envelope equation becomes

Y00 � �Y
�

e
�cm�

�
2 B2

w

2
�
I=IA
�3�3

1

X� Y
�

"2
y;norm

Y3�2�2 ; (32)

where the normalized vertical emittance "y;norm is defined
in terms of the unnormalized vertical emittance as
"y;norm � ��"y. We can identify the first term on the right
hand side as a focusing term, the second term as a space-
charge term, and the third term as an emittance term. At
120 kV, � is 1.235 and �� is 0.724, and for the nominal
Los Alamos design [11], the normalized beam emittance is
1:35 	m and the current is 20 A. For a 10 mm by 0.5 mm
beam, Y is 0.125 mm and X is 2.5 mm, the focusing term is
40:9 m�1 times B2

w in tesla, the space-charge term is
1:18 m�1 (both horizontal and vertical envelope equation),
and the emittance term is 1:79 m�1 (and 8:9� 10�4 m�1

for the horizontal envelope equation).
The required focusing strength for these parameters is

0.266 T. With just the emittance (ignoring the space-charge
force), the magnetic field strength would need to be
0.206 T, and with just the space-charge force, the magnetic
field strength would need to be 0.168 T. We will compare
these numbers to simulation results in later sections.
Summarizing the nominal Los Alamos parameters, the
natural focusing in the vertical plane mostly counteracts
the defocusing effect of the beam emittance. The beam can
be thought as horizontally laminar and vertically emittance
dominated, but matched, resulting in a constant beam size.
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Even for this low emittance, the emittance term domi-
nates in the vertical dimension (and is negligible in the
horizontal dimension). This transverse asymmetry is
unique for sheet beams, and would be more pronounced
for larger emittance cases. From a matched focusing point
of view, the effect on the envelope is the same if the
defocusing is emittance dominated or space-charge domi-
nated. However, the single-particle equations of motion are
different for the two cases. A space-charge dominated
beam will have laminar flow, whereas an emittance-
dominated beam will look like a collection of oscillating
orbits out of phase filling the beam envelope. We should
expect some differences in the stability behavior of these
different types of flow. Specifically, space-charge defocus-
ing modifies the single-particle equation of motion from
the Mathieu equation, whereas the emittance, which has no
influence on single-particle motion, does not.

The envelope equation establishes a relationship be-
tween the applied magnetic field and the emittance for
balanced flow. For an emittance-dominated beam, we
know the stability limit is given when the Mathieu parame-
ter �, given in Eq. (22), reaches 0.66. Through these two
relations, we can develop some design limits about stable
transport of an emittance-dominated beam. Equating the
focusing part of the envelope equation to the emittance
part, we find that the required peak field is given by

Breq �
���
2
p
"y;norm

mc

Y2e
: (33)

Note that the required field only depends on the beam’s
normalized emittance and size, and not on beam energy.

Relating the field to the Mathieu parameter �, Eq. (22)
we find

� �
"2
y;norm

�2�2

1

Y4

�
L

2�

�
2
: (34)

Recalling that � must be less than 0.66, this puts a relation
between the beam emittance, focusing period, and beam
width.

The maximum allowable focusing period given the
beam emittance and size is then

Lmax � 2�
���������
0:66
p ��

"y;norm
Y2; (35)

and the maximum allowable beam emittance given the
focusing period and beam size is then

"ymax;norm � 2�
���������
0:66
p ��

L
Y2: (36)

Using the beam size requirement for good coupling,
these expressions, specifically for the planar TWT design,
become, in terms of the free-space rf wavelength � (using
the approximation Y � �=24),
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Lmax � 2�
���������
0:66
p ��

"y;norm

�2

�24�2
(37)

and

"ymax;norm � 2�
���������
0:66
p ��

L
�2

�24�2
(38)

which tell us that the normalized beam emittance must
decrease as the frequency is increased, as there are physical
limitations as to how small permanent magnets can be
fabricated. For the above experimental parameters (� is
about 3 mm and the beam is at 120 kV), the maximum
period is 4.27 cm for a normalized emittance of 1:35 	m
(ignoring space charge). Conversely, the maximum nor-
malized emittance is 5.7 	m for a period of 1 cm.

For a frequency of 300 GHz, the maximum allowable
period for a normalized emittance of 1:4 	m is 0.46 cm,
and the maximum allowable normalized emittance for a
period of 1 cm is 0.64 mm. For current magnet technology,
the beam emittance must be cooled if we want to build a
300 GHz tube. Also note from Eq. (33) that the required
magnetic field for confinement, for a given emittance,
scales as the frequency squared (because of the decrease
in structure size and hence Y).

