
PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS 8, 040702 (2005)
Free electron lasers with slowly varying beam and undulator parameters
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A self-consistent theory of a free electron laser (FEL) with slowly varying beam and undulator
parameters is developed using the WKB approximation. The theory is applied to study the performance
of a self-amplified spontaneous emission (SASE) FEL when the electron beam energy varies along the
undulator as would be caused by vacuum pipe wakefields and/or when the undulator strength parameter is
tapered in the small signal regime before FEL saturation. We find that a small energy gain or an equivalent
undulator taper slightly reduces the power gain length in the exponential growth regime and can increase
the saturated SASE power by about a factor of 2. Power degradation away from the optimal performance
can be estimated based upon knowledge of the SASE bandwidth. The analytical results, which agree with
numerical simulations, are used to optimize the undulator taper and to evaluate wakefield effects.
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FIG. 1. Zeroth-order growth rate Im��0� as a function of the
radiation frequency ! at three different undulator locations z1,
z2, and z3 is obtained by shifting the gain curve of a constant-
parameter FEL along the horizontal axis by �!�z� due to
changes in the beam energy and the undulator parameter.
I. INTRODUCTION

High-gain free electron lasers (FELs) are being devel-
oped as extremely bright x-ray sources of a next-generation
radiation facility. An x-ray FEL based on self-amplified
spontaneous emission (SASE) typically requires an elec-
tron beam with a few kiloampere peak current and a small-
gap undulator system of tens to 100 m in length. The
collective interaction of a high-current short electron
bunch with the undulator vacuum chamber may signifi-
cantly change the beam energy inside the undulator and
degrade the FEL performance, as highlighted by the recent
analysis of the ac resistive wall wakefield [1] for the Linac
Coherent Light Source (LCLS) [2]. Understanding the
effects of the undulator wakefield is of critical importance
in the design of an x-ray FEL.

The wakefield generates an energy variation along the
undulator distance as well as along the bunch position.
Since the typical bunch length for an x-ray FEL greatly
exceeds the radiation slippage length over the entire un-
dulator, the energy variation within a FEL slippage length
(known as a FEL slice) is usually negligible for the wake-
fields that do not vary rapidly inside the bunch. Thus, the
main effect of the undulator wakefield in a FEL slice is due
to the energy change along the undulator distance and may
be considered to be equivalent to that caused by tapering
the undulator strength parameter. However, the classical
treatment of a tapered undulator [3] has been focused on
the FEL saturation regime where a significant energy loss
induced through the FEL interaction can be offset by
tapering the undulator parameter. On the other hand, the
bulk of energy change due to the undulator wakefield
occurs in the small signal regime before saturation, and
its effect upon FEL performance has mainly been ad-
dressed by time-dependent simulation codes (see, e.g.,
Refs. [4,5]).

Motivated by these considerations, we present an ana-
lytical description of the FEL process in the small signal
05=8(4)=040702(11) 04070
regime with slowly varying beam energy and undulator
parameter. Since the rate of the wakefield-induced frac-
tional energy change is typically less than the FEL Pierce
parameter � ( � 10�3 for short-wavelength FELs) within
one electric field gain length, we develop the WKB ap-
proximation for the coupled Maxwell-Vlasov equations in
order to determine the evolution of the beam-radiation
system, based upon a priori knowledge of the FEL disper-
sion relation. In the lowest-order approximation, the
growth rate Im��0� for the radiation field amplitude at a
given frequency ! becomes a function of the undulator
distance z, and the total gain is determined byR
z Im��0�!; z

0��dz0. The zeroth-order growth rate
Im��0�!; z�� is obtained by shifting the growth rate of a
constant-parameter FEL Im��c�!�� by �!�z� due to
changes in the beam energy and the undulator parameter
(see Fig. 1), i.e., Im��0�!; z�� � Im��c�!��!�z���. In
addition to the zeroth-order gain, we also find a first-order
2-1  2005 The American Physical Society
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correction �1 that is small in comparison with �0.
Nevertheless, after integration over the length of the un-
dulator, this correction can give rise to a noticeable change
of the radiation power at the end of the undulator.

