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Stability of a short Rayleigh length laser resonator
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Motivated by the prospect of constructing a short Rayleigh length free-electron laser in a high-vibration
environment, we demonstrate the use of a collection of rays to study the effect of mirror vibration and
distortion on the behavior of the fundamental optical mode of a cold-cavity resonator. We find that the ray
collection accurately describes both on-axis and off-axis optical beams. We show that a tilt or transverse
shift of a mirror causes the optical mode to rock about the original resonator axis, while a longitudinal
mirror shift or a change in the mirror’s radius of curvature causes the beam diameter at a mirror to
successively dilate and contract on the mirror. Results are in excellent agreement with analytic
calculations and wave front propagation simulations as long as the mirrors remain large with respect to

the beam diameter.
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I. INTRODUCTION

Some proposed designs for a high-power free-electron
laser (FEL) call for a short Rayleigh length optical reso-
nator in order to reduce the system size while minimizing
heat damage to the mirrors [1-3]. These designs raise
concerns about mode stability, in particular, the sensitivity
to motions of the mirrors. This paper presents a study of the
effect on beam behavior of mirror motion and mirror radius
change, particularly as they affect short Rayleigh length
resonators.

We utilize a collection of propagating rays to study the
beam behavior in the resonator. The method is applicable
when the cavity mirrors are unperturbed and the beam
corresponds to an eigenmode of the resonator. However,
the method is easily adaptable to situations where the beam
is not a resonator eigenmode, and we show how the beam
evolves for several cavity distortions: mirror tilt, transverse
and longitudinal shifts in mirror position, and changes in
mirror focal length. In order to isolate resonator effects
alone, our results are for a resonator with no gain. Since
mirror motions are relatively slow (~ms) compared with
the optical round trip time (~ns), the motions are assumed
to be fixed over many passes of the beam through the
resonator.

In general, the optical beam in a laser resonator retraces
itself—it is an eigenmode of the resonator. If a mirror is
misaligned or distorted, however, the resonator eigenmode
will be redefined and the existing optical beam will tend to
walk around the mirrors [4]. For sufficiently large mis-
alignment, the beam radius may increase indefinitely—
i.e., the resonator may become unstable. These effects are
most pronounced for short Rayleigh length resonators,
which are already near the stability limit. In practical
terms, mirror misalignment and distortion may cause the
beam displacement to exceed the size of the mirrors,
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thereby creating beam loss and distortion of the beam
envelope.

II. SIMULATION TECHNIQUES

We assume a resonator with two identical mirrors of
focal length F separated by distance S (Fig. 1) initially
aligned along the z axis. The resonator axis is defined as the
line connecting the two centers of curvature of the mirrors
and the fundamental Gaussian optical eigenmode is char-
acterized by Rayleigh length Z, = S(F/S — 1/4)'/2. Let
the resonator initially contain such an eigenmode with
wavelength A. We adopt the convention where all longitu-
dinal lengths are normalized by cavity length S; all trans-
verse lengths are normalized by (AS/w)!'/?; angles are
normalized by (A/7S)'/2; and time ¢ is normalized by
S/c, the time for a one-way pass through the resonator.
Using lower case symbols for normalized lengths, zo =
(f — 1/4)"/2 and the transverse behavior of the electric
field amplitude is given by [5]

E(x,y) = Ae” @)/, (1)

FIG. 1. (Color) Resonator with Gaussian mode characterized by
Rayleigh length z,. Vibrations of the right-hand mirror include
tilt 6,,, transverse shift 4, longitudinal shift AS, and focal length
change Af (not shown).
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where the transverse 1/e radius of the beam at any z is
w = (29 + 22/20)"/*. (2)

For a typical resonator with S = 10 mand A = 1 um, the
transverse scaling length is 1.8 mm, the scaling angle is
0.18 mrad, and the scaling time is 33 ns.

Note that any tilt or transverse shift of a mirror redefines
the cavity axis, so that the initial optical beam becomes off
axis: it is no longer an eigenmode and on successive passes
will not retrace itself. Also note that any change in a
mirror’s focal length or longitudinal position shifts the
resonator’s natural zo away from that of the beam. Again,
the beam is no longer a resonator eigenmode, and it will
change its shape with each pass through the resonator.

Simulation of an optical beam can be done several ways,
as we show next.

