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Design of a nonscaling fixed field alternating gradient accelerator
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We present a design of nonscaling fixed field alternating gradient accelerators (FFAG) minimizing the
dispersion action function H. The design is considered both analytically and via computer modeling. We
present the basic principles of a nonscaling FFAG lattice and discuss optimization strategies so that one
can accelerate over a broad range of momentum with reasonable apertures. Acceleration schemes for
muons are discussed.
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I. INTRODUCTION

The fixed field alternating gradient (FFAG) configura-
tion, introduced independently by Ohkawa [1], Symon [2],
and Kolomensky [3], has received much attention in recent
years. A ‘‘proof of principle’’ machine has been built at
KEK [4], followed by a 150 MeV proton synchrotron
which is being commissioned [5]. In the scaling FFAG
design the particle orbits ‘‘scale’’ with momentum, and
acceleration over a large range of momentum requires
large apertures. In nonscaling FFAGs the aperture require-
ments can be significantly reduced.1 Nonscaling FFAGs
have been discussed as a part of the general FFAG family
[8] and in the context of muon acceleration [9–14], where
the short muon lifetime prohibits slow ramping of the
magnetic fields. The FFAG acts similar to a recirculating
linear accelerator (RLA), but all the orbits go through the
same lattice, obviating the need for separated arcs.

A. The Basic Cell

We end up with the rather simple configuration of Fig. 1.
The accelerator is composed of a large number (66 in our
case) of identical unit cells. Each cell contains a magnet
triplet, with a relatively long gradient bending magnet QD
(’’combined function’’) having a strong central field and
negative gradient (horizontally defocusing) at the center,
flanked by a pair of negative bend magnets QF that are
horizontally focusing, and then a drift space about 2 m long
to accommodate an accelerating cavity.

The cell is symmetric with respect to the center of the
defocusing combined function dipole and the center of the
long drift. The horizontal and vertical betatron functions
�x and �y and the dispersion function in the basic cell, at
the reference momentum, are shown in Fig. 2.
address: dejan@bnl.gov
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r of 40 cm. A design of the nonscaling FFAG with
umference [7] produces maximum orbit offsets
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II. PARTICLE MOTION AT VERY LARGE
MOMENTUM OFFSET

We consider a particle of momentum p and a reference
particle with momentum p0 and charge q; the momentum
offset is 
 � �p� p0�=p0. The magnetic rigidity of the
reference particle is �B
�0 � p0=q; the reference particle
is on a reference orbit (assumed planar) with local radius of
curvature 
0 and vertical field B0�s� � �B
�0=
0�s�. In the
cases considered here the field B0�s� and with it the radius
of curvature 
0�s� are constant in each magnet, so that the
reference orbit consists of circular arcs in the magnets and
straight sections between the magnets; we also assume that
the magnet edges are straight at right angles to the refer-
ence orbit. We assume that the magnetic field in the dipole
magnets is linear:

By � B0 �Gx; (1)
FIG. 1. (Color) Basic half cell. The cell is symmetric with
respect to s � 0. The total length of the cell equals Lcell �
Lcavity � 2 � LQF � LQD � 2 � LDF. There are two types of
magnets, QD (normal bend, field BQD � 4:95 T) and QF (nega-
tive bend, field BQF � �2:29 T). Each has constant gradient,
GQF � 57:19 T=m and GQD � �34:27 T=m.
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FIG. 3. (Color) Betatron tunes �x and �y calculated for the
lattice of Fig. 1 by the codes PTC, COSY INFINITY, and SYNCH

over the muon acceleration range from 10 to 20 GeV.
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FIG. 4. (Color) Comparison of the maximum orbit offset calcu-
lated by the three codes: PTC, COSY INFINITY, and SYNCH, over
the muon acceleration range from 10 and 20 GeV.
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FIG. 2. (Color) Betatron functions and dispersion in the basic
cell at the central energy.
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Bx � Gy; (2)

with no higher order terms in x and y. Here x and y are the
horizontal and vertical deviations from the reference orbit;
the central field B0 is positive in QD and negative in QF
while the gradient G is positive inQF and negative inQD.

