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TE/TM field solver for particle beam simulations without numerical Cherenkov radiation
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The Yee finite-difference time domain method (FDTD) is commonly used in wake field and particle-in-
cell simulations. However, in accelerator modeling the high energy particles can travel in vacuum faster
than their own radiation. This effect is commonly referred to as numerical Cherenkov radiation and is a
consequence of numerical grid dispersion. Several numerical approaches are proposed to reduce the
dispersion for all angles and for a given frequency range, that justifies itself for domains big in all three
directions. On the contrary, in accelerator modeling the transverse dimensions and transverse beam
velocity are small, but it is extremely important to eliminate the dispersion error in the well-defined
direction of the beam motion for all frequencies. In this paper we propose a new two-level economical
conservative scheme for electromagnetic field calculations in three dimensions. The scheme does not have
dispersion in the longitudinal direction and is staircase-free (second order convergent). Unlike the FDTD
method, it is based on a ‘‘transversal-electric/transversal-magnetic’’ (TE/TM)-like splitting of the field
components in time. The scheme assures energy and charge conservation. Additionally, the usage of
damping terms allows suppressing high frequency noise generated due to the transverse dispersion and the
current fluctuations. The dispersion relation of the damping scheme is analyzed. As numerical examples
show, the new scheme is much more accurate on the long-time scale than the conventional FDTD
approach.
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I. INTRODUCTION

The particle-in-cell (PIC) method [1] is an effective
approach for simulation of beam dynamics in accelerators.
The electromagnetic fields in many PIC codes are com-
puted using the finite-difference time domain (FDTD)
method [2,3]. As any numerical mesh approach the
FDTD method suffers from an anisotropic numerical dis-
persion. The numerical wave phase speed is slower than
the physical one. Hence, the high energy particles can
travel in vacuum faster than their own radiation. This effect
is commonly referred to as numerical Cherenkov radiation
[4], which (due to its accumulative character) corrupts the
simulation. Hence, the electromagnetic field computation
for short relativistic bunches in long structures remains a
challenging problem even with the fastest computers
available.

Several approaches [4–8] have been proposed to reduce
the accumulated dispersion error of large-scale three-
dimensional simulations for all angles and for a given
frequency range. These methods require the usage of larger
spatial stencils and a special treatment of the material
interfaces. The increased computational burden justifies
itself for computational domains large in all three dimen-
sions. However, in the accelerator applications the domain
of interest is very long in the longitudinal direction and
relatively narrow in the transverse plane. Additionally, the
electromagnetic field changes very fast in the direction of
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bunch motion but is relatively smooth in the transverse
plane. Hence, it is extremely important to eliminate the
dispersion error in the longitudinal direction for all
frequencies.

As it is well known, the FDTD method at the Courant
limit is dispersion free along the grid diagonals and this
property can be used effectively in numerical simulations
[9]. However, the only reasonable choice in this case is to
take equal mesh steps in all three directions. Alternatively,
a semi-implicit numerical scheme without dispersion in the
longitudinal direction with a simpler conformal treatment
of material interfaces and the usage of nonequidistant grids
has been developed in [10–13].

The scheme described in [11] allows one to solve the
scalar problem and to calculate the wake potential for fully
axially symmetric problems with staircase approximation
of the boundary. In [12,13], a three-level scheme

R �yn�1 � 2yn � yn�1� �Ayn � fn

for the vectorial problem was suggested. The scheme is
based on a second order hyperbolic wave equation for
vector potential. A modification of the uniformly stable
conformal method [14] is used to avoid the ‘‘staircase’’
problem and to obtain a second order convergent algo-
rithm. However, the operator R in the scheme is not self-
conjugate; and therefore an ‘‘energy’’ conservation cannot
be proven theoretically by the standard techniques [15].
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Additionally, the scheme is not economical for general
three-dimensional geometries. The last drawback can be
overcome by splitting methods [16]. However, the absence
of a theoretical proof for an energy conservation has stimu-
lated us to look for an alternative approach in the three-
dimensional case.

In this paper, a new two-level economical conservative
scheme for electromagnetic field calculations in three di-
mensions is presented. The scheme does not have disper-
sion in the longitudinal direction and is staircase-free
(second order convergent). Unlike the FDTD method [2]
and the scheme developed in [12,13], the new method is
based on a ‘‘transversal-electric/transversal-magnetic’’
(TE/TM)-like splitting of the field components in time.
Additionally, it uses an enhanced alternating direction
splitting of the transverse space operator that renders the
scheme computationally as effective as the conventional
FDTD method. Unlike the FDTD alternative direction
implicit (ADI) [17] and low-order Strang [18] methods,
the splitting error in our scheme is only of fourth order.

The new scheme assures energy and charge conserva-
tion. Additionally, the usage of damping terms allows one
to suppress a high frequency noise generated due to the
transverse dispersion and current fluctuations. The disper-
sion relation of the damping scheme is derived and
analyzed.

Numerical examples show that the new scheme is much
more accurate in long-time simulations than the conven-
tional FDTD approach. For axially symmetric geometries,
the new scheme performs at least 2 times faster than the
scheme suggested in [12,13] while achieving the same
level of accuracy.

II. FORMULATION OF THE PROBLEM

At high energies the particle beam is rigid. To obtain the
electromagnetic wake field, the Maxwell equations can be
solved with a rigid particle distribution. The influence of
the wake field on the particle distribution is neglected here;
thus, the beam-surroundings system is not solved self-
consistently and a mixed Cauchy problem for the situation
shown in Fig. 1 should be considered.

The problem reads: for a bunch moving with the velocity
of light c and characterized by a charge distribution �, find
the electromagnetic field ~E; ~H in a domain � which is
FIG. 1. Charged particle bunch moving through an accelerat-
ing structure supplied with infinite pipes.
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bounded transversally by a perfect conductor @�. The
bunch introduces an electric current ~j � ~c� and thus we
have to solve for

r� ~H �
@
@t

~D� ~j; r� ~E � �
@
@t

~B;

r � ~D � �; r � ~B � 0;

~H � ��1 ~B; ~D � " ~E; x 2 �;

~E�t � 0� � ~E0; ~H�t � 0� � ~H0; x 2 ��;

~n� ~E � 0; x 2 @�;

(1)

where ~E0; ~H0 is an initial electromagnetic field in domain
�� and ~n means the normal to the surface @�.