A. Ray-tracing technique

We represent the Gaussian beam by a random collection
of rays Gaussian distributed in both transverse position y
and angle 6. If the distribution functions for y and 6 are
chosen correctly, the ray collection will mimic the ampli-
tude behavior of a true Gaussian beam [6]. Let these
distributions be combined into a joint probability density
f(y, 6). At the beam waist, y and @ are uncorrelated:

1

e~ O/ +62/65) 3)
myobo

f(,0) =

The expressions for y, and 6, are found by comparing (3)
to the expression for the transverse behavior of the electric
field amplitude given by (1). From (2), the width of the
Gaussian beam at its waist (z = 0) is just yp = wy = z(l,/z.
The angular spread 6, can be seen to be the beam opening
angle w/z for z > z,, as shown in Fig. 1. From (2) we get
0y=1/ z(l)/ 2. The joint probability for the beam amplitude
becomes, therefore,

1 24 292
f(y: 0) = ;e_(y +z56 )/Zo_ (4)

It is interesting to note that, if we square f(y, ) so that it
represents a photon probability density, the resulting nor-
malized standard deviations o, = (zo/ 42 inyand oy =
(1/4z9)"/? in @ exactly satisfy the uncertainty relation
0,09 = 1/4 as they must [6].

To simulate the propagation and reflection of the beam, y
and € become components of a 2 X 1 column vector and
are propagated numerically using 2 X 2 ABCD ray matri-
ces [5]. For our purposes, however, the usual matrices for
drift, reflection, etc., must also incorporate the effect of
mirror tilt, mirror shift, and focal length change. In the
limit of a large number of rays, the transverse density of the
propagated rays becomes proportional to the actual ampli-
tude behavior of a Gaussian beam. The method is simple to
program and completely adaptable to resonators with small

Zp. In addition, the method can handle situations where
reorientation or refocusing of a mirror produces beams
which are not resonator eigenmodes.

B. Wave propagation technique

The wave propagation technique [1] provides a useful
comparison with the ray technique. Here the complex
amplitude a(x, y, z) of a Gaussian beam is set up on a
computational grid at the beam waist and then propagated
numerically by the paraxial wave equation 0,a =
(—i/4)V3 a. Mirrors can be handled by a suitable phase
shift quadratic in mirror radius at the mirror position. This
method includes diffractive effects and, if coupling to the
electrons is included, can describe laser gain and finite
mirror size. It can also accommodate tilted, shifted, and
distorted mirrors. The method is, however, computation-
ally intensive, especially in a short Rayleigh length reso-
nator where the grid must be small and fine at the beam
waist and large and coarse at the mirrors. To overcome this
limitation, the simulation uses a coordinate system that
expands with the natural diffraction of the Gaussian
mode [7].

C. Gaussian beam theory

Gaussian beam theory [5] provides another check on the
ray technique. A Gaussian beam may be described analyti-
cally by its complex beam radius ¢ = z + izy, where z
is the distance from the beam waist. Since 1/g = 1/R —
i/w?, one can immediately obtain the transverse beam
radius w and the wave front curvature radius R.
Propagation or focusing changes ¢ into ¢'; this is accom-
plished using the ABCD matrix elements in the form ¢’ =
(Ag + B)/(Cq + D). This method will accommodate lon-
gitudinal mirror shift and focal length change since it only
works along the beam axis. However, if a new beam axis is
determined by ray tracing, it can also describe the effects of
tilt and transverse shift of the mirrors.

III. MIRROR TILT AND SHIFT

We now let the right-hand mirror (focal length f = z§ +
1/4) undergo tilt 6,, and/or transverse shift 4 and inves-
tigate the subsequent behavior of the Gaussian beam. The
immediate effect is that the reflection angle of any ray
incident on the mirror will be increased by 26,, + h/f.
In the paraxial limit with infinite mirror width, the resona-
tor will remain stable, but a new resonator axis will be
defined which tilts with respect to the old axis by amount
¢, where

¢ = —[(1 +4z3)6,, + 2h]/(823). (5)

The optical beam, which initially was an eigenmode of the
old resonator, will now be tilted with respect to the new
axis and is no longer an eigenmode of the realigned reso-
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nator. Consequently, over many reflections, the beam angle
changes in a rocking fashion, depending on the value of z;.

The effect of the rocking over many passes is to make
the beam position walk up and down the mirror. If y,, is the
position of the beam center on the right mirror after n
round trips [5],

yn = Ci[1 = cos(an)] + C, sin(an) (6)
where
o= cos1<2fz_27;:2f+1>, )
C, = GJ; - i)(h +2£0,), (8)
¢, = (i +210,) ©

=T

and where f = z3 + 1/4.