For muon acceleration we have to accelerate from 10 to
20 GeV very quickly because of the short decay time of the
muon. Suitable superconducting cavities for muon accel-
eration have been developed at Cornell University [15];
these require at least two meters of drift space. Therefore
we have to provide this much space in each cell. The
lengths, fields, and gradients of the magnets are adjusted
so that the total bend angle of the reference orbit through
one cell is

2�
Ncell

�
LQD

QD

�
2LQF

QF

; (3)

and the horizontal and vertical betatron oscillations are
stable for all energies from 10 to 20 GeV, i.e., 
 ranging
from �0:33 to 0.33 with the central momentum at p0 �
15 GeV=c. Because of the high acceleration rate it is
permissible for the betatron tunes to vary over the energy
range as long as they stay between about 0.05 and 0.45 per
period.

A. Accuracy of accelerator physics codes

The design of a fixed field accelerator requires design
codes accurate for large momentum ranges. We have pre-
viously reported [16] a study of several accelerator physics
lattice design codes for a large momentum range. The
tunes and the Courant-Snyder amplitude functions were
calculated by several different codes and compared to the
05010
analytical predictions for the case of a simple test lattice
consisting of five identical 72� dipoles, with fixed linear
fields. In addition, the FFAG examples designed using the
program SYNCH [17] were cross checked by Forest with the
code PTC [18], by Berg using the COSY INFINITY code [19]
up to 8th order in 
, and by Méot with the ZGOUBI-Saclay
code [20]. Results from the ‘‘ZGOUBI’’ test were shown at
the KEK FFAG workshop [21]. A comparison between
calculations using the codes PTC, COSY INFINITY, and
SYNCH, in our FFAG lattice for muon acceleration over
the whole momentum range of the tunes is presented in
Fig. 3, and of the maximum of the radial orbit offsets in
Fig. 4. A comparison of the path length calculations by the
three codes is shown in Fig. 5.

The exact equations of the particle motion in a non-
scaling FFAG for very large momentum offsets have been
previously discussed in detail [9,22,23,25–27].
1-2
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FIG. 5. (Color) Comparison of the path length calculations by
the three codes SYNCH, PTC, and COSY INFINITY over the muon
acceleration range from 10 and 20 GeV. Results obtained by the
PTC and COSY INFINITY codes are almost identical.
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III. CONTROL OF THE AMPLITUDE OF THE
DISPERSION FUNCTION

The dependence of radial offset on momentum is given
by �x � Ds
, where Ds is the horizontal dispersion func-
tion. A small dispersion function makes for large momen-
tum acceptance. If the aperture is to be less than 4 cm the
dispersion function has to be Ds < 12 cm in the whole
momentum range.

A useful measure of the variation of path length is the
dispersion action function [28] (the Courant-Snyder invari-
ant of the dispersion function D), defined as

H�D;D0� �

�
D����
�

p

�
2
�

�
D0

����
�

p
�
�D����
�

p

�
2
: (4)

The normalized dispersion coordinates are

� �
D����
�

p and � � D0
����
�

p
�
�D����
�

p ;

H�D;D0� � �2 � �2:

(5)

To minimize aperture it is advantageous to minimize the
function H. It suffices to minimize the average function
hHi within the main bending element. This could be easily
understood by observing that the maximum of the vector�����
H

p
max is at the end of the major bend, as shown in the

normalized dispersion plot in Fig. 6. Figure 6 shows the
TABLE I. A comparison between designs by the FODO, DOUBL
the cells, gradient and magnet strengths, and bending angles

TYPE Lcell (m) GQF (T=m) GQD (T=m)

FODO 2.2237 64.792 �68:214
DOUBLET 2.2162 65.258 �68:914
TRIPLET 2.2162 66.464 �70:112
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normalized dispersion function within the basic triplet cell,
as well as that for the focusing-drift-defocusing-drift
(FODO) and doublet cells (FD) designed with the same
magnets. The magnet lengths are LQF � 0:58 m and
LQD � 0:85 m. Other details for these three different cells
are shown is the Table I.

The advantage of our triplet cell compared to the doublet
or FODO structures is explained by the significantly
smaller values of

�����
H

p
max.

Muon acceleration is performed near the top of the
sinusoidal rf wave, with a small number of turns and a
large energy gain per turn. As discussed in the section on
acceleration (see below) this necessitates a fixed rf fre-
quency. Therefore it is desirable that the time of travel
around the circumference vary as little as possible with
momentum. Since the muons are relativistic this is equiva-
lent to having the orbit length vary as little as possible with

.