We apply this theory to study the SASE FEL under a
linear energy variation along the undulator distance and
find that a fractional energy gain of about 2� over the
saturation distance or an equivalent undulator taper can
slightly reduce the gain length in the exponential growth
regime and improve the saturated power by about a factor
of 2 as compared to a constant-parameter FEL. Power
degradation away from this optimal energy gain is approxi-
mately Gaussian with a FWHM fractional energy variation
of about 4 times the relative rms radiation bandwidth,
which is typically close to � at saturation. Thus, a notice-
able power degradation will occur if the accumulated frac-
tional energy change is either negative or positive but
larger than 4�.

This paper is organized in the following manner. In
Sec. II, we define the problem by writing down the FEL
equations with variable beam energy and undulator pa-
rameter. In Sec. III, we ignore the transverse motion of
electrons and the radiation diffraction to obtain the WKB
solution for the one-dimensional (1D) FEL system. We
apply this solution to study the effect of a linear energy
change on both seeded and SASE FELs. The results ob-
tained in the 1D case are then generalized to the three-
dimensional (3D) system in Sec. IV and are applied to
study the effects of the LCLS undulator wakefields in
Sec. V. Finally, a general discussion of the WKB approxi-
mation using the matrix formalism and its application to
the 3D FEL system is presented in Appendices A and B.
II. FEL EQUATIONS WITH VARIABLE BEAM
ENERGY AND UNDULATOR PARAMETER

Let us consider a planar undulator with a period 	u �
2�=ku and an undulator strength parameter K�z� that may
vary along the undulator distance z. We also assume
�c�z�mc

2 is the average electron energy in the absence of
the FEL interaction, which may vary along the undulator
due to wakefields and emission of spontaneous radiation.
The initial resonant wavelength of the FEL is

	0 �
2�
k0

�
2�c
!0

�
	u

2�c�0�
2

�
1	

K�0�2

2

�
: (1)

We define the electron energy (in units of mc2) resonant to
	0 as the resonant energy:

�r�z� �

�����������������������������������
	u
2	0

�
1	

K�z�2

2

�s
; (2)

from which we obtain �r�0� � �c�0� 
 �0.
In this and the following sections, we ignore any trans-

verse effect and consider a 1D FEL system. The longitu-
dinal motion of the electron with a wiggle-averaged
04070
position ct� can be described by a ponderomotive phase
variable ��z� � �k0 	 ku�z� k0ct

� and a normalized en-
ergy variable ��z� � ���z� � �c�z��=�0. Taking into ac-
count that

cdt�

dz
� 1	

1	 K�z�2=2

2��z�2
; (3)

and that changes in K and �c over the entire undulator
distance are typically very small compared to K�0� 
 K0

and �0, the FEL pendulum equations [6] can be written as

d�
dz

� 2ku
��z� � �r�z�

�0
� 2ku��	 ��; (4)

d�
dz

�
eK0�JJ�

4�2
0mc

2

Z
d�E��z�e

i���i��kuz

	 complex conjugate; (5)

where the fractional energy change with respect to the
resonant energy in the absence of the FEL interaction is

��z� �
�c�z� � �r�z�

�0
with ��0� � 0: (6)

Here E��z� is the (complex) electric field amplitude at the
frequency ! � �!0 near !0, �� � �� 1, j��j 
 1, and
the Bessel function factor �JJ� � J0��� � J1��� with � �
K2

0=�4	 2K2
0�.

In the small signal regime before saturation, the electron
distribution function can be decomposed into two parts: a
coarse-averaged electron distribution function V��� (for a
uniform bunch current) and a small perturbation containing
the initial shot noise fluctuation and the FEL interaction
�F��; �; z�. Incorporating the pendulum equations (4) and
(5), the linearized Vlasov equation for the Fourier
component of the distribution function F���; z� �R
�F��; �; z� exp��i���d�=�2�� is

dF�
dz

	 i�2ku��	��F�	
eK0�JJ�

4�2
0mc

2E��z�e
�i��kuz

dV
d�

� 0:

(7)

The Maxwell equation for the electric field is then

dE�
dz

� �
ek0K0�JJ�

2�0�0
ei��kuz

Z 1

�1
d�F���; z�; (8)

with �0 being the vacuum permittivity.
The FEL equations (4), (5), and (8) are solved in per-

turbation theory when ��z� can be considered small such as
due to undulator errors [7]. Here we develop an approxi-
mate solution when ��z� is not necessarily small but slowly
varying with z.