V. SIMULATIONS OF NATURAL FOCUSING

In this section, we will verify the predictions of the
previous section for balanced envelope transport with natu-
ral focusing for the nominal Los Alamos sheet-beam ex-
periment parameters, which are an elliptical electron beam
of 20 A at 120 keV, with a cross section of 0.5 mm by 1 cm.
The normalized emittance is 1:35 	m, and the beam is
focused in a wiggler transport section. For proper injection
in to the wiggler field in the following simulations, the
beam horizontal motion is initially assumed to be

_x � �
e

�mkw
Bw cos�kwz��a cosh�kwy� � b sinh�kwy��;

(39)

which is the condition from the conservation of canonical
horizontal momentum. Although the single-particle angu-
lar momentum is no longer preserved in the presence of
space-charge forces, this is still the condition for proper
injection into the wiggler field, and should be provided by
the tapering condition into the wiggler.

We used two codes to model this transport. Most of the
following simulations are with the 3-dimensional ray-
tracing code PUSHER [13], which uses the exact focusing
field profiles, but an approximate space-charge field. Also,
since natural focusing is a two-dimensional effect, we used
the 2½-dimensional particle-in-cell (PIC) code TUBE [1]
to model the transport. The application of a 2½-dimen-
sional numerical model to this geometry required a pa-
rameter reduction of the distribution with which the beam
was initialized [13].
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PUSHER uses the ideal wiggler/PPM field for the ex-
ternal magnetic field and the Lawson form for the space-
charge field (for a uniform-density elliptical cross-section
beam), Eqs. (29). This form clearly satisfies Poisson’s
equation (in fact for any X and Y). The corresponding
potential is


 � �
�

2"0

Yx2 � Xy2

X� Y
� C; (40)

where X and Y are specified by the boundary conditions on
the beam pipe and C is an arbitrary constant. Note that if
the elliptical beam is surrounded by a beam pipe at a given
potential, the correct potential is given if Y � y2

max and
X � x2

max (or alternatively Y � 1=x2
max and X � 1=y2

max).
For a large aspect ratio, the actual forms of X and Y do not
matter much for the vertical force, because X will always
be much larger than Y.

For this two scale problem (resolving both the details of
the short-period magnetic profile and the long-period beta-
tron focusing), PUSHER uses a new type of pushing
routine, explicitly conserving energy from the magnetic
field forces. The forces from the electric and magnetic
fields are calculated separately. The effect from the electric
field is calculated first. Then, the coordinate system is
rotated so the net magnetic field on a given particle is
only in the new axial direction. Then the motion from the
magnetic field during the time step is found exactly, as the
motion is easily described by a spiral about the net mag-
netic field. Finally, the coordinate system is unrotated to
the original (x; y; z) frame. The advantage of this routine is
that it exactly conserves energy from the magnetic field
force, and does not lead to any numerical errors that
accumulate. This routine very stable, allowing for greater
spatial steps, and as a result is faster than a simple Boris
push [14] or even the spatial-stepping Boris push [15],
which are both accurate to only second order in spatial
step.
FIG. 1. (a) Vertical beam size, for the nominal natural focusing
focusing field). (b) Horizontal beam size.
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Overall, the PUSHER simulations showed excellent
agreement with the envelope equation. The nominal pa-
rameters led to a well focused beam, with minimal vertical
size variations. Also, mixing in even as much as 10% PPM
field with the wiggler field did not lead to any significant
emittance increase, which is an important result because it
quantifies the effect of losing linearity in the transverse
equation of motion, Eq. (20). The nominal parameter
simulation and some variations are shown below. The small
beam size and the natural focusing is in the vertical (y)
direction, and the wide beam size is in the horizontal (x)
direction.

With only natural focusing and a peak magnetic field of
0.266 T, the beam expands significantly in the horizontal
direction because of the horizontal space-charge force, also
affecting the focusing in the vertical direction, Fig. 1. This
expansion could be controlled by including two-plane
focusing, but, for the purposes of numerically investigating
just single-plane focusing, we numerically ‘‘turned off’’
the horizontal space-charge force for the rest of the single-
plane focusing simulations reported in this paper. (The
nonzero horizontal emittance was kept in the following
simulations, but due to its small effect, it did not lead to any
appreciable horizontal beam growth.) The added effects of
two-plane focusing on transport stability are reported else-
where [16]. In these and the following figures, 4 times the
rms beam size is plotted, for both the vertical and horizon-
tal dimensions, because this equals the full beam size for a
hard-edged, uniform-density beam in both the space-
charge and emittance-dominated regimes, and is a good
measure of effective beam size for a nonuniform-density
beam.