In accelerator applications, the studied structure is usu-
ally supplied by an ingoing pipe, and the analytical solu-
tion in a perfectly conducting cylindrical pipe [19] can be
used as initial condition. If the ingoing pipe is not cylin-
drical the initial field can be found numerically.
III. IMPLICIT TE/TM NUMERICAL SCHEME

A. Finite integration technique

Following the matrix notation of the finite integration
technique [20], the Cauchy problem (1) can be approxi-
mated by the time-continuous matrix equations on a grid
doublet (G; ~G)

C ê��
d
dt
^̂b; CTĥ�

d
dt
^̂d� ^̂j; S ^̂b� 0; S
 ^̂d� �q

(2)

completed by the discrete form of the material relations
(constitutive equations)

ê � M"�1
^̂d; ĥ � M��1

^̂b; (3)

with the discrete inverse permittivity matrix M"�1 and the
inverse permeability matrix M��1 . In the following the
material matrices are assumed to be real and symmetric.

On Cartesian fx; y; zg coordinate grids (like the Cartesian
grid shown in Fig. 2) with an appropriate indexing scheme
the curl and divergence matrices have the block structures:

C �

0 �Pz Py
Pz 0 �Px
�Py Px 0

0
B@

1
CA; S � �Px Py Pz �;

S
 � ��PTx �PTy �PTz �:

The two-banded topological Pfu;v;wg matrices play the role
of discrete partial differential operators [21].

With changing of variables e � M�1=2
"�1

ê, h � M�1=2
��1 ĥ,

j � c�1M1=2
"�1
^̂j, q � �q, � � ct, system (2) and (3) reduces

to the skew-symmetric one
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FIG. 2. Positions of the relativistic charged particle in the finite
integration technique grid in different moments of time. The
scaled time step is chosen equal to the longitudinal mesh step.
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d
d�

e�CT
0h�j;

d
d�

h��C0e; Shh�0; See�q;

(4)

with the new matrices

C 0 � c�1M1=2
��1CM

1=2
"�1




0 �P0z P0y
P1z 0 �P0x
�P1y P1x 0

0B@
1CA;

S e � ��PTxM
�1=2
"�1x

�PTyM
�1=2
"�1y

�PTzM
�1=2
"�1z

�

� �Pex Pey Pez �;

S h � �PxM
�1=2
��1
x

PyM
�1=2
��1
y

PzM
�1=2
��1
z

�

� �Phx Phy Phz �:
System (4) is a time-continuous and space-discrete ap-

proximation of problem (1). For representation (4) a dis-
crete analogue to the analytical equation div curl � 0
holds:

S hC0 � SeCT
0 � 0: (5)

It allows one to show the charge and energy conservation
in the scheme:

d
d�

q� Sej � 0;
d
d�

Shh � 0;
d
d�

W � �he; ji;

W��� � 0:5�eT���e��� � hT���h����:

Note that this energy has a direct correspondence to the
total physical energy of the continuous electromagnetic
fields given by 0:5

R
V�"jEj

2 ���1jBj2�dv [22].
The next step is a discretization of the system in time.

The field components can be split in time and the ‘‘leap-
frog’’ scheme can be applied. Below, two kinds of the
splitting are considered: E=M and TE/TM schemes.
04200
B. Explicit FDTD method based on ‘‘electric-magnetic’’
splitting of the field components in time

Suggested by Yee [2], the ‘‘electric-magnetic’’ (E=M)
splitting of the field components yields the explicit FDTD
scheme (E=M scheme)

en�0:5 � en�0:5 �4�C

0h

n �4�jn;

hn�1 � hn �4�C0en�0:5;
(6)

where 4� is the time step, and the update of the electric
components is shifted by 0:54� relative to the update of
the magnetic components.

Scheme (6) is a two-layer scheme

B
yn�1 � yn

��
�Ayn � fn; (7)

where

B �

� I 0

4�C0 I

	
; A �

� 0 �CT
0

C0 0

	
;

yn �
� en�0:5

hn

	
; fn �

�
�jn

0

	
:

We study the stability of scheme (7) by the energy
inequalities method [15]. Let us take the inner product of
both sides in Eq. (7) with yn�1 � yn:

hB�yn�1 � yn�; yn�1 � yni � ��hAyn; yn�1 � yni

� h��fn; yn�1 � yni: (8)

Using the formula

y n � 0:5��yn�1 � yn� � �yn�1 � yn��

we rewrite relation (8) in the form

h�B� 0:5��A��yn�1� yn�;yn�1� yni

� 0:5��hA�yn�1� yn�;yn�1� yni � h��fn;yn�1� yni:

The second term in the left-hand side is equal to zero since
the operator A is skew symmetric and, therefore,

hQyn�1; yn�1i � hQyn; yni � h��fn; yn�1 � yni; (9)

where the self-adjointness of the operator Q 

B� 0:54�A is used.

The last relation allows one to prove that the condition

Q 
 B� 0:54�A � 0 (9a)

is necessary and sufficient for the stability of the scheme.
Following [22,23], a discrete energy of electromagnetic
fields can be defined as

Wn
E=M � 0:5h�B� 0:54�A�yn; yni

� 0:5�hen�0:5; en�0:5i � hhn;hn�1i�; (10)

and relation (9) can be interpreted as energy conservation
1-3
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law

Wn�1
E=M �Wn

E=M

4�
� �



en�0:5 � en�0:5

2
; jn

�
:

The charge conservation holds in the form:

qn�0:5 � qn�0:5

4�
� Sejn � 0; Sh

hn�1 � hn

4�
� 0:

The condition (9a) can be rewritten as

4�2

4
C0CT

0 � I or 4� �
2��������������
max i

p ;

where f ig are eigenvalues of the matrix C0CT
0 .