The variation in the particle path length around the ring
is

�C �
I
C

0
@ ���������������������������������������������

1�
x



�
2
� x02 � y02

s
� 1

1
Ads




�I D�s�


ds
�

: (6)

The lattice with the smallest dispersion function gives both
ET, or TRIPLET cells. The cells properties include the length of

�QF (rad) �QD(rad) BQF (T) BQD (T)

�0:020 87 0:124 40 �1:80 7.323
�0:021 90 0:128 73 �1:89 7.577
�0:021 79 0:128 50 �1:88 7.564
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the smallest orbit offsets and the shortest path length
differences over the range of momenta. The average value
of the dispersion action in the central dipole and the con-
ditions for its minimum are given by the equations

hHi �
1

L

Z L

0
H�s�ds;

@hHi
@D0

� 0;
@hHi
@�0

� 0: (7)

The dispersion function, its slope, and the Courant-Snyder
functions in the central dipole are

D�s� 

1


K
�cosh � 1� �D0 cosh 

�

�
D0 �

1


K

�
cosh �

1


K
; (8)

D0�s� 

�
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����
K

p
�

1



����
K

p

�
sinh �D0

0 cosh 

�
����
K

p �
D0 �

1


K

�
sinh ; (9)

��s� 

�
�0 �

!0
K

�
cosh �

!0
K
cosh �

!0
K
; (10)

��s� 
 �
����
K

p �
�0 �

!0
K

�
sinh cosh ; (11)

!�s� 
 K
�
�0 �

!0
K

�
cosh2 � K�0; (12)

where the defocusing strength K is

K�s� �
G
B


�
1


2�s�
; (13)

and the betatron phase is  �
����
K

p
s. The dispersion action

function H in the dipole is

H�s� �
1


2K

�
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K
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cosh2 �
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D0 �
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K

�
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(14)

and its average value hHi is

hHi �
2

L

Z L=2

0
H�s� ds;

hHi �
�2

2q2

�
�0 �

L2

�0q2

��
sinhq
q

� 1
�
�
4�L

�0q3

�
D0 �

L�

q2

�

� sinh
q
2
�
�0�2

q2
�
1

�0

�
D0 �

L�

q2

�
: (15)

We minimize hHi with respect to the initial values of �0
and D0 at the center of the defocusing central bending
element, by setting the partial derivatives @hHi=@D0 and
@hHi=@�0, equal to 0. The solutions are
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D0 �
2L�

q3
sinh

q
2
�
L�

q2
; (16)

�0 �
L
q

�����������������������������������������������
4
q2 sinh

2 q
2�

1
2 �1�

sinhq
q �

1� 1
2 �1�

sinhq
q �

vuuut ; (17)

where q � L
����
K

p
and � � L=
 as previously defined [29].

With the magnet lengths and strengths as given in Fig. 1 we
use Eqs. (16) and (17) to set the central values of�0 andD0
and, using the SYNCH code, solve for the focusing strengths
and gap dimensions to obtain zero slope at the symmetry
points. We then calculate the lattice functions for a range of
momenta from 
 � �0:33 to 
 � �0:33. But we find that
this lattice is unstable below 14.5 GeV when the central
energy is 15 GeV. Since we need stability in the whole
range between 10 and 20 GeV, this lattice is clearly not
acceptable. Therefore the next step is to search for stable
solutions in a larger momentum range by setting larger
initial values of �x0 and Dx0 . Unfortunately, with larger
value of the initial �x0 and Dx0 the maximum orbit offsets,
maximum values of the H function, dispersion, and varia-
tion of path length around the ring with momentum, also
increase. The best solution with a stable lattice and the
required range in muon energy from 10 to 20 GeV is the
one of Fig. 1.