In the next set of figures (Fig. 2), we plot the vertical
beam size, vertical emittance, horizontal beam size,
and horizontal emittance as a function of the axial
distance along the transport, for a total of 10 cm, with
just the effect of the beam emittance and assuming
zero beam current, and with a wiggler magnetic field
case (normalized emittance of 1.4 mm, 20 A, 0.266 T wiggler
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FIG. 2. Nominal PUSHER simulation of wiggler transport for the case with no space-charge, and transverse normalized emittances
of 1.4 mm. (a) Vertical beam size versus axial distance. (b) Normalized vertical emittance fluctuation during the transport. (c)
Horizontal beam size versus axial distance. (d) Normalized horizontal emittance fluctuation during the transport. (e) Average
horizontal position of the beam, showing the clear horizontal ‘‘wiggling’’ of the beam.
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with a peak field of 0.209 T. There is some initial
mismatch of the beam, leading to a slight breathing
of the rms beam size and average beam position,
but the simulations confirm the numeric values pre-
dicted from the envelope equation in the previous
section (a required focusing field of 0.206 T). The hori-
06200
zontal wiggling of the beam centroid is also shown, in
Fig. 2(e).

In Fig. 3, we compare the transport with the equivalent
PPM field. The beam transport is essentially identical to
the wiggler transport, confirming the equivalent focusing
strength of PPM and wiggler configurations.
1-8



FIG. 4. (a) 4-times yrms beam size versus axial distance for a 90% wiggler, 10% PPM field split. (b) Normalized vertical emittance
versus axial distance.

FIG. 3. (a) 4-times yrms beam size versus axial distance for the nominal PPM transport. (b) Normalized vertical emittance versus
axial distance for the nominal PPM transport.

FIG. 5. (a) 4-times yrms beam size versus axial distance for a 70% wiggler, 30% PPM field split. (b) Normalized vertical emittance
versus axial distance.
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In Figs. 4 and 5 we study the effect of field configuration
mixing. We anticipate from Eq. (20) that a mixture of the
field configurations will lead to nonlinear focusing and
emittance growth in the vertical plane. In Fig. 4, we plot
06200
the vertical beam width and emittance, for a 90% wiggler
field and a 10% PPM field mixture (with Bw � 2:5 kG). In
Fig. 5, we plot the same quantities for a 70% wiggler field
and 30% PPM field mixture. We see that a 10% field error
1-9



FIG. 6. Particle axial positions for an initially vertical slice of the beam, showing very small relative axial motion (a) for the wiggler
field configuration, and (b) for the PPM field configuration.
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does not appreciably degrade the transport, whereas a 30%
error does. The 30% mixing is essentially at the boundary
of the envelope evolution becoming unstable, because this
field split does not provide enough natural focusing (but,
surprisingly, the vertical emittance is still not affected).
Note that the superposition of equal PPM and wiggler
fields will cancel the magnetic field from one-half of the
magnet array, and that loss of confinement will result. The
opposition between the fields is consistent with these
transport calculations.

We would anticipate from the greater transverse motion
in a wiggler field configuration, that there may be more
slippage than from a PPM field configuration. In Fig. 6, we
plot the particle �z; y� positions for both wiggler and PPM
configurations, for an initial thin slice of particles starting
at the same axial position. They are nearly identical, with
slippage <0:1 mm after transport of 10 cm. This small
axial slippage will not lead to dephasing of particles for
frequencies well in excess of 300 GHz.

In Fig. 7, we show a particle-in-cell (PIC) simulation of
the nominal sheet-beam transport in a wiggler field, ver-
ifying the PUSHER results, using the PIC code TUBE and
simulating the horizontally centered vertical slice as de-
scribed in reference [13]. For this simulation, 41 000 par-
ticles were used in a mesh with 40 vertical divisions and
2400 horizontal divisions.
FIG. 7. PIC simulation of the nominal transport in a wiggler
field configuration.
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VI. NATURAL FOCUSING STABILITY REGIONS
FOR WIGGLER AND PPM FIELDS

In this section, we summarize PUSHER simulations of
both wiggler and PPM focusing of the nominal sheet beam
(1 cm by 0.5 mm), varying the focusing period, for both
space-charge and emittance-dominated beams. We will use
these calculations to delineate the stability regions for both
wiggler and PPM focusing, with both space-charge domi-
nated and emittance-dominated beams. The horizontal
space-charge force was neglected in the calculations shown
in this section, in order to isolate the natural focusing
stability issues.