It was proven in [23] that relation (9a) holds if

4� � c�1min
"

������������������������������������������������
�"""

4x�2" �4y�2" �4z�2"

s
; " � �i; j; k�:

(11)

Scheme (6) is widely used in electromagnetic modeling.
However, the FDTD algorithm causes nonphysical disper-
sion of the simulated waves in a free-space computational
lattice. The phase velocity of discrete wave modes can
differ from the light velocity by an amount varying with
the wavelength, direction of propagation in the grid, and
grid discretization. With an equidistant mesh, a homoge-
nous material and the time step equal to the right-hand side
of inequality (11), the scheme has zero dispersion along the
grid diagonals. Hence, the zero dispersion in a desired
direction can be achieved by rotation of the mesh.
However, this approach awakes limitations on discretiza-
tion: the only reasonable choice in this case is to take equal
mesh steps in the all three directions. The next difficulty
arises with the attempt to use a conformal method.

Why is zero dispersion for a special direction important?
Unlike plasma problems, the charged particles in accelera-
tors are organized and a direction of motion (the longitu-
dinal direction) can be identified. Hence, the computa-
tional domain is very long in the longitudinal direction
and relatively short in the transverse plane. Additionally,
the electromagnetic field changes very fast in the direction
of motion but is relatively smooth in the transverse plane.

Note also that to be able to model smooth transitions in
geometry we should use a conformal approach without
time step reduction [14].

C. Implicit FDTD method based on transversal-elec-
tric/transversal-magnetic splitting of the field compo-

nents in time

The arguments, stated in the preceding section, force us
to look for a numerical scheme, which (i) does not have
dispersion in the longitudinal direction, (ii) allows the use
of nonhomogeneous meshes in the transverse plane,
(iii) allows the use of a moving mesh without interpolation,
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(iv) allows accurate geometry modeling without a time step
reduction.

In [12,13], a three-level implicit conformal scheme

R �yn�1 � 2yn � yn�1� �Ayn � fn

was suggested. The scheme is based on a vector potential
formulation and allows an economical realization for ax-
ially symmetric geometries. However, the absence of a
theoretical proof for an energy conservation has stimulated
us to look for an alternative approach in the three-
dimensional case.

To find an alternative scheme, let us consider Fig. 2 and
subdue an update procedure to the motion of the bunch. We
assume that a charged particle is moving in the z direction
with the velocity of light. Additionally, let us assume that
our numerical scheme allows to take a time step 4� equal
to the mesh step 4z in the z direction. If at the time �0 the
particle has the position aligned with the left z facet of the
primary grid (see Fig. 2), then at time �0 � 0:54� it will be
aligned with the left z facet of the dual grid and in the time
�0 �4� it will be again aligned with the next z facet of the
primary grid. This suggests that we should replace the
E=M time splitting of the field components in scheme (6)
by a more adequate TE/TM splitting. Indeed, at time �0 it is
reasonable to update the ‘‘TE’’ components ex; ey;hz and
half a time step later, namely, at time �0 � 0:54�, we have
to update the ‘‘TM’’ components hx;hy; ez.

Following these considerations, let us rewrite scheme (4)
in the equivalent form

d
d�

u � D11u�D12v� ju;

d
d�

v � D22v�D21u� jv;
(12)

where

D11 �

0 0 �P0y

0 0 P0x
�P0y�T ��P0x�T 0

0
BB@

1
CCA;

D22 �

0 0 ��P1y�T

0 0 �P1x�T

P1y �P1x 0

0BB@
1CCA;

D12 � �D

21 �

0 P0z 0

�P1z 0 0

0 0 0

0BB@
1CCA; u �

hx
hy
ez

0BB@
1CCA;

v �

ex
ey
hz

0
BB@

1
CCA; ju �

0

0

�jz

0
BB@

1
CCA; jv �

�jx
�jy
0

0
BB@

1
CCA:

Applying the suggested TE/TM splitting of the field in
time to system (12), the following numerical scheme is
obtained:
1-4
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un�0:5 � un�0:5

4�
� D11

un�0:5 � un�0:5

2
�D12vn � jnu;

(13a)

vn�1 � vn

4�
� D22

vn�1 � vn

2
�D21un�0:5 � jn�0:5v :

(13b)

Just like scheme (6), scheme (13) is also a two-layer one

B
yn�1 � yn

��
�Ayn � fn; (14)

where

B �

�I� 0:54�D11 0

4�DT
12 I� 0:54�D22

	
;

A �

�
�D11 �D12
DT
12 �D22

	
; yn �

�un�0:5
vn

	
;

fn �
� jnu
jn�0:5v

	
:

Analyzing relations (14) we conclude that just as for Yee’s
scheme the following relations hold:

A � �A
; Q � Q
; Q � B� 0:54�A:

Likewise we can prove that condition (9a) is necessary
and sufficient for the stability of scheme (14).

As for the E=M scheme the discrete energy in the TE/
TM scheme can be defined by the relation

Wn
TE=TM � 0:5h�B� 0:54�A�yn; yni

� 0:5�hun�0:5;un�0:5i � hvn �4�D21un�0:5; vni�

� Wn
E=M �O�4�2�:

The relation (9) can be interpreted as energy conserva-
tion law

Wn�1
TE=TM �Wn

TE=TM

4�
� �0:5h�en�0:5x � en�0:5x ; en�0:5y

� en�0:5y ; en�1z

� enx�; �jnx; jny; jn�0:5z �i:

Note that the energy Wn
TE=TM, just like the energy Wn

E=M

defined by relation (10), is a second order accurate ap-
proximation to the total physical energy of the continuous
electromagnetic field. If the right-hand side in scheme (14)
vanishes, the scheme is energy conserving:

Wn
TE=TM � W0

TE=TM:

The charge conservation holds in the form:

�qn�0:5e � �qn�0:5e

��
� Se �jn � 0;

�qn�1h � �qnh
��

� 0;
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�q n�0:5
e � Pex

en�1x � enx
2

� Pey
en�1y � eny

2
� Pezen�0:5z ;