Figure 2 shows the result of a ray-tracing simulation
involving mirror tilt. The beam is started on axis with the
right mirror tilted. Successive reflections of the beam are
unfolded, so that the horizontal axis is normalized time
7 = ct/S. The beam angle changes with each reflection,
depending on z, and, for this figure, 6,,. From (6), the beam
center has a maximum deflection y,. which is proportional
to 0, and h:

422+ 1)8,, +2h
=2 32 . (10)
0

For the small z, case, with which we are concerned here,
v, is a strong function of z,. We show this dependence in

SITTTITETETE]

FIG. 2. Evolution of an optical beam in a resonator with z, =
0.1, 8,, = 0.05, and h = 0. The y axis is the normalized trans-
verse distance, and 7 is the normalized time. Each vertical line
corresponds to a mirror, with successive reflections unfolded to
see the overall behavior. The shaded area shows the trajectories
of 1000 random rays; the center line is the center of the optical
beam; and the top and bottom lines, calculated from beam
theory, correspond to the radius w for the Gaussian mode. The
effect of mirror tilt is to make the beam rock back and forth on
the resonator mirrors.
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FIG. 3. Dependence on Rayleigh length z, of the maximum
excursion y, of the beam center from the original cavity axis
when a mirror tilts by 6,, or undergoes transverse shift /. Tilt and
shift are plotted separately. The agreement between beam theory
(lines) and wave simulations (points) is excellent over many
orders of magnitude. For an FEL with S = 10 mand A = 1 pm,
y. = 10 corresponds to 1.8 cm.

Fig. 3 where y./6,, and y./h are plotted separately against
2. Clearly the ray theory (lines) is in excellent agreement
with wave theory (data points) over many orders of mag-
nitude; in fact, we have observed good agreement down to
Zo = 0.0001. In an actual FEL, as z; becomes smaller the
transverse excursions will become comparable to a typical
mirror radius and the beam will walk off the mirrors.

IV. LONGITUDINAL MIRROR SHIFT

Let the resonator contain a Gaussian beam which is a
resonator eigenmode with Rayleigh length z,. Since z, is
small, the mirror focal lengths f = z3 + 1/4 are already
only slightly larger than the resonator stability limit f;, =
1/4. Let the right mirror shift by fractional amount As =
AS/S in the z direction. Successive reflections of the beam
remain on axis, but the Rayleigh lengths of the beam and
the resonator eigenmode will no longer be equal. If As is
positive (cavity length increases), the normalization length
becomes S + AS, and the normalized focal lengths de-
crease to f/ = f/(1 + As). If f/ < 1/4, the resonator be-
comes unstable and the beam will expand without limit.
The maximum allowable value for As is therefore As,,,, =
4f — 1 =4z

If As < As,y the resonator remains stable but the
beam no longer retraces itself with succeeding passes, as
shown in Fig. 4. With each pass, the beam radius at the
mirrors expands or contracts, with maximum beam radius
Ymax depending on both As and z,. Figure 5 shows the
effect of varying As for several zy. For As < Asp.., the
effect on y,,, is small. However, as As approaches As,,y,
Ymax increases and finally diverges at As,.
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FIG. 4. Evolution of an optical beam in a resonator with z, =
0.1 and right mirror shift As = 0.031. The axes are the same as
Fig. 2. The gray areas are the trajectories of 1000 random rays;
the dotted lines, calculated from beam theory, correspond to the
radius w of the Gaussian mode. The beam remains on axis, but
expands and contracts with successive reflections.

For As < 0 (resonator length decreases), the resonator
remains stable but the beam width again expands dramati-
cally as the difference between the Rayleigh lengths of the
beam and the resonator eigenmode becomes large.

V. MIRROR DISTORTION

Now let the focal length f of the right-hand mirror in the
previously undistorted resonator change by amount Af/f.
Focal length change could be caused, for example, by
heating from a very intense optical beam or vibrations of
the mirror substrate. Since the mirror focal lengths are
unequal, the mode waist of the resonator eigenmode will
move away from the resonator center. The effect is to
change the resonator eigenmode so that it no longer cor-
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FIG. 5. Maximum beam radius y,, for fractional mirror shift
As of the right-hand mirror at several values of z;. As As
increases, yn.x diverges where the cavity becomes spherical at
Aspa = 423 (vertical dashed lines). The data points are taken
from ray and beam simulations; the solid lines are guides to the
eye. For an FEL with S =10m and A =1 um, y,, = 10
corresponds to 1.8 cm.

FIG. 6. Evolution of an optical beam in a resonator as a
function of normalized time 7, with zg = 0.1 and right mirror
fractional focal length change Af/f = —0.05. The axes and
lines are the same as Fig. 2. As in Fig. 4, the beam expands and
contracts with successive reflections.

responds to that of the original beam. Consequently, the
beam radius on the mirror will expand and contract with
each subsequent reflection, as shown in Fig. 6. In addition,
if Af/f is negative (a decrease in the mirror focal length)
and made too large, the resonator will no longer be stable
and the beam will diverge indefinitely. The stability crite-
rionis Af/f > —8z3/(1 + 4z3).