III. SOLUTION IN THE ONE-DIMENSIONAL CASE

The Vlasov-Maxwell equations (7) and (8) can be solved
by the Laplace transform when ��z� � 0 [8,9]. The system
2-2
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is characterized by the FEL Pierce parameter � defined as
[10]

� �

�
1

8�
Ie
IA

�
K0�JJ�

1	 K2
0=2

�
2 �0	2

0

�A

�
1=3
; (9)

where Ie is the electron peak current, IA � 4��0mc3=e �
17 kA is the Alfvén current, and �A is the area of the
electron beam transverse cross section. For instance, the
relative gain bandwidth �� is typically a few �, and the
electric field gain length is about 	u=�4���. Since the main
effect of the energy variation is to move electrons off
resonance, ��z� can be regarded as a slowly varying func-
tion of z when								 	u

4��
d�
dz

								
 a few � or
								 	u
4��

d�
dz

								<�: (10)

This condition will allow us to use the WKB approxima-
tion well known in quantum mechanics (see, e.g.,
Ref. [11]) to solve Eqs. (7) and (8) and is satisfied if the
accumulated energy change over the saturation distance
(typically about 10 field gain length) is less than 10�.

A. WKB approximation

We first introduce the following dimensionless variables
to simplify notation:

�z � 2�kuz; �� �
�
�
�
��z� � �c�z�

�0�
;

�� �
�
�
�
�c�z� � �r�z�

�0�
; �� �

��
2�

;

a� � �
eK�JJ�

4�2
0mc

2ku�
e�i��kuzE�; f� �

2ku�2

k0
F�:

(11)

Equations (8) and (7) in the matrix form are

d
d �z

�
a�
f�

�
� iM

�
a���z�
f�� ��; �z�

�
; (12)

where

M �
� �� �i

R
1
�1 d ��

�i dVd �� �� ��	 ����z��

 !
: (13)

We define
R
1
�1 d �� as the integration operator that operates

on a function of ��. Note that ����z� is slowly varying when
jd ��=d �zj< 1.

Following the general discussion of the WKB approxi-
mation using the matrix formalism presented in
Appendix A, we seek a zeroth-order solution of Eq. (12)
in the form

exp
�
�i

Z �z

0
�0�$�d$

�
�0 
 exp

�
�i

Z �z

0
�0�$�d$

�

�

�
A0

F 0� ��; �z�

�
: (14)
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In the 1D case, A0 is simply a constant given by the initial
conditions. Treating dF 0=d�z as a first-order term, the
zeroth-order eigenvalue equation is

��0 � ��� �i
R
1
�1 d ��

�i dVd �� ��0 � � ��	 ����z���

 !�
A0

F 0� ���

�
� 0:

(15)

The eigenvalue is determined by solving the second row
for

F 0� ��; �z� �
iA0

�0 � � ��	 ����z��

dV
d ��

(16)

and inserting F 0 into the first row. The dispersion relation
for �0 is

�0 � �� �
Z 1

�1

d ��

� ��	 ����z� ��0�

dV
d ��

: (17)

After changing variables to

�̂��z� � �0��z� � ����z�; �̂��z� � ��� ����z�; (18)

we rewrite Eq. (17) as

�̂� �̂ �
Z 1

�1

d ��
� ��� �̂�

dV
d ��

; (19)

which is the same FEL dispersion relation as in the
constant-parameter case [8]. For a variable-parameter
FEL, the instantaneous frequency detune �̂��z� �
��� ����z� is �z dependent due to changes in the beam energy
and the undulator parameter. As a result, the local growth
rate Im��0� � Im��̂� is also a function of �z (see Fig. 1).
The corresponding eigenvector is

�0��z� �
�

A0

F 0� ��; �z�

�
/

1
i

�0�� ��	 ��� �z��
dV
d ��

 !
: (20)

To take into account the z dependence of F 0, we must
include the first-order corrections for the eigenvalue and
the eigenvector as�

a�
f�

�
� exp

�
�i

Z �z

0
��0�$� 	�1�$��d$

�
��0��z�

	�1��z��: (21)

Note that both �1 � �A1;F 1� ���� and �1 are considered
small as compared to �0 and �0, respectively, but the
accumulated phase change

