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Improving selectivity of free electron maser with 1D Bragg resonator using coupling
of propagating and trapped waves
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A novel scheme of the Bragg free-electron maser (free-electron laser) [FEM (FEL)] based on the
coupling of an amplified propagating wave with a quasicutoff mode trapped inside the cavity is
considered. The cutoff mode is essential for FEM self-excitation while energy extraction from the
electron beam in the steady-state oscillation regime is almost completely determined by the propagating
mode, synchronous to the beam. The main advantage of the discussed scheme over the traditional scheme
of Bragg FEM is improving selectivity over the transverse index. Based on the proposed feedback scheme
the advance of the JINR-IAP FEM to the shorter wavelength is discussed.
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FIG. 1. (Color) Scheme of Bragg FEM based on the coupling of
propagating (green line) and cutoff (blue line) modes on the
cylindrical waveguide with sidewalls corrugations. Because of a
small variation of the waveguide mean radius the cutoff mode is
trapped inside the cavity.
I. INTRODUCTION

A number of oscillator schemes based on the interaction
between propagating and quasicutoff trapped waves are
known in microwave electronics. One of them is a scheme
of a gyrotron [1] where an electron beam excites a quasi-
cutoff mode while the output of radiation is provided by the
propagating wave coupled with the trapped one via corru-
gation of the waveguide sidewalls (in the case of helical
corrugation, a similar scheme has been used recently for
the band enhancement in gyroamplifiers [2]). One more
example is a scheme of cyclotron resonance maser (CRM)
[3] and free-electron laser (FEL) [4] in which the electron
beam interacts both with a propagating wave (at the first
harmonic) and a cutoff mode wave (at the second or third
harmonic). In this case direct coupling of electromagnetic
waves is absent and the waves interact via electron beam
modulation. The trapped cutoff mode provides an oscilla-
tor self-excitation while the propagating wave is respon-
sible for energy extraction in a steady-state regime.

In this paper we discuss a new variant of free-electron
maser (FEM) based on the interaction between a propagat-
ing wave and a quasicutoff trapped wave [5]. In a sug-
gested scheme a beam of wiggling electrons interacts only
with a propagating wave, but the latter is coupled to a
quasicutoff mode. This coupling could be realized by
either helical or azimuthally symmetric periodical wave-
guide corrugation. The quasicutoff mode provides the
feedback mechanism leading to the self-excitation of the
whole system while the efficiency in the steady-state re-
gime of generation is almost completely determined by the
interaction with the propagating wave, synchronous to the
beam.

The main advantage of the suggested scheme is the
provision of a higher selectivity over the transverse index
than a traditional scheme of FEM with Bragg resonators
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where a feedback wave propagates in a backward direction
with rather high group velocity [6]. At the same time, this
scheme is able to provide higher Doppler up-shift in com-
parison with the scheme discussed in [3,4], where the
frequency is restricted by a number of the operating har-
monic. The novel feedback scheme will be tested at a
JINR-IAP FEM [7,8] as a method of increasing oscillation
frequency for fixed transverse size of interaction space.

II. BASIC MODEL

Let us consider the simplest model of FEM oscillator
exploiting the coupling of a propagating and a cutoff mode
on periodical corrugation. Because of a small variation of
the waveguide mean radius at the boundaries of the inter-
action space the cutoff mode is trapped inside the cavity as
shown in Fig. 1. The field of this mode can be presented in
the form

~E � Re�B�t� ~EB�r?�f�z�e
�imB’ei!0t�: (1)
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The forward propagating wave

~E � Re�A�t; z� ~EA�r?�e
�ih0z�imA’ei!0t� (2)

is synchronous to the electrons moving in the �z direction.
A corresponding synchronism condition can be presented
as

!0 � h0vjj 
 �; (3)

where � is the frequency of particle oscillations in a
spatially periodic undulator field for FEM (FEL) or in a
homogenous magnetic field for the cyclotron resonance
maser. In (1) and (2) !0 is the carrier frequency, which is
chosen equal to the eigenfrequency of the trapped mode,
~EA;B�r?� functions specify the transverse structure of the

modes.
Helical corrugation

r � a� a1 cos� 
hz� 
m’� (4)

(a is a mean radius of the waveguide, 
h � 2�=d, d and 2a1
are the period and the depth of the corrugation, correspond-
ingly) under the Bragg resonance conditions

h0 
 
h; (5a)


m � mA �mB (5b)

provides the coupling of the waves (1) and (2). A disper-
sion diagram, showing the coupling of partial waves is
presented in Fig. 2. Taking into account that the eigenfre-
quency of the feedback mode (1) is close to the cutoff
frequency !0 
 !c � �c�B=a�, from (5a) we obtain a
relation on the geometrical parameters of the system
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FIG. 2. (Color) Dispersion diagrams, showing the coupling of
propagating (green curve) and cutoff (blue curve) partial waves.
The red line is an electron wave ! � �� hvjj.
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where �A;B are the roots of Bessel functions (or their
derivatives) corresponding to the modes of a regular
waveguide.