Figure 7 shows the results from our simulations. The
beam radius at the mirror is y,,,, as before. As Af/f is
made increasingly negative, y., increases slowly as the
threshold for resonator instability (vertical dashed lines) is
approached, and then diverges sharply where the cavity
becomes spherical and unstable.

ymax

-AfIf

FIG. 7. Maximum beam radius y,,, for fractional focal length
change Af/f of the right-hand mirror at several values of z,.
The minus sign in front of Af/f indicates the focal length is
decreasing. As the focal length decreases, y.,, diverges where
the cavity becomes spherical at Af/f = —8z3/(1 + 4z3) (ver-
tical dashed lines). The points are taken from ray simulations and
beam calculations; the solid lines are guides to the eye.
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VI. EFFECT OF FINITE MIRROR RADIUS

It is tempting to apply the ray simulation technique to
situations where the mirror’s transverse radius is finite
[8—13]. If the beam power is proportional to the number
of rays, one can observe a decrease in power as those rays
which fall outside the mirror radius are excluded. Figure 8
shows the result of limiting the radii of both mirrors. We
take zo = 0.1 so that, from (2), the beam radius at the
mirror is w = 1.6, and we set the transverse mirror radius
r,, = 2. Mirror tilt and displacement are both zero. Rays
falling outside the mirror are eliminated successively on
each pass and the power in the beam is monotonically
decreased. After several passes, however, the remaining
rays lie entirely on the mirrors and the power remains
constant and nonzero.

A wave simulation under the same conditions comes to a
different conclusion (Fig. 8). Here the beam power con-
tinues to decrease exponentially as the outer portions of the
wave fronts, which lie outside the mirror radius, are lost on
each pass. The explanation for the difference in the ray and
wave methods is that the elimination of rays in the z > z;,
region artificially reduces the beam emittance AyA#,
which was already at the limit of the uncertainty principle,
AyA# =1 in our normalized notation. Narrowing the
beam to accommodate the finite mirror at z > z, effec-
tively reduces the angular spread A6 (by throwing out the
high-angle rays) with little change in Ay. In reality, there
must be a corresponding increase in Ay, caused by diffrac-
tion, to satisfy the uncertainty principle. The wave method
includes this diffraction, but the ray treatment, which has
no diffractive effects, does not.

Agreement of the ray and wave methods can, how-
ever, be achieved if a sufficient amount of the beam
is intercepted by the mirror, as is usually achieved in
practice. From our ray and wave simulations, a rough
criterion is r,, = 3w if there is no mirror tilt or shift. If
the mirror is tilted or shifted, the criterion becomes r,, =

3w+ ymax)-

100
rays
Power
(%)
0 . . ‘ ‘ ‘ . . __waves |
0 10 20 30 40 50

Number of round trips

FIG. 8. Power evolution using both ray and wave simulations
for 50 round trips of an optical beam in a resonator with finite
transverse radius mirrors. For both cases, z, = 0.1, mirror radius
7 =2, and 0, = h = 0. In the ray simulation, rays not ex-
cluded after =~ 4 round trips remain in the beam and the power
remains constant. In the wave simulation, continued diffraction
causes the power to exponentially decrease to zero.

VII. DISCUSSION

The goal of this paper has been to show how mirror tilt,
mirror shift, and focal length change can affect the
Gaussian mode of a short Rayleigh length resonator with
no gain. All of these effects can be studied using a suitable
random collection of rays to emulate the optical beam. In
the cases of mirror tilt and transverse shift, the beam tends
to rock up and down on the mirrors and, if the rocking
amplitude is sufficiently large, to cause the beam position
to exceed the transverse mirror radius. In the cases of
longitudinal mirror shift and focal length change, the
beam will remain on axis but the beam radius at the mirror
will expand and contract with successive reflections.
Again, if the beam radius becomes too large, portions
of the beam may exceed the transverse mirror radius.
For mirrors with finite transverse radii, the ray method
causes the power to decrease and stabilize at a smaller
value; however, wave simulations show that the power
decreases uniformly to zero. Agreement between the two
methods can be achieved if the transverse mirror radius
ry, = 3w.

In order to better appreciate these results, we apply them
to a resonator of length § =10 m and z5 = 0.1. From
Fig. 3, we find that the maximum transverse shift of the
beam on a mirror will be 1 mm if a mirror tilts by 6,, =
0.1 mrad or shifts transversely by H = 33 um. Both
distortions are well within current design tolerances. On
the other hand, longitudinal mirror shift or focal length
change will cause the beam to expand and contract. From
Figs. 5 and 7, we find that an expansion of 10% of the beam
width will be caused by longitudinal mirror shift AS =
5cm or fractional focal length change Af/f = 1%.
Again, these distortions are easily managed by existing
technology.

Gain effects are explicitly not covered in this paper;
however, gain effects in a short Rayleigh length FEL
with mirror misalignment have been reported previously
by Crooker, et al. [2] using wave simulations. Results
indicate that the electron beam tends to keep the optical
beam confined near the electron beam axis, even for sig-
nificant mirror shift and tilt.
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