R �z
0�1�$�d$ in the exponent

can be of the same order. Inserting Eq. (21) into Eq. (12),
we obtain

��i�0��z� � i�1��z����0 	�1� 	 ��0
0 	�0

1�

� iM��0 	�1�; (22)

where �0� � d=d �z. Making use of �i�0�0 � iM�0 and
neglecting the higher-order terms �1�1 and �0

1, we have
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�0
0 � i�1�0 � i��0 	M��1 or

0� i�1
�i��0

0�
��0�

��0�� ��	 ����z���2
dV
d ��	

�1

�0�� ��	 ����z��
dV
d ��

 !

�
i��0 � ���A1 	

R
1
�1 d ��F 1� ���

A1
dV
d ��	 i��0 � � ��	 ��� �z���F 1� ���

 !
: (23)

The growth rate correction �1 can be found by using an
adjoint eigenvector and a properly defined scalar product
as illustrated in Appendix B for the general 3D FEL
system. In the 1D case, the adjoint eigenvector is simply

�0 �

�
1;

i

�0 � � ��	 ��� �z��

�
: (24)

Defining the 1D scalar product as

h�0j�0i1D �

�
1�

Z 1

�1
d ��

dV=d ��

��0 � � ��	 ��� �z���2

�

 B��0 � ���; (25)

we apply �0 to both sides of Eq. (23). The resulting scalar
product of the right-hand side with �0 is

i��0 � ���A1 	
Z 1

�1
d ��F 1� ���

	
Z 1

�1
d ��

�
iA1

�0 � � ��	 ����z��

dV
d ��

�F 1� ���
�
� 0

(26)

in view of the dispersion relation Eq. (17). Thus, the scalar
product of the left-hand side of Eq. (23) with �0 is

�i�1B��0 � ���

	 ��0
0 �

��0�
Z 1

�1
d ��

dV=d ��

��0 � � ��	 ����z���3
� 0:

(27)

Using variables defined in Eq. (18), the correction to the
complex growth rate is

�1 � �i
�0

0 �
��0

B��0 � ���

Z 1

�1
d ��

dV=d ��

��0 � � ��	 ����z���3

� �i
�̂0

B��̂�

Z 1

�1
d ��

dV=d ��

��̂� ���3
; (28)

which can be obtained after solving the FEL dispersion
relation [i.e., Eq. (17) or (19)].

For practical purposes, we assume a linear energy varia-
tion ���z� � &�z with j&j< 1 for the WKB approximation
to be valid. We consider both coherent amplification (for a
seeded FEL) and self-amplified spontaneous emission.
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B. Coherent amplification

Let us take a Gaussian energy distribution function

V� ��� �
1�������

2�
p

' ��

exp
�
� ��2

2'2
��

�
; (29)

with the rms energy spread ' �� in units of �, and define the
plasma dispersion function

D�)� �
1�������
2�

p
Z
C
dp

pe�p
2=2

p� )
; (30)

where the integration contour C is from p � �1 to 1 and
is deformed so that the point ) always stays above it in the
complex ) plane. Equation (19) becomes

�̂��z� � �̂��z� 	
1

'2D
�
�̂��z�
'

�
� 0; (31)

and Eq. (28) can be shown to be

�1 � i
&

2'4
��

d2D

d)2

�
1	

1

'3
��

dD
d)

�
�2
								)��̂��z�=' ��

: (32)

For a cold beam with a vanishing energy spread, we have
D�)� � �)�2, and

�1 � �
3i&

�̂4�1	 2=�̂3�2
; (33)

where �̂� �̂� �̂�2 � 0 is the well-known cubic equation
with a growing, a damping, and an oscillatory solution. At
�̂ � 0, we have �̂3 � 1 and

�1��̂ � 0� � �i
&
3�̂

: (34)

In this case, the correction to the growing mode �̂�1� �

��1�
0 � &�z � �1=2	 i

���
3

p
=2 is

��1�
1 �

&
6
��

���
3

p
	 i�: (35)

Therefore, the growth rate near �̂ � ��� &�z � 0 is in-
creased (decreased) by j&j=6 for a linear energy gain
(loss) with respect to the resonant energy. For a cold
beam with constant beam and resonant energies, the maxi-
mum growth rate occurs when the electrons are on reso-
nance and when a single growing mode dominates.
However, as the electron energy is moving away from
the resonance, slightly above resonance is the preferred
situation since the energy modulation is immediately ac-
companied by the net energy loss of the electrons to the
radiation field. Such an asymmetry also exists for the gain
curve in a low-gain FEL [12].