�jn � �0:5�jn�0:5x � jn�0:5x �; 0:5�jn�0:5y � jn�0:5y �; jnz �T;

�q n
h � Phx

hn�0:5x � hn�0:5x

2
� Phy

hn�0:5y � hn�0:5y

2
� Phzhnz :

In order to prove this relation, let us multiply Eq. (14) by
the matrix

S �

�
S11 S12
S21 S22

	



�
Phx Phy 0
0 0 Pez

0 0 Phz
Pex Pey 0

	
:

It results in the equation

SB
yn�1 � yn

��
� Sfn;

where the equality SA � 0 was used.
The product SB can be written in the form

SB �

�
S11 S12�I� 0:5��D22�

S21�I� 0:5��D11� S22

	
:

Substitution of the relation

0:5SB�yn�1 � yn�

�

�
0:5S11�un�0:5 � un�0:5� � S12vn

0:5S22�vn�1 � vn� � S21�vn � 0:5��jnu�

	

in the equation

���1SB
�
yn�1 � yn

2
�

yn � yn�1

2

	

�

�
0

0:5S22�jn�0:5v � jn�0:5v � � 0:5S21�jnu � jn�1u �

	
results in the above stated charge conservation law.

The stability condition (9a) can be rewritten in the form

I �
4�2

4
D12D


12�0 or I�
4�2

4
Piz�Pi
z ��0; i�0;1:

(15)

The last relation resembles the well-known stability
condition of the explicit FDTD scheme for the one-
dimensional problem. In the following an equal mesh
step 4z in the z direction will always be assumed. Then
for a vacuum domain with staircase approximation of the
boundary the stability condition reads

4� � 4z: (16)

With the time step 4� equal to the longitudinal mesh
step 4z, scheme (13) does not have dispersion in the
longitudinal direction (see the dispersion relation in
Sec. III E). Relation (15) does not contain information
about the transverse mesh. Hence, the transverse mesh
can be chosen independently from stability considerations.
1-5
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For a relativistic bunch a mesh moving together with the
bunch can be used. The field ahead of the bunch is zero
and, as the scaled time step is equal to the longitudinal
mesh step, the complete information for updating of the
last mesh layer is available, too. This means that interpo-
lation procedures are avoided and the dispersion in the
longitudinal direction is equal to zero. The results with
the moving mesh for staircase approximation of the ge-
ometry are fully equivalent to the stationary global mesh
approach.

So far we have found a scheme which with staircase
geometry approximation fulfills the first three require-
ments formulated above. However, in a general case the
staircase scheme is only first order accurate. In order to
overcome this problem and avoid reduction of the stable
time step, the uniformly stable conformal approach de-
scribed in [13,14] will be used.
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With the latter approach the scheme possesses the de-
sired features. However, it is implicit and noneconomical.
An economical scheme modification, based on operator
splitting, will be considered in Sec. IV

D. Noise control in the TE/TM scheme with implicit
enforcement of charge conservation

The derived TE/TM scheme is energy conserving. It
does not have dispersion in the longitudinal direction.
However, the dispersion in other directions and current
fluctuations can result in high frequency noise. To over-
come the problem we use the idea of transverse current
adjustment [24,25]. Our modification of this approach
allows us to suppress the noise without introducing disper-
sion in the direction of bunch motion.

In order to obtain a damping the TE/TM scheme is
changed to the form
un�0:5 � un�0:5

4�
� D11

�
un�0:5 � un�0:5

2
���d

un�0:5 � un�0:5

��

�
�D12vn � jn�du ;

vn�1 � vn

4�
� D22

�
vn�1 � vn

2
� ��d

vn�1 � vn

��

�
�D21un�0:5 � jn�0:5�dv ; d 2 �0; 0:5�;

(17)

or in matrix form

B
yn�1 � yn

��
�Ayn � fn; A �

�
�D11 �D12
DT
12 �D22

	
; yn �

�
un�0:5

vn

	
; fn �

�
jn�du

jn�0:5�dv

	
;

with the new matrix

B �

�
I� 0:5%4�D11 0

4�DT
12 I� 0:5%4�D22

	
and % � �1� 2d�:
The above equations are equivalent to changing the time
centering of the transverse part of the curl operator. These
modifications have the additional benefit that they are
trivial to implement in the implicit scheme (only some
coefficients in the scheme are changed).

In scheme (17) the matrix Q � B� 0:54�A is not self-
conjugate and the energy dissipates. However, the charge
conservation holds in the form:

�qn�0:5e � �qn�0:5e

��
� Se �jn � 0;

�qn�1h � �qnh
��

� 0;

�q n�0:5
e � Pex

%en�1x � �2� %�enx
2

� Pey
%en�1y � �2� %�eny

2
� Pezen�0:5z ;

�j n � �0:5�%jn�0:5�dx � �2� %�jn�0:5�dx �; 0:5�%jn�0:5�dy

� �2� %�jn�0:5�dy �; jn�dz �T;
�q n
h � Phx

%hn�0:5x � �2� %�hn�0:5x

2

� Phy
%hn�0:5y � �2� %�hn�0:5y

2
� Phzhnz :

It can be proven from consideration of the equation

SB
%�yn�1 � yn� � �2� %��yn�1 � yn�

2��

� S
%fn � �2� %�fn�1

2
:

The modified TE/TM scheme allows for controllable by
parameter d damping of the high frequency noise.

E. Dispersion in the damping TE/TM scheme

Following the conventional procedure [26], the disper-
sion relation for the damping scheme can be obtained in the
form
1-6
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sin2�

��2
� �cos2�� 4d sin��i cos�� d sin���

�

�
sin2Kx

�x2
�
sin2Ky

�y2

	
�
sin2Kz

�z2
;

where � � 0:5!��, Kx � 0:5kx�x, Ky � 0:5ky�y ,
Kz � 0:5kz�z.