Assuming that the quality factor Q of the trapped mode
(1) is high, one can consider its longitudinal structure f�z�
fixed, unlike the longitudinal structure of the propagating
mode A�z�, which is changed under the influence of the
electron beam. In this case the process of amplification of
synchronous wave and the mutual coupling of the propa-
gating (2) and trapped (1) modes can be described by the
following system of equations:

@Â
@Z

� i�B̂f�Z�ei�Z � J; (7a)

@B̂
@�

�
1

2Q
B̂ � �i�

Z L

0
Â�Z�e�i�Zf��Z�dZ: (7b)

Here J � 1
�

R
2�
0 e�i �Z�d 0 is an amplitude of rf current,

which is determined by the electron motion equations,
where  � !0t� h0z�

R
�dt is the electron phase in

the field of the synchronous wave, and  � !0t0 is the
initial phase. In the case of relatively small changes in
electron energies the averaged motion equations can be
presented in the form [6]

@2 

@Z2
� Re�Â�Z�ei �: (8)

In Eqs. (7) and (8) we have used the following dimension-
less variables and parameters: Z � zC 
h, � � !0t, B̂ �

e"#B
�������
NA

p
=mc%0C

2 �������������
!0NB

p
, Â � e"#A=mc!0%0C

2.

C �

�
eI0
mc3

c'2K2#

4�2%0NA

�
1=3

is the Pierce parameter, I0 is the unperturbed beam current,
# is the parameter of inertial bunching, K is the wave-
electron coupling parameter proportional to the amplitude
of the electron transverse oscillations, � � � 
!�!0�=C!0
is the normalized mismatch of the Bragg frequency 
! �

hc from the cutoff frequency, NA;B are the corresponding
wave norms, and � is the wave coupling coefficient at the
Bragg grating. For the coupling of two TE modes it can be
put in a form

�TE!TE �
r1
2r20

��2A �mAmB�������
hL

p �������������������������������������������
��2A �m2A���

2 �m2�
q :

Initial and boundary conditions to Eqs. (7) and (8) are
given by

B̂j��0 � B̂0;

ÂjZ�0 � 0;  jZ�0 �  0�0; 2��;
@ 
@Z

��������Z�0
� �;

(9)

where L � lC 
h is the normalized length of the resonator
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and � �
!0�h0vjj��

!0C
is the mismatch from synchronism

between the electrons and the propagating wave at the
carrier frequency.

Note that we supposed the characteristic time Q=! of
the changing of the trapped mode amplitude B to be sub-
stantially greater than the electrons transit time l=vjj and
forward wave propagation time l=vgr. In this case it is
possible to assume that the amplitude of the trapped mode
is constant during intervals l=vjj and l=vgr and neglect time
derivatives in the equations of electron motion (8) as well
as the forward wave excitation equation (7a).

The electron efficiency of the oscillator is determined by
the relations

, �
C

#�1� %�1
0 �

,̂;

,̂ �
1

2�

Z 2�

0

�
@ 
@Z

��
���������Z�L

d 0:

From Eqs. (7) and (8) one can obtain the energy conser-
vation law

@W
@�

� PA � PB � 4,̂:

Here W � jB̂j2 is the normalized electromagnetic energy
stored in the resonator, PA � jA�L�j2 represents radiation
losses associated with the propagating wave, and the term
PB � jB̂j2=Q represents losses associated with the trapped
wave. It should be noted that the Q factor of the trapped
mode includes both diffraction and Ohmic losses.
III. SELF-EXCITATION CONDITIONS AND
ESTABLISHMENT OF THE STEADY-STATE

OSCILLATION REGIME

Obviously, when the coupling between modes is absent
(� � 0) Eqs. (7) and (8) describe the convective mecha-
nism of the electron beam—wave instability, and self-
excitation of the oscillations is impossible. Thus, the self-
excitation of the system is provided exceptionally by the
coupling of the propagating wave with the cutoff trapped
mode.

To get the self-excitation conditions we will approxi-
mate for simplicity the longitudinal structures of trapped
modes as fn�Z� � sin��nZ=L�, where n � 1; 2; 3 . . . is
longitudinal mode index. The amplitude of electron rf
current under the assumption that the shifts of electron
phases are small:  �  0 � #�Z;  0�, j#j � 1 can be re-
duced to the form

J �
1

�

Z 2�

0
e�i �Z�d 0 


1

�

Z 2�

0
e�i 0�1� i#�Z;  0��d 0

�
�i
�

Z 2�

0
e�i 0#d 0:

Correspondingly, using the linearized electron motion
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equations for the amplitude of electron current we get�
@
@Z

� i�
�
2
J � �iÂ (10)

with boundary conditions

JjZ�0 � 0;
@J
@Z

��������Z�0
� 0: (11)

In the case of precise electron-wave synchronism� � 0
the solution of linear equations (7a) and (10) with bound-
ary conditions (11) can be presented in the form

J �
�B̂
2

�
ei��Z

��� n�=L�3 � 1
�

ei��Z

��� n�=L�3 � 1

�
�
�B̂
6

�
X3
m�1

ei�mZ
�

�m
�� n�=L� �m

�
�m

�� n�=L� �m

�
;