The local growth rate of the radiation power predicted
from the WKB approximation is compared to 1D FEL
simulations with a seed signal. For a cold beam with a
seed power ja0�0�j

2 � 10�6 initially on resonance (i.e.,
�� � 0), the radiation power is completely specified by
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FIG. 3. (Color) Local power growth rate G��0:2; �z� for a beam
with a Gaussian rms energy spread '� � 0:5� (' �� � 0:5) and
with an increasing (blue) or a decreasing (red) centroid energy
relative to the resonant energy in the undulator.
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the growing, the damping, and the oscillatory modes and
their corresponding corrections due to the energy variation,
i.e.,

�P�&; �z� �
ja0�0�j

2

9

								X
3

n�1

exp
�
�i

Z �z

0
d$���n�

0 �$�

	��n�
1 �$��

�								2
: (36)

Here each mode has an initial amplitude a0�0�=3. Let us
define the local power growth rate

G�&; �z� 

d ln� �P�&; �z��

d�z
: (37)

Figure 2 shows the difference in the local growth rate
G�&; �z� �G�0; �z� for & � �0:2. The agreement between
theory and simulation is very good. The initial growth rate
is enhanced for a beam gaining energy relative to the
resonant energy and is reduced for a beam losing energy.
Nevertheless, at a larger undulator distance (�z > 2) when
�̂ � �&�z ( �� � 0 here) is sufficiently detuned away from
the resonance, the growth rates for both energy gain and
loss are smaller than the growth rate when the beam energy
stays on resonance.

For a beam with a Gaussian energy spread, we may only
obtain an asymptotic solution in the high-gain regime since
there are infinite damping modes during the initial power
buildup [13]. We can still compare the local growth rate of
the radiation power [i.e., Eq. (37)] derived from the 1D
simulation with the dominant growing mode 2 Im��0��z� 	
�1��z�� from the WKB approximation in the high-gain
regime. Taking ' �� � 0:5 and seeding the FEL with
ja ���0�j

2 � 10�6 at the initial frequency detune �� � �0:4
that yields 2 Im��0� � 1:4 for a constant-parameter FEL,
we show in Fig. 3 that the theory and the simulation agree
fairly well for & � �0:2 in the high-gain regime when �z >
5. In particular, the different growth rate between a beam
FIG. 2. (Color) Local power growth rate difference
G��0:2; �z� �G�0; �z� for a cold beam with an increasing (blue)
or a decreasing (red) energy relative to the resonant energy in the
undulator.
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gaining and losing energy relative to the resonant energy is
again due to the asymmetry discussed above.

C. Self-amplified spontaneous emission

The power spectrum for a constant-parameter SASE
FEL in the high-gain regime has been determined in
Refs. [8,9]. In the variable-parameter case discussed here,
we can include the �z-dependent growth rate and its WKB
correction for the growing mode as

dP
d!

� gS� ���
��0mc

2

2�
exp

�
2
Z �z

0
d$ Im��0�$� 	�1�$��

�
;

(38)

where

gS� ��� �
1

jB��0�0��j
2

Z 1

�1

d ��V� ���

j�0�0� � ��j2
; (39)

B��0� is defined in Eq. (25), and we have dropped the
superscript (1) of the growing mode for simplicity.
Equation (38) can be computed numerically for different
frequencies to obtain the SASE spectrum as well as the
total radiated power.