In the first figure, Fig. 8, we plot the normalized enve-
lope ripple amplitude for both emittance-dominated and
space-charge dominated beams with wiggler focusing [in
Fig. 8(a)] and with PPM focusing [in Fig. 8(b)]. The
normalized ripple amplitude is defined as the peak-to-
peak envelope variation, divided by the equilibrium enve-
lope radius. The onset of the instability is sudden. Before
the instability, the ripple amplitude evolution is complex,
but the ripples reach a maximum size for all the values
plotted in Fig. 8. Beyond the stability limit, though, the
ripple amplitude does not establish a maximum size, but
continually grows without bound as the beam travels down
the structure. Note the sudden onset of instability cannot be
predicted by the ripple amplitude just below the stability
limit, especially for the space-charge dominated case.
These calculations all used a magnetic field of 0.209 T,
which we found in Sec. IV was the equilibrium focus-
ing strength for an emittance-dominated beam, with a
normalized emittance of 1:35 	m. Because the Mathieu
� parameter depends on the magnetic field as � �
B2
w�e=mc���

2�L=2��2=2 [Eq. (22)], the peak field was
kept constant for the calculations represented in these
plots. To achieve balanced flow for a space-charge domi-
nated beam (with zero emittance), the current was in-
creased to 30.25 A for the 1-cm period. The emittance-
dominated case becomes unstable right when the period
-10



FIG. 8. Envelope ripple amplitude versus focusing period, solid line emittance-dominated beam, dashed space-charge dominated
beam. (a) Wiggler focusing. (b) PPM focusing.
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reaches at the Mathieu stability boundary of � � 0:66,
whereas the space-charge dominated case maintains stabil-
ity a slight bit further. Also as predicted in Sec. III, wiggler
focusing leads to unstable flow at a lower � value.
However, the onset of the instability is lower than predicted
[a 15% decrease in the maximum stable period was pre-
dicted from Eq. (24), and about twice that is seen in
Fig. 8(a)]. The space-charge dominated beams for both
the wiggler and PPM field configurations have significantly
lower envelope oscillations than the emittance-dominated
beam, for all focusing periods.

Increasing the period for the PPM case did not change
the equilibrium emittance or current values, but did for the
wiggler period. Because of the large horizontal motion in
the wiggle motion, greater average focusing is found for
the wiggler case as the period is increased, requiring an
increase in the emittance (for the emittance-dominated
case) and the current (for the space-charge dominated
case) to maintain average balanced flow. The increase in
the current and emittance is shown in Fig. 9.
FIG. 9. Increase in normalized emittance (solid line) and cur-
rent (dashed line) to maintain balanced flow for the emittance
and space-charge dominated cases, respectively, as the wiggler
period is increased.
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The fractional ripple, for both an emittance-dominated
beam in balanced flow and a space-charge dominated beam
in balanced flow, for the case of the PPM field configura-
tion [Fig. 8(b)], is replotted as a function of � in Fig. 10,
verifying the Mathieu stability limit of � � 0:66. (For
comparing these figures, � � 361L2, with the period in
meters.) This plot can be compared to previously published
plots of amplitude ripple due to periodic focusing, which
only apply to the space-charge dominated regime [in
Refs. [8,9], for example], and which do not show the
compromised ripple amplitude of the wiggler focusing
configuration.

Figures 8 and 10 are surprising. The space-charge force,
which is divergent, suppresses the amplitude of the beam
ripple. The onset of total transport instability is right at the
Mathieu stability limit of � � 0:66 for the emittance-
dominated beam, but extends slightly further (�
 0:67)
for the space-charge dominated beam. By counterbalanc-
ing the inward magnetic focusing force, the diverging
FIG. 10. Fractional ripple as a function of �. The solid line is
for the case of an emittance-dominated beam and the dashed line
is for the case of a space-charge dominated beam.