A. A search for a large acceleration range in �p=p

A lattice cell is constructed at the central muon energy of
15 GeV with the horizontal and vertical tunes to be in the
middle of the range 0:1< �x; �y < 0:5. A search for the
closed orbit solutions within a large momentum range is
performed. It starts for a lattice with the initial conditions
of the �x0 and Dx0 obtained by Eqs. (16) and (17). It is
found that stable solutions exist only for a range of 
p=p in
the positive direction from the central momentum up to
�33%. As the values of the initial conditions for �x0 and
Dx0 are sequentially raised, the stable closed orbit solutions
start to show for larger and larger negative range in 
p=p.
This procedure is described in Fig. 7. It is important to note
that our analysis is done for muon acceleration, with an
additional constraint for the path length variation on mo-
mentum to be as small as possible. This is optimized when
the minimum of the path length occurs in the middle of the
momentum range. This condition is not necessary for other
applications (such as proton or electron acceleration) and
the minimum of the hHi function may well come with the
reference momentum at the lowest energy. This would
allow larger ranges of stable horizontal and vertical beta-
tron tunes. The dependence of the maximum of the orbit
offsets on momentum for different values of the initial �x0
and Dx0 is presented in Fig. 8. The dependence of the path
length variation (units are centimeters) and the maximum
orbit offsets on the maximum value of the H function are
1-4
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both presented in Fig. 9. The dependence of the normalized
dispersion function (amplitude of

�����
H

p
) on momentum, for

our lattice, is presented in Fig. 10. The nonscaling triplet
lattice FFAG design has many possible applications. This
report concentrates on muon acceleration. Muon accelera-
tion needs to be very fast because of the short muon life
time; this imposes special requirements on the lattice
design, principally a small variation of the path length.
This restriction is not necessary for other applications such
as proton acceleration (high intensity proton FFAG, proton
therapy), heavy ion acceleration (for carbon therapy or
RIA-radioactive ion beams), electron acceleration, etc.
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There are a few important restrictions on the lattice design
for muon acceleration:

B. Small path length difference during acceleration

The difference in the path length as the energy increases
has to be small (�L� 13 cm). The path length depen-
dence on momentum is a parabolic function [24]. It is best
to have the same values of the path lengths at the beginning
and the end of the acceleration. The path length minimi-
zation, for lattices with the same circumference C0 � 328
m, was studied by varying the length of QD, the major
bend combined function magnet, between Ld �
0:8–1:5 m. The relationship between the path length dif-
ference and the magnet length is presented in Fig. 11. A
complete optimization has to consider additional parame-
ters such as muon decay time (the longer the circumference
the larger muon loss due to the decay), initial emittance of
the muon beam to determine more precisely the magnet
aperture and cost, number of turns, cavity voltage limita-
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tions, beam loading, etc. More detailed studies considering
cost optimization have been performed elsewhere [30]. It is
clear that larger circumference reduces the strength of the
magnetic field, allows more room for the number of cav-
ities, but reduces the number of available muons because of
their decay. On the other hand a larger circumference
reduces the path length difference and allows better con-
ditions in the longitudinal motion as explained in the
Sec. IV. The magnetic fields and gradients in lattices with
the circumference C0 fixed at 328 m, as presented in
Fig. 11, are shown in detail in Table II. Analytical calcu-
lations [24] of path length, with an approximation where
the higher order terms in Af=
f0 and Ad=
d0 were ne-
glected (Af and Ad are the amplitudes of the betatron
motion), have shown very good agreement with the exact
solutions by PTC and the COSY INFINITY results with 8th
order in momentum.

C. Momentum compaction �c

The momentum compaction is defined as [29]

�c �
1

C
d�C
d


�
1

C

I D�s�



ds: (18)
TABLE II. Major magnet length, number of periods, magnetic
fields, and gradients in the QF and QD magnets.

Ld (m) Periods Bf (T) Bd (T) Gd (T=m) Gf (T=m)

0.80 75 �1:70 7.704 �70:83 63.16
0.90 74 �1:95 7.233 �65:66 65.38
1.00 72 �2:00 6.686 �56:65 62.43
1.20 68 �2:00 5.852 �44:09 56.68
1.28 67 �2:15 5.614 �40:28 56.43
1.40 66 �2:20 5.225 �36:77 56.63
1.50 66 �2:29 4.946 �34:27 57.19
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With the approximately parabolic dependence of path
length on momentum the minimum value occurs near the
central energy. The dependence of momentum compaction
on energy during acceleration is to the first order a linear
function as shown in Fig. 12. The zero value of �c occurs
near, but not exactly at, the reference momentum of p0 �
15 GeV=c. This is a result of the optimization for the path
length dependence.