Because of the exponential growth, the radiation power
in the high-gain regime is dominated when the frequency
detune �̂ � ��� &�z is near the optimal value ��m that has
the largest Im��0� 
 �0m. Let us expand

Im ��0� � �0m�1� C2��̂� ��m�
2�

� �0m�1� C2� ��� &�z� ��m�2�; (40)

where �0m �
���
3

p
=2, ��m � 0, and C2 � 1=9 for a cold

beam and are shown in Figs. 4 and 5 for a Gaussian energy
distribution. This expansion is expected to be valid if the
accumulated change in �̂ is less than the width of the
frequency detune for the growth rate Im��0�, i.e., when
j&�zj<

�����������
2=C2

p
� 4. For a linear energy variation relative to
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FIG. 4. (Color) Maximum zeroth-order growth rate �0m (blue)
and the optimal detune ��m (red) as a function of the rms energy
spread ' �� (in units of �).
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the resonant energy, the gain correction near �̂ � ��m can
be factorized as

Im ��1� � C&�0m&: (41)

Here C& �
���
3

p
=9 for a cold beam and is shown in Fig. 5 for

a Gaussian energy distribution. Inserting Eqs. (40) and (41)
into Eq. (38) and integrating over �z, we obtain

dP
d!

� gS� ���
��0mc2

2�
exp

�
2�0m

Z �z

0
d$�1	 C&&

� C2� ��� &$� ��m�
2�

�

�
��0mc

2

2�
exp

�
2�0m �z

�
1	 C&&� C2

&2 �z2

12

��

� gS� ��� exp
�
�2�0mC2 �z

�
��� ��m �

&�z
2

�
2
�
: (42)
FIG. 5. (Color) Gain coefficients C2 (blue) and C& (red) defined
in Eqs. (40) and (41) as a function of the rms energy spread ' ��

(in units of �).
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In general, gS� ��� has a relatively weak dependence on
the frequency detune �� and is taken to be approximately
constant from now on. Thus, the last exponent in Eq. (42)
describes a Gaussian power spectrum that has basically the
same rms bandwidth as a constant-parameter SASE, given
by

'� � '�!=!0
� 2�' �� �

������������������
�0mC2 �z

p

�

������������������������
�

2�0mC2kuz

s
� �

���������
2LG
C2z

s
; (43)

with the power gain length LG � 	u=�8���0m�. The cen-
tral frequency of the power spectrum is determined by

�� c � ��m 	 &�z=2 � ��m 	
�
2�

; (44)

i.e., the central frequency of the radiation spectrum moves
half as fast as does the optimal frequency (for the maxi-
mum zeroth-order growth rate) due to the changing energy.
Finally, we integrate Eq. (42) over ! to obtain the total
radiated power as

P�z� � gS
��0mc2�������

2�
p !0'� exp

�
z
LG

�
1	 C&&� C2

&2 �z2

12

��
(45)

� Pm�z� exp
�
�

1

2

�
��z� � �m�z����

3
p
'��z�

�
2
�
; (46)

where ��z� � &�z� is the fractional energy change defined
in Eq. (6),

Pm�z� � gS
��0mc2�������

2�
p !0'� exp

�
z
LG

�
1	

3C2
&

4�2k2uz
2C2

��
(47)

is the maximum SASE power under the optimal energy
gain �m�z� � 6C&=�2kuzC2�, and the rms width of the
fractional energy change for the SASE power is

���
3

p
times

as large as the relative rms radiation bandwidth '� deter-
mined by Eq. (43).

Equations (45) and (46) are valid for a slowly varying
beam energy relative to the resonant energy in the high-
gain regime before saturation. In addition to the normal
exponential growth given by the first term in the exponent
of Eq. (45), the second term in the exponent describes the
WKB correction to the growth rate and shows the gain
enhancement when the beam increases energy relative to
the resonant energy. The last term in the exponent of
Eq. (45) shows the detuning effect of the energy variation
that degrades the radiation power. The competition be-
tween a positive second term and a negative third term in
the exponent of Eq. (45) leads to an optimal energy gain
�m�z� in Eq. (46) that maximizes the output power.
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FIG. 6. (Color) Rate of the central frequency shift d ��c=d�z as a
function of the energy gradient & in theory (solid line) and in
simulations (symbols).

FIG. 8. (Color) Radiated power �P (in units of �Pbeam) as a
function of the scaled undulator distance �z � 2�kuz for a
cold beam in 1D SASE FEL simulations for different energy
gradient &.