-11



B. E. CARLSTEN et al. Phys. Rev. ST Accel. Beams 8, 062001 (2005)
space-charge force allows for laminar single-particle orbits
that are not possible in an emittance-dominated beam. The
increased envelope ripple amplitude near the Mathieu
stability limit for the emittance-dominated beam (over a
factor of 5 greater, with a ripple amplitude over twice the
size of the beam radius itself ) has significant consequences
for current transmission through these structures. As a
general rule, the transport will be better if the equilibrium
beam size is made as large as possible as can fit in the
structure without interception (typically 3

4 of the structure
size, for microwave tubes). For example, we can compare
transport in a structure with the maximum allowable beam
radius and with half that radius. With the larger beam
radius, the applied magnetic field can be reduced by a
factor of 4 as compared to the field required for the smaller
radius, and the Mathieu parameter � by a factor of 16 for
the same magnet period.

We examine the threshold of the instability for the
wiggler case, for both the space-charge dominated beam
and the emittance-dominated beam, in Figs. 11 and 12,
respectively.

In both cases, the instability is achieved when the nor-
malized relativistic momentum drops below about 0.4. We
FIG. 11. Instability threshold for wiggler focusing with a space-c
versus axial position. (b) Longitudinal beam momentum versus axia
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infer that the decrease in momentum provides enough
additional focusing force to effectively reach the thin
lens stability limit, which is seen in Figs. 11(c) and
12(c). The greater envelope ripple before instability for
the wiggler case is shown in Figs. 11(a) and 12(a), con-
sistent with Figs. 8(a) and 8(b). Also note that the initial
envelope oscillation in Fig. 12(a) is relatively small (about
40%). With a slightly longer wiggler period (so the trans-
port is stable in terms of being below the Mathieu thresh-
old), these envelope oscillations grow over distance to
about an amplitude of 1.5 mm, and then decrease back
down. However, once the stability threshold is crossed,
these oscillations continue to grow.
VII. DISCUSSION

Our major conclusions into sheet-beam transport with
natural focusing are

(i) A space-charge dominated beam has smaller enve-
lope oscillations than an emittance-dominated beam.

(ii) For natural focusing, the wiggler transport stability
threshold is at about 3

4 that for PPM focusing, in terms of
either the peak magnetic field or the focusing period, due to
harge dominated beam, period 3.105 cm. (a) Vertical beam size
l position. (c) Vertical momentum versus axial position.
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FIG. 12. Instability threshold for wiggler focusing with an emittance-dominated beam, period 3.125 cm. (a) Vertical beam size
versus axial position. (b) Longitudinal beam momentum versus axial position. (c) Vertical momentum versus axial position.
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unbalanced focusing resulting from the nonparaxial de-
crease in axial momentum during the wiggler orbits.

The larger envelope oscillations in an emittance-
dominated beam is unexpected. We would have expected
an emittance-dominated beam to be cleaner, better under-
stood, and overall more stable than a beam with an addi-
tional defocusing element. However, this effect appears to
be universal, and quite important. The greater laminar flow
of a space-charge dominated beam force apparently pro-
vides resistance to the instability. Recalling that the
Mathieu instability is related to the thin lens overfocusing
instability [Eqs. (10)–(12)], it is reasonable to expect this
resistance because the overfocusing is reduced as the beam
transport becomes more laminar. The beam envelope ripple
for an emittance-dominated beam, even below the Mathieu
stability limit, can be over 200% of the beam radius, which
can significantly impact transport of high-emittance beams
in wiggler and PPM structures in terms of potential inter-
cepted current. As was pointed out earlier, for emittance-
dominated beams, the maximum beam size can be reduced
by actually increasing the equilibrium beam size, if the
transport is near the Mathieu stability threshold.

We are also surprised by the larger decrease in stability
with wiggler focusing than expected, due to the axial
momentum change. PPM focusing appears to be clearly
062001
superior, for the case of a circular beam, or an elliptical
beam with a modest aspect ratio.

We also predict what happens to the beam emittance if
the vertical focusing becomes sufficiently nonlinear.
Recalling the envelope equation [Eq. (32)] and the emit-
tance growth equation,

d
dz
"2 � afhy2ihy0y00i � hyy0ihyy00ig (41)

we see that each term in the emittance growth equation is
proportional to the emittance for a constant focusing
strength. Its solution is then of the form " � "̂e�̂z, so we
expect an exponential growth in the emittance due to the
nonlinear focusing terms when they become large enough.
For our nominal transport parameters, �̂ must be very
small, as we saw no emittance growth even with a 30%
mixing of the PPM and wiggler fields (Figs. 5). However,
this coefficient will increase as the transverse dimensions
decrease, and may become an issue for very high frequency
mm-wave tubes.
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