D. Orbit offsets during acceleration

The emittance of the incoming muon beam to be accel-
erated by the nonscaling FFAG depends on the efficiency
and properties of the previous stages of acceleration and
cooling. The needed magnet size is mostly determined by
the beam size, but it is also important to reduce the beam
offsets during acceleration. The major advantage of the
nonscaling FFAG design with respect to scaling version is
the dramatically smaller orbit offset during acceleration.
The dependence of orbit offset on the maximum value of
the H function is shown in Fig. 8. The small orbit offset
during acceleration as shown by Fig. 13 represents the
major advantage of the nonscaling design compared to
the scaling one. Orbits at different momenta are parallel
to each other within the drift between the two focusing
combined function magnets, but the orbits are not parallel
to each other in the rest of the cell due to the strong
focusing and magnet edge effects.

E. Small circumference

The smaller the circumference and orbit offsets, the
lower is the cost for the whole machine. The scaling
FFAG design requires longer negative bend magnets: In
[2], the relationship between the negative vs positive bend
is �2=�1 � 2=3. This ratio means that the total magnet
length needed, in this case, is �1:5� 1�=�1:5� 1� � 5
times that needed just for bending, so the circumference
has to be large. The negative bend also affects the disper-
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FIG. 12. (Color) Dependence of momentum compaction � on
momentum
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tracking code in one of the FFAG examples.

DESIGN OF A NONSCALING FIXED FIELD . . . Phys. Rev. ST Accel. Beams 8, 050101 (2005)
sion function, as defined in Eq. (18). The value of the
momentum compaction �c is affected by the size of the
negative bend. This is due to its negative sign in the integral
of the dispersion function. Equal values of the path lengths
at the lowest and highest momentum in the parabola, as
shown in Fig. 11, are obtained by varying the ratio between
the opposite and major bend �2=�1. The parabola optimi-
zation is presented in Fig. 14. Equal path lengths at the
beginning and end of the parabola are obtained for the ratio
between opposite and major bend as �QF=�QD � 0:184.

A. Amplitude functions dependence on momentum

The dependence on momentum of the horizontal and
vertical amplitude functions

������
�x

p
and

������
�y

p
and of the

dispersion function Dx are shown in Figs. 15–17.
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FIG. 14. (Color) Opposite bend vs major bend for equalizing the
parabola.
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G. Transverse tracking

The nonscaling FFAG presented here does not include
any nonlinear fields. Particle tracking in the transverse
plane at the muon central energy of 15 GeV was performed
for 1500 turns, with different initial conditions of the
horizontal and vertical positions and slopes. A stable mo-
tion in the horizontal phase space is shown in Fig. 18.

A study of the particle motion during acceleration is
shown in the next section, while particle tracking during
acceleration including effects of magnet misalignment and
gradient errors have been studied elsewhere [31,32].
IV. ACCELERATION

Muons require a short acceleration cycle. For reasonable
amplifier power this precludes variation of the rf parame-
yβ

QF

1/2
(m  )

QD
QF

8

6

4

2

dp/p = 33%

dp/p = 0.0
dp/p = −33%

FIG. 16. (Color) Dependence on momentum of
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p
as calcu-
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FIG. 18. (Color) Results from transverse particle tracking at the
central 15 GeV muon energy. This is a result obtained by the
COSY INFINITY code.
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ters during the cycle [13]. In particular, all the energy
which will accelerate the muons must reside in the cavity
electromagnetic field at the time of injection. We will
consider standing wave superconducting cavities, similar
to the Cornell/CERN design [15]. We take a maximum
accelerating voltage per cavity of V � 12 MV with a
stored energy ofU � 955 J. The stored energy and voltage
are related via

U �
V2

2!rfR=Q
; (19)

where !rf=2� � frf � 200 MHz, and we use the circuit
definition with R=Q � 60 $. To simulate the system we
lump the N rf cavities into a single thin lens. Let )n be the
time a particle arrives at this lens on turn n, and let En be
the energy a particle has after traversing the cavity. The
update equations are then

)n�1 � )n � T�En�; (20)

En�1 � En � qNV�)n�1�; (21)

where V�t� is the voltage on a single cavity as a function of
05010
time, q is the charge per particle, and T�E� is the revolution
period as a function of energy. To get the equation for V�t�
we model a cavity as a parallel LC resonator. The current
through the capacitor is IC � CdV=dt and the current
through the inductor is IL �

R
dtV=L. The total current

driving the cavity is then IL � IC. The net current is the
sum of the contributions from the power amplifier and the
beam. Since the fill time of the cavity is long compared
with the acceleration time we take the voltage due the
amplifier to be Va � V̂ sin�!rft� � where V̂ and  are
constants. The voltage due to the beam current, Vb�t� is
identically zero before the beam is injected at t � 0. The
beam image currents on the cavity walls charge the capaci-
tive gap so the negative of the beam current generates the
beam induced voltage,
�

�
R
Q

�
Ib�t� �

1

!rf

dVb
dt

�!rf
Z t

0
Vb�t1� dt1; (22)
where Ib�t� is the beam current as a function of time at the
rf cavity, and R=Q � !rfL � 1=!rfC. The total voltage is
then given by NV � N�Va � Vb�. We consider the three
cases shown in Fig. 19. The lattice and rf parameters are
given in Table III.

Figures 20–22 show the initial and final rf voltage and
the bunch evolution for a total beam charge of 2:5 1C for
the three cases in Table III. For all cases the initial emit-
tance was 0:2eV� s per bunch with an initial energy
spread of �400 MeV. For a lattice with the Ld � 0:8 m
of the major bend, 40% of the energy stored in the cavities
is transmitted to the beam. For Ld � 1:5 m lattice this
fraction is 32%. However, the 960 MV required for Ld �
1:5 m requires more Cornell cavities than lattice periods,
requiring the technology improvements.
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TABLE III. Parameters for the rf simulations.

Parameter

Ld (m) 0.8 1.5 0.8
Circumference (m) 344 328 328
Harmonic number 229 220 220
frfMHz 199.56 201.07 201.07
Number of Cornell cavities 60 80 60
Voltage per turn (MV) 720 960 720
Number of turns 16 12 16
Lattice periods 80 66 75
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FIG. 21. (Color) Initial (dash) and final (full) rf voltage, and
evolution of the bunch on turns 0; 2; . . . 12, for Ld � 1:5 m and
C0 � 328 m.
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FIG. 22. (Color) Initial (dash) and final (full) rf voltage, and
evolution of the bunch on turns 0; 2; . . . 16, for Ld � 0:8 m and
C0 � 328 m.
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FIG. 20. (Color) Initial (dash) and final (full) rf voltage, and
evolution of the bunch on turns 0; 2; . . . 16, for Ld � 0:8 m and
C0 � 344 m.
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V. CONCLUSIONS

We have presented an alternative ‘‘nonscaling triplet
design’’ of the fixed field alternating gradient accelerator.
Some disadvantages like the large momentum offsets,
05010
large circumference, large magnets sizes of the standard
[2] scaling FFAG are improved or eliminated. The accel-
eration of muons for the ‘‘Neutrino Factory Project’’ or the
‘‘Muon Collider Project’’ has to be in a very short time due
to a short muon lifetime. We have shown a lattice design
for muon acceleration from 10 to 20 GeV. The properties of
the lattice and magnet elements are shown at the reference
momentum and through the acceleration range. The best
efficiency with respect to particle stability, cost of the rf
cavities and magnets is obtained when the number of muon
bunch passages during acceleration is less than 15. This
conclusion comes from the acceleration simulations where
significant bunch distortions occur at the last few turns,
especially if a larger number of turns is applied (part of it is
shown in Figs. 20–22, in the bunch shape during the last
few turns). The maximum orbit offsets during acceleration
are within �30< x< 48 mm. This reduces the aperture
and the magnet size compared to the scaling design. We
have studied and compared other possible applications like
proton [33] and electron acceleration [34]. The proton and
electron designs have no restrictions imposed by the muon
lifetime and have shown many advantages with respect to
other ways of accelerations such as multiturn through the
linear accelerator with many arcs for each energy, or
ramping magnetic field in synchrotrons. Other examples
of muon [35], proton, and electron acceleration for the
proof of principle 10 MeV electrons and for electron ac-
celeration up to 10 GeV for e-RHIC (future proposal for
the electron-proton or heavy ion Relativistic Heavy Ion
Collider) are shown in other publications [34].
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