FREE ELECTRON LASERS WITH SLOWLY VARYING . . . Phys. Rev. ST Accel. Beams 8, 040702 (2005)
The linear theory is compared with the 1D SASE simu-
lation results for a cold beam without any initial energy
spread. Figure 6 shows that the rate of the central fre-
quency shift extracted from the radiation phase in the
simulation agrees well with the theoretical expectation
d ��c=d�z � &=2. The small discrepancy at larger & may
come from the quadratic approximation used in Eq. (40).
The scaled radiation power �P � P=��Pbeam� for different
energy gradient is computed with Eq. (46) using the simu-
lated shot noise. Here Pbeam � Ie�0mc2=e is the electron
beam power. Figure 7 shows close agreement between
theory and simulations for the dependence of the radiated
power on the fractional energy variation at �z � 2ku�z � 8
before saturation.

Near the FEL saturation, the electron beam starts to lose
a significant fraction of energy ( � �) to the radiation
through the FEL interaction. In the case when the electrons
gain energy relative to the resonant energy (i.e., for a small
FIG. 7. (Color) SASE power (in units of �Pbeam) at �z �
2�kuz � 8 versus the fractional energy change �� � &�z � �=�
from theory (curve) and from simulations (symbols) for a 1D
cold beam.
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and positive &), the external energy gain compensates the
FEL-induced energy loss and leads to longer resonant
interaction between the electron beam and the radiation
than in cases when & � 0. 1D, cold beam SASE simula-
tions in Fig. 8 show that & � 0:2 (a fractional energy gain
of about 2� over the saturation distance at �z � 10) not only
reduces the gain length in the linear regime, but also
enhances the energy extraction efficiency in the nonlinear
regime by about a factor of 2.
IV. GENERALIZATION TO THE 3D SYSTEM

The WKB solution to the coupled 3D Maxwell-Vlasov
equations is given in Appendix B. In the high-gain regime
where a single transverse mode with the largest growth rate
Im��0� dominates over other higher-order modes, the
SASE spectral power can be written as

dP
d!

� gS� ���
��0mc2

2�

�Z 1

�1
d �xjA0� �x; �̂��z��j2

�

� exp
�
2
Z �z

0
d$ Im��0�$� 	�1�$��

�
; (48)

where gS� ��� is the expansion coefficient of the guided
fundamental mode determined by the initial shot noise,
A0� �x; �̂� and �0 � �̂	 &�z are the dominant eigenmode
and the eigenvalue at the instantaneous frequency detune
�̂�z� � ��� &�z determined by Eq. (B5), and the growth
rate correction �1 is given by (B11).

Following the approach developed in the 1D case, we
consider the properties of �0 and �1 near the optimal
detune and ignore the weak frequency dependencies of
both gS and the transverse mode size. Thus, Eq. (46) for
the SASE power is also valid in 3D, i.e.,

P�z� � Pm�z� exp
�
�

1

2

�
��z� � �m�z����

3
p
'��z�

�
2
�
: (49)

Here '��z� is the relative rms bandwidth of the guided
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FIG. 9. (Color) LCLS power evolution obtained from GENESIS

simulations for different fractional energy change ��z � 90 m�.
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mode for a constant-parameter SASE found in the 3D
theory or simulations. The optimal fractional energy gain
�m�z� can be determined by the growth rate correction �1

in the linear regime before saturation. For the maximum
power at the saturation distance zsat, 3D SASE simulation
codes such as GINGER [14] and GENESIS [15] can be used to
scan for �m�zsat�. For example, using the standard LCLS
parameters [2], GENESIS simulations shown in Fig. 9 in-
dicate that �m � 2� enhances the saturation power by
about a factor of 2 at zsat � 90 m, very similar to the 1D
results. Such a power enhancement has also been observed
in start-to-end LCLS simulations including wakefield ef-
fects [16]. Since the expected rms bandwidth '� near the
LCLS saturation is very close to � � 5� 10�4, we can
estimate the FWHM fractional energy variation for the
SASE power at saturation as

�2
����������
2 ln2

p
�
���
3

p
'��zsat� � 4'��zsat� � 4�: (50)

Figure 10 shows the simulated LCLS power versus frac-
FIG. 10. LCLS power obtained from GENESIS simulations ver-
sus fractional energy change �� � �=� at z � 90 m. The maxi-
mum power is reached when � � 2�, and the FWHM fractional
energy change is about 4�, in agreement with Eq. (50).
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tional energy change � at zsat � 90 m with a FWHM
nearly 4�.
V. EFFECTS OF UNDULATOR WAKEFIELDS