With the magic time step�� � �z, the scheme does not
have dispersion in the longitudinal direction. Indeed, the
scheme is able to propagate the full field pattern of the
0 1 2 3
0

0.5

1

1.5

2

2.5

3

xk ∆

Reω ∆

FIG. 3. Dispersion and damping in the transverse �kx; ky; kz� � �1; 0
d � 0 (dashed curve), d � 0:125 (solid curve), and d � 0:25 (dot-
different values of the parameter d.
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relativistic bunch very accurately in the vacuum perfectly
conducting pipe. It was tested for the shortest rectangular
bunch with the length equal to the mesh step �z. Yee’s
E=M scheme shows in this test the high frequency noise
and fast degradation of the pattern due to the longitudinal
dispersion.

In order to estimate the dispersion in the transversal
plane we consider a plane wave with the wave vector
�kx; ky; kz� � �1; 0; 0�. For the mesh size �x � �� � �
the dispersion relation reads
!� � 2 arccos
�

cosec�0:5kx�� � 2id��������������������������������������������������������������������������������������������������
1� 4d2 � 4id cosec�0:5kx�� � cosec2�0:5kx��

p 	
:

Figure 3 shows the dispersion for different values of the
damping parameter d. As can be seen from the figure, the
case d � 0:125 allows an effective damping of high fre-
quency waves without deterioration of the dispersion
curve.

The transversal velocity components of the charges in
accelerators are nonrelativistic and the transverse disper-
sion does not cause numerical Cherenkov radiation.

IV. AN ECONOMICAL TE/TM SCHEME BASED ON
TRANSVERSE OPERATOR SPLITTING

In order to find an economical scheme, three different
schemes based on an operator splitting were considered in
[27] and it was shown that the ADI2 approach results in an
accurate numerical method with moderate restriction on
the time step.

The numerical scheme using the ADI2 splitting in three
dimensions has the form
B
yn�1 � yn

��
�Ayn � fn; (18)

where

B�

�I�0:54�D11��1ADI2 0

4�D

12 I�0:54�D22��2ADI2

	
;

A�

�
�D11 �D12
D

12 �D22

	
; yn�

�un�0:5
vn

	
; fn�

� jnu
jn�0:5v

	
:

As for the TE/TM scheme (13) the relations

A � �A
; Q � Q
; Q � B� 0:54�A

hold. However, the stable time step does now not only
depend on the longitudinal mesh step 4z but also on the
minimal mesh step in the transverse plane and the stability
condition reads [27]

4� � min�24xi; 24yj;4z�: (19)
0 1 2 3
-0.1

0

0.1

0.2

0.3

0.4

xk ∆

Imω∆

0d =

1/8d =

1/ 4d =

; 0� direction. The left-hand figure shows the dispersion curve for
dashed curve). The right-hand figure presents the damping for
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The last condition does not reduce the applicability of the scheme, since the field is relatively smooth in the transverse
plane and a much coarser grid can be used here. Constraint (19) can be relaxed and replaced by (16) if theATI�p� method is
used [27].

So far we have not defined the ADI2 terms in relation (18). Instead of doing this, let us rewrite scheme (18) explicitly

ĥn�0:5x � ĥn�0:5x

4�
� M��1

x

�
Pzêny � Py

ên�0:5z � ên�0:5z

2

�
; (20a)

ĥn�0:5y � ĥn�0:5y

4�
� �M��1

y

�
Pzênx � Px

ên�0:5z � ên�0:5z

2

�
; (20b)

We
ADI2

ên�0:5z � ên�0:5z

4�
� M"�1z P


y

�
ĥn�0:5x �

��
2

M��1
x
�Pzêny � Pyên�0:5z �

	

�M"�1z P

x

�
�ĥn�0:5y �

��
2

M��1
y
��Pzênx � Pxên�0:5z �

	
�M"�1z

^̂jz; (20c)

ên�1x � ênx
4�

� M"�1x

�
P

zĥ

n�0:5
y � P


y
ĥn�1z � ĥnz

2

�
; (21a)

ên�1y � êny
4�

� �M"�1y

�
P

zĥ

n�0:5
x � P


x
ĥn�1z � ĥnz

2

�
; (21b)

Wh
ADI2

hn�1z � hnz
4�

� M��1
z
Py

�
ênx �

��
2

M"�1x �P

zĥ

n�0:5
y � P


yĥ
n
z �

	

�M��1
z
Px

�
�êny �

��
2

M"�1y ��P

zĥ

n�0:5
x � P


xĥ
n
z �

	
; (21c)

where

W h
ADI2 �

�
I�

��2

8
M��1

z
PyM"�1x P


y

	�
I�

��2

4
M��1

z
PxM"�1y P


x

	�
I�

��2

8
M��1

z
PyM"�1x P


y

	
;

W e
ADI2 �

�
I�

��2

8
M"�1z P


yM��1
x
Py

	�
I�

��2

4
M"�1z P


xM��1
y
Px

	�
I�

��2

8
M"�1z P


yM��1
x
Py

	
:

If the material matrices M��1 ;M"�1 are diagonal, then
systems(20c) and (21c) only have products of tridiagonal
matrices on the left-hand side and can be solved easily. For
example, Eq. (20c) leads to the set of equations

�I� 0:5A�u1 � Fn; �I� B�u2 � u1;

�I� 0:5A�ên�0:5z � �I� 0:5A�ên�0:5z � u2;
(22)

where the vector Fn denotes the right-hand side of
Eq. (20c) and

A �
��2

4
M"�1z P


yM��1
x
Py;

B �
��2

4
M"�1z P


xM��1
y
Px:

(23)

However, the conformal scheme with the diagonal material
matrices reduces the stable time step. To restore stability
condition (19) and the possibility to use the time step
4� � 4z, we will use a modification of the uniformly
stable conformal method [14] as described in detail in
[13]. The last approach results in modified nondiagonal
04200
but symmetric matrices M��1
x
;M��1

y
. Other material ma-

trices in scheme (20) and (21) remain diagonal. This means
that we do not encounter difficulties in the solution of
Eq. (21c). However, solving Eq. (20c) requires additional
efforts since the matrices (23)are not tridiagonal.