A � i
@2J

@Z2
:

Here �m are the roots of a well-known dispersion equation
�3 � 1 describing the normal waves in FEL with a forward
propagating electromagnetic wave;

�1 � 1; �2;3 � �
1

2
�

���
3

p

2
i:

Under the assumption that the length of the interaction
space is rather large ( L � 1) the main contribution to the
excitation factor is related with exponentially growing
normal wave possessing the longitudinal wave number
�3 � � 1

2� �
���
3

p
=c�i. Substituting this term into the right-

hand side of Eq. (7b) we obtain after integration over Z the
equation for amplitude of trapped mode B̂n:

@B̂n

@�
�
1

2Q
B̂n�

�2B̂n

3
e�

��
3

p
L=2�’n��;L�;

’n��;L�� ��1�n
�

1

��n�=L��3
�

1

��n�=L��3

�
2

�e��iL=2��i�L: (12)

Therefore the self-excitation condition of the nth longitu-
dinal mode can be presented in a form

1

2Q
<
�2

3
e�

��
3

p
L=2�Re’n��; L�: (13)

The function Re’n��; L� for several longitudinal modes is
plotted in Fig. 3. Self-excitation of the FEM is possible if
the value of Re’n��; L� is positive and exceeds factor
1=2Q. For sufficiently large Q (or sufficiently small �)
the self-excitation region almost coincides with the region
where the function Re’n��; L�> 0. Note that the optimal
starting length of the lowest mode n � 1 is Lopt � 2:5
corresponding to �opt 
 3.
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FIG. 5. Longitudinal structure of the propagating wave A(Z) in
a steady-state regime for Lopt � 2:5, � 
 3, � 
 �0:6.

FIG. 3. (Color) Function ’n��� for the first three modes at L �
2:5. The black line corresponds to n � 1, the blue line to n � 2,
and the green line to n � 3.
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We should emphasize that the excitation regions over
mismatch � for the modes with different longitudinal in-
dices n practically do not overlap (see Fig. 3). Therefore at
fixed values � and L only a single longitudinal mode can be
excited. It means that proposed FEM scheme possesses
selectivity over longitudinal mode indices.
410

,

FIG. 4. (Color) Time dependences of the normalized electron
efficiency ,̂ (red curve), radiation losses associated with prop-
agating wave PA (green curve), and trapped wave PB (blue
curve) for Lopt � 2:5, � 
 3, � 
 �0:6.
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Results of numerical simulation of the nonlinear stage of
interaction based on Eqs. (7) and (8) are shown in Figs. 4
and 5 for the first longitudinal mode n � 1. Establishment
of a stationary regime of generation can be seen in Fig. 4.
In this regime the spatial structure of the propagating mode
is plotted in Fig. 5. Normalized efficiency is rather high
,̂� 3. It is important to note that in optimal conditions the
main part of the energy extracted from electron beam
transforms in the radiation of the propagating mode A
but not dissipated with the trapped mode B. Variation of
electron mismatch � can be used for further optimization
of the electron efficiency.

IV. CONCLUSION

Using the above analysis let us estimate a possibility of
creation of a 4 mm FEM on the basis of the accelerator
LIU-3000 (JINR, Dubna) (1 MeV=200 A=200 ns). Taking
waveguide radius a 
 0:62 cm, the period of undulator
du 
 3:8 cm and the period of helical corrugation 
m �
4, d 
 0:41 cm we find that the conditions of a Bragg
resonance (4) are fulfilled for the pair of modes TE11 !
TM32 (�A � 1:82, �B � 9:76). In the case of Pierce pa-
rameter C 
 10�2 the length of interaction space l �
15:3 cm and corrugation depth a1 
 0:01 cm correspond
to the normalized length L � 2:5 and the coupling parame-
ter � � 0:1. The relative mismatch of the Bragg frequency
from the cutoff frequency � 
!�!0�=!0 
 0:03 provides
normalized mismatch � 
 3. The establishment of steady-
state regime for above normalized parameters just shown
in Fig. 4. The normalized efficiency ,̂ � 3 corresponds to
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the total efficiency , 
 15% . The transient time occupies
about 100 ns.

As follows from the above consideration extremely
shallow corrugation�a1=a < 0:02� is sufficient for FEM
self-excitation if the trapped cutoff mode is used in the
feedback loop. Thus the using of a cutoff mode makes it
possible to decrease effective coupling parameter suffi-
ciently enough for the self-excitation of the oscillator in
comparison with traditional Bragg FEM scheme, where
feedback wave possesses rather high group velocity [6].
Correspondingly, in oversized microwave system where
Bragg conditions are satisfied for a large number of pairs
of waves with different transverse indices it is possible to
provide selective excitation of a single pair consisting of a
cutoff mode and operating propagating mode which is
amplified by the electron beam. The above method of
mode control will be tested in JINR-IAP FEM [7,8] at
Ka band and then used as a method of increasing the
operating frequency to W band for a fixed transverse size.
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