To overcome the problem we modify system (22) as
follows:

�I� 0:5A0�u1 � Fn � �A1 � B1��ên�0:5z � ên�0:5z �;

�I� B0�u2 � u1;

�I� 0:5A0�ên�0:5z � �I� 0:5A0�ên�0:5z � u2; (24)

where

A0�
��2

4
M"�1z P


yM0
��1
x
Py; B0�

��2

4
M"�1z P


xM0
��1
y
Px;

A1�A�A0; B1�B�B0;

and M0
��1
x
;M0

��1
y

are diagonal parts of the material matri-

ces. System (24) can be resolved iteratively
1-8
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Gi �

�
0 i � 0
��A1 �B1��ên�0:5;i�1z � ên�0:5z � i > 0;

�I� 0:5A0�ui1 � Fn �Gi; �I� B0�ui2 � ui1;

�I� 0:5A0�ên�0:5;iz � �I� 0:5A0�ên�0:5z � ui2; i � 0; 1; 2; . . . ; p:

(25)

Note that the equation for zero iteration [which we refer to as the TE/TM-ADI2(0)], just as schemes (22) and (24), results
in an approximation of the continuous problem (1) with the error O�j4~rj2 �4�2�. However, the TE/TM-ADI2(0) scheme
may be unstable for general geometries and the required time step 4� � 4z. The first iteration [which we refer to as the
TE/TM-ADI2(1) scheme] solves the stability problem for all considered cases.

In the next section we will study properties of the scheme (18)–(25) for the case of rotationally symmetric geometries. In
the last section results for the fully three-dimensional scheme will be presented.

V. VERIFICATION OF THE TE/TM SCHEME AND APPLYING IT TO ACCELERATOR PROBLEMS

A. Realization of TE/TM and TE/TM-ADI2 schemes for rotationally symmetric geometries

In this section we describe the realization of the TE/TM scheme for the case of rotationally symmetric geometries. We
consider this case separately since the TE/TM scheme (13) is already economical and the application of the splitting
method considered in the previous section can be avoided.

For a bunch moving at the speed of light c at an offset a from and parallel to the axis of a rotationally symmetric
structure, the source current ~j can be represented as

~j �
~c��z=c� t�,�r� a�

-a

X1
m�0

cosm’
1� ,m0

;

where ��s� is the longitudinal charge distribution and m is the azimuthal mode number.
Numerical scheme (13) for an azimuthal mode number m has the form

ĥn�0:5’ � ĥn�0:5’

4�
� M��1

’

�
Pzênr � Pr

ên�0:5z � ên�0:5z

2

�
;

ĥn�0:5r � ĥn�0:5r

4�
� �M��1

r

�
Pzên’ �m

ên�0:5z � ên�0:5z

2

�
;

We
CN

ên�0:5z � ên�0:5z

4�
� M"�1z P


r

�
ĥn�0:5’ �

��
2

M��1
’
�Pzênr � Prên�0:5z �

	

�M"�1z P

’

�
�ĥn�0:5r �

��
2

M��1
r
��Pzên’ �mên�0:5z �

	
�M"�1z

^̂j
n
z ;

ên�1’ � ên’
4�

� M"�1’

�
P

zĥ

n�0:5
r � P


r
ĥn�1z � ĥnz

2

�
;

ên�1r � ênr
4�

� �M"�1r

�
P

zĥ

n�0:5
’ �m

ĥn�1z � ĥnz
2

�
;

Wh
CN

hn�1z � hnz
4�

� M��1
z
Pr

�
ên’ �

��
2

M"�1’ �P

zĥ

n�0:5
r � P


rĥ
n
z �

	

�M��1
z
P’

�
�ênr �

��
2

M"�1r ��P

zĥ

n�0:5
’ �mĥnz �

	
;

(26)
where

Wh
CN�

�
I�

��2

4
M��1

z
PrM"�1’ P


r�
��2

4
m2M��1

z
M"�1r

	
;

We
CN�

�
I�

��2

4
M"�1z P


rM��1
’
Pr�

��2

4
m2M"�1z M��1

r

	
;

(27)

and the fact that P’ � mI is used.
If the material matrices M��1 ;M"�1 are diagonal, then

operators (27) are tridiagonal matrices and equations
involving them can be solved easily. For the case of non-
diagonal matrices M��1

’
;M��1

r
, we will proceed in the

same way as described at the end of the previous section.
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We rewrite the equation with the operator We
CN in the

form

�I�A0 � B0��ên�0:5z � ên�0:5z �

� Fn � �A1 � B1��ên�0:5z � ên�0:5z �; (28)

where

A0�
��2

4
M"�1z P


rM0
��1
’
Pr; B0�

��2

4
m2M"�1z M0

��1
r
;

A1�A�A0; B1�B�B0;

and M0
��1
’
;M0

��1
r

are diagonal parts of the material
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matrices. System (28) can be solved iteratively

Gi �

� 0 i � 0

��A1 �B1��ên�0:5;i�1z � ên�0:5z � i > 0;
�I�A0 � B0�ên�0:5;iz � �I�A0 � B0�ên�0:5z � Fn �Gi;

i � 0; 1; 2; . . . ; p:

(29)

Scheme (26)–(29) will be referred to as TE=TM�p�. Note that just as for the TE=TM-ADI2�p� scheme, it is sufficient to
perform only one iteration [scheme TE/TM(1)] to obtain a stable solution.

As noted at the beginning of this section, for geometries of revolution we do not need to apply the transverse operator
splitting. However, in order to check the achieved accuracy, the TE=TM� ADI2�p� scheme was implemented for
rotationally symmetric geometries, too.

As a test example we consider free oscillations of the TM mode [28]

H’�r; 3; ’; �� � k
�kr�0:5

r
J1:5�kr�

@
@3

P11� cos�3�� cos�’� sin�k��; Hr�r; 3; ’; �� � 0;

H3�r; 3; ’; �� � k
�kr�0:5

r sin�3�
J1:5�kr�P11� cos�3�� sin�’� sin�k��; ka � 6:116 764;
in a sphere of radius a � 1.
The initial field is converted to the cylindrical coordi-

nates and set in the entire calculation domain. After a
period of time T �

���
2

p
a we compare the numerical solu-

tion with the exact one. A series of equidistant meshes with
the cell sizes 4r � 4z � h is used.

Figure 4 shows the results for the time step 4� � 4z
and for the mesh resolution a=h � 10. The left-hand figure
shows convergence of the noniterative schemes TE/TM(0)
(26)–(29) and TE/TM-ADI2(0) (18)–(25). Both schemes
achieve the same rate of convergence. The right-hand
figure shows conservation of the discrete energy EnTE=TM
for the schemes. With an increase of the number of iter-
ations p the discrete energy in the TE=TM�p� scheme
converges to the constant value of the noniterative TE/
TM scheme. However, in order to see the same effect for
10 100

0.01

0.1

1

2a h

TE/TM(0)

( )O h

3( )O h
2( )O h

TE/TM-ADI2(0)

( )hδ T
nΕ

FIG. 4. The left-hand figure shows second order convergence of t
sphere. The right-hand figure presents conservation of the discrete e
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the TE=TM-ADI2�p� scheme, the energy norm has to be
changed to the one with operator Q from the noniterative
scheme (18). We do not show this result here, since it
already follows from Fig. 4 that the considered schemes
are stable for the time step 4� � 4z, when they do not
have dispersion in the longitudinal direction.

As a further test example we use the circular collimator
structure shown on the left-hand side of Fig. 5 (with inner
radius b not indicated in the figure). Figure 6 shows the
results for the dipole wake field (m � 1) and compares the
TE/TM scheme results to the ones obtained with the clas-
sical Yee’s scheme (E=M scheme). The latter results are
calculated with the help of code ABCI [29] (FDTD method
with triangular approximation of the boundary). The geo-
metric parameters are a � 35 mm, L � 20 cm, and b �
c � 2 mm, where b is the inner radius of the collimator.
0 200 400 600 800 1000
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1.004

n
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he TE/TM(0) (solid line) and TE/TM-ADI2(0) schemes for the
nergy by different methods for 4� � 4z.
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FIG. 5. The geometry of round and rectangular collimators.
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The left-hand drawing in Fig. 6 shows the transversal
dipole wake potential [30]

W1
?�s� � jW1

?�s; r; 3 � 0�jr�1;

W1
?�s; r; 3� �

1

Q

Z 1

�1
�E? � �v� B�?�t��z�s�=vdz

for the collimator with L � 20 cm and a relativistic
Gaussian bunch with rms length 9 � 1 mm. The solid
curves show the results for ABCI and the dashed ones
present the results for the new scheme.

In the right-hand figure the transversal dipole loss factor

L1? �
1

Q

Z 1

�1
W1

?�s���s�ds

for the collimator is shown for different mesh resolutions
9=h, where h � 4z � 4r is the mesh step. The error
compared to the reference value (obtained with the finest
mesh resolution) is also shown in the figure. The dashed
line shows the results for the TE/TM code and the solid line
for ABCI.
FIG. 6. The transverse dipole wake function (left) and loss factor (r
results for the E=M scheme (Yee’s scheme) and the dashed lines di
given regarding the reference value (marked as ‘‘ref.’’ on the graph
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From the above example we see that the reference code
ABCI demands a much more dense mesh for the same
accuracy.

Finally, we show in Fig. 7 (left) the dipole wake poten-
tials of a Gaussian bunch with 9 � 1 mm for the TESLA
cryomodule of total length �11 m [31]. The cryomodule
contains 8 cavities and 9 bellows whose geometries are
outlined in Fig. 8. The iris’ radius is 35 mm and the beam
tube’s radius is 39 mm.

The moving mesh in the last example covers the bunch
longitudinally in the range from �59 to 1009. The length
of the moving mesh is only 0.105 m, which results in a
drastic reduction of the computational demands (storage
and CPU time) compared to the stationary mesh of total
length �11 m.

The right-hand side of Fig. 7 shows the difference
between the results obtained by the TE/TM(1) and TE/
TM-ADI2(1) schemes and the reference result calculated
with the vector potential method (POT-2.5) described in
[12,13]. The presented results are calculated with the mesh
resolution 4z � 4r � 9=5. It can be seen that the new
ight) for the collimator with L � 20 cm. The solid lines show the
splay the results for the TE/TM scheme. The relative errors are
s) calculated by the TE/TM method with the finest mesh.
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FIG. 7. The left-hand figure shows the transverse wake potential for the TESLA cryomodule excited by a Gaussian bunch with a rms
width 9 � 1 mm as obtained from the reference code [16]. In the right-hand figure the solid line shows the difference between the
reference potential and the one obtained with the help of the TE/TM(1) scheme, and the dashed line shows likewise the result for the
TE/TM-ADI2(1) scheme.
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methods introduced in this paper produce numerical results
of the same level of accuracy as the vector potential
method (POT-2.5). However, the TE/TM method is at least
2 times faster due to the smaller number of required
operations.

B. Numerical examples calculated with the three-
dimensional TE/TM-ADI2 scheme

Finally, we discuss the results of numerical computa-
tions with the fully three-dimensional realization of the
TE=TM-ADI2�p� scheme (18)–(25). Two test problems
are considered.

Before presentation of the numerical results we want to
discuss briefly the realization of the scheme in the code. To
be able to calculate long structures, we should spare the
computer memory and not keep all geometric information.
For this purpose we cut the long structure in short blocks,
FIG. 8. The geometry of the TESLA c

042001
discretize them, and keep the geometric information in the
external memory. The information will be loaded only at
the instant when the head of the bunch arrives at a geo-
metric block and it will be deleted after the bunch (together
with the moving mesh) has passed through the block.

To be able to check the accuracy of the three-
dimensional realization of the TE/TM scheme we have
chosen rotationally symmetric structures for numerical
tests. However, in the three-dimensional calculations the
symmetry of the structures was not exploited.

In the first example we consider a structure consisting of
the 20 TESLA cells [31] bounded by infinite ingoing and
outgoing pipes with a diameter of 35 mm.

Figure 9 shows the longitudinal wake potential [30]

Wk�s; x; y� � �
1

Q

Z 1

�1
�Ez�x; y; z; t��t��z�s�=vdz
avity (bottom) and the bellow (top).
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FIG. 9. Comparison of the wake potentials obtained by differ-
ent methods for the structure consisting of 20 TESLA cells
excited by a Gaussian bunch with 9 � 1 mm. The solid line
shows the reference solution obtained with the help of the
scheme described in [13]. The dashed line describes the solution
obtained by classical Yee’s scheme with mesh resolution of 5
mesh steps per 9. The dotted line describes the solution obtained
by Yee’s scheme with 2 times denser resolution in the longitu-
dinal direction. The picture shows coincidence of the reference
result (solid line) with the results on the coarse mesh obtained
from the 3D TE/TM code (gray points).

FIG. 10. Comparison of the wake potentials obtained by differ-
ent methods for the round collimator excited by a Gaussian
bunch with 9 � 1 mm. The solid line shows the reference
solution obtained with the help of the scheme described in
[13]. The dashed line shows the solution obtained by Yee’s
scheme with a mesh resolution of 5 mesh steps per 9. The
dotted line describes the solution obtained by Yee’s scheme with
a 2 times denser resolution. The picture shows coincidence of the
reference result (solid line) with the results on the coarse mesh
obtained from the 3D TE/TM code (gray points).
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for a Gaussian bunch with a rms length 9 � 1 mmmoving
on the axis. The solid line (POT-2.5D) corresponds to the
reference solution obtained with the vector potential
method [13]. The two other lines show results obtained
with different mesh resolutions from the TBCI code [32,33]
based on the classical Yee’s scheme (E=M-2:5D). The
oscillations that appear are due to the dispersion error of
the Yee’s scheme. The gray points represent the result
obtained by the three-dimensional scheme (18)–(25)
(marked as TE/TM-3D).

It can be seen that the three-dimensional TE/TM-ADI2
scheme produces very accurate results even for the coarse
mesh. Indeed, the three-dimensional code uses only 2.5
mesh points per 9 in the longitudinal direction. In the
transverse direction the mesh steps are even 3 times bigger.

As the next example we use the round collimator again.
Figure 10 demonstrates the wake potential for the collima-
tor with parameters a � 30 mm, b � 2 mm, c � 50 mm,
L � 200 mm and a Gaussian bunch with a rms length 9 �
1 mm. Again the high accuracy of the suggested three-
dimensional scheme can be seen.

Finally, in the last example we calculate the longitudinal
wake potential for the fully three-dimensional rectangular
collimator shown in Fig. 5 on the right. Figure 11 demon-
strates the wake potential for the collimator with parame-
ters a � 30 mm, b � 5 mm, d � 20 mm, c � 50 mm,
L � 200 mm and a Gaussian bunch with a rms length 9 �
5 mm moving on the axis. Figure 11 (left) compares the
wake potential on the axis for the rectangular (solid line)
042001
and the round (dashed line) collimator. The round collima-
tor has the same geometric parameters and an aperture with
a radius of b � 5 mm. As is well known, the wake poten-
tial of a round collimator does not change in the transverse
plane. Quite contrary, for the rectangular collimator a
variation of the wake potential in the transverse plane is
expected. Indeed, this can be observed in Fig. 11 (right),
where the energy gain for a test particle moving at the
position s � 9 behind the bunch center is shown.

C. Cherenkov radiation calculated with the damping
scheme

In the preceding sections the numerical examples for the
scheme without damping were shown. In this section we
show the damping of the numerical noise on the example
suggested in [25].

Figure 12 shows Cherenkov radiation emitted from a
particle traveling faster than the local phase velocity of
light. In this simulation an electron is moving in a perfectly
conducting pipe filled with a dielectric (" � 4"0). The tube
has a radius of 1 cm. The electron travels at twice the local
phase velocity of light. This is a very strenuous test as the
motion excites very short wavelengths. A noisy nonphys-
ical wake is seen behind the particle. Damping schema
(17), in contrary, produces an accurate and quiet wake.

VI. CONCLUSION

A new fully three-dimensional implicit scheme for the
calculation of electromagnetic fields in the vicinity of
-13



FIG. 11. The left-hand figure shows the longitudinal wake potential on the axis for a rectangular (solid line) and a circular (dashed
line) collimator and a Gaussian bunch with 9 � 5 mm. In the right-hand picture the energy gain for a test particle moving at the
position s � 9 behind the bunch center is shown.
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relativistic charged bunches was introduced. As shown by
several numerical examples, the scheme is able to model
curved boundaries with high accuracy and allows for a
nondeteriorating calculation of the field solution for very
long simulation times.

To develop the new scheme we proceeded as follows:
first, we replaced the E=M splitting of Yee’s scheme by the
TE/TM splitting. This resulted in an implicit scheme re-
quiring the solution of the Crank-Nicholson equation for
the two-dimensional scalar wave equation. We then intro-
duced the TE/TM scheme based on the ADI2 splitting
method and studied several test examples. In order to avoid
reduction of the maximal time step and to obtain a scheme
FIG. 12. Cherenkov radiation emitted by an electron traveling
through a dielectric pipe at twice the local speed of light. The
upper figure presents the result obtained without damping. The
bottom figure outlines the result for the scheme with the damping
parameter d � 0:125.
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without dispersion in the longitudinal direction, the con-
formal approach with nondiagonal material matrices was
exploited. It requires the application of iterative proce-
dures. However, already the first iteration produces an
accurate and stable solution for all considered examples.

The implicit TE/TM scheme assures energy and charge
conservation. Usage of damping terms does not violate the
charge conservation and allows one to suppress the high
frequency noise generated due to the transverse dispersion.
The dispersion relation of the damping scheme was
analyzed.

The high overall accuracy of the scheme was demon-
strated for realistic collimator problems. The scheme al-
lows one to use a moving mesh and thus to calculate wake
fields of very short bunches for a range of problems, for
which presently available 3D codes experience severe
problems.
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