In this section we apply the above results to evaluate the
SASE performance under the influence of undulator wake-
fields for the LCLS FEL at the resonant wavelength 	0 �

1:5 #A. Reference [1] discusses the ac resistive wall wake-
field for both copper (Cu) and aluminum (Al) vacuum
chambers with different geometries, generated by the ex-
pected LCLS bunch profile with two high-current horns at
both the bunch head and tail for 1-nC bunch charge [see
Fig. 5(c) of Ref. [1] for the current distribution]. The
wakefield in the core part of the bunch (from the bunch
coordinate s � �30 �m to s � 0 �m) is of the most
concern since this part of the bunch has the best beam
quality in terms of emittance and energy spread and is
responsible for most lasing. From Fig. 5(a) of Ref. [1],
we see that the wakefield in this part of the bunch for Cu
and Al with a standard round 5-mm diameter beam pipe
may be approximated by

�w�zsat; s� � �A sin
�
2�s
	wake

�
; (51)

where �A is the fractional energy oscillation amplitude and
is about 6� (3�) for Cu (Al) at the saturation distance
zsat � 90 m, and 	wake � 30 �m is the wake oscillation
period and is about half of the LCLS bunch length. In
addition to compensating for the energy loss of the sponta-
neous radiation, we assume that the undulator parameter is
tapered to produce a resonant energy change of �r � �2�
over �90-m undulator distance, then the SASE power in
the absence of any wakefield is optimized to yield
Pm�zsat� � 16 GW from Fig. 10 instead of the nominal
8 GW without any taper. Since such a wakefield creates
negligible energy slopes (local energy chirps) over one
cooperation length 	0=�4���, given by								d�wds 	0

4��

								� 2��A
	wake

	0

4��
�

12��
30

1:5� 10�4

4��

� 1:5� 10�5 
 �; (52)

we ignore any local energy chirp and consider only the
z-dependent energy variation for each FEL slice. The
radiation power averaged over one wake oscillation period
	wake � 30 �m in the core part of the bunch can be
obtained by convoluting �w�zsat; s� � �r � �w�zsat; s� 	
2� with the SASE power response function Eq. (49), i.e.,

hP�zsat�i
Pm�zsat�

�
Z 	wake

0

ds
	wake

exp
�
�

1

6

�w�zsat; s�
2

'2
��zsat�

�

� exp
�

��2
A

12'2
��zsat�

�
I0

�
�2
A

12'2
��zsat�

�
; (53)

where I0 is the zeroth-order modified Bessel function. If we
2-8



FIG. 11. (Color) Power degradation factor averaged over the
core part of the bunch (with about 30 �m in length) versus the
sinusoidal wake oscillation amplitude �A=� at the LCLS satu-
ration (z � 90 m) for a prescribed tapered undulator (red) and
without any taper (blue).
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take '��zsat� � �, then the averaged power degradation
factor given by Eq. (53) is plotted in Fig. 11 (in red).
Therefore, the average power in the core part of the bunch
is about 50% (25%) of the maximum SASE power ( �
16 GW at 90 m) due to the ac resistive wall wakefield of a
round 5-mm-diameter Cu (Al) vacuum pipe. As a com-
parison, Fig. 11 also shows the average power degradation
without any taper (in blue), indicating the power improve-
ment due to the above undulator taper is negated for a
sinusoidal wake energy loss when its amplitude �A � 3�.

VI. CONCLUSION

In this paper we present a self-consistent theory of a free
electron laser with slowly varying beam and undulator
parameters. A matrix formalism is developed to obtain
the WKB solution of the Maxwell-Vlasov equations by
employing the adjoint eigenvector that is orthogonal to the
eigenvector of the dominant growing mode. This approach
may be useful for other slowly varying processes in beam
dynamics.

This theory is then applied to study the performance of a
SASE FEL under a linear energy variation along the un-
dulator distance. The optimal energy gain (or the equiva-
lent undulator taper) for the maximum radiation power is
determined in the linear regime through the WKB solution
as well as at the saturation point through SASE simula-
tions. For typical FEL parameters, we find that a fractional
energy gain of about 2� over the saturation distance en-
hances the saturated power by roughly a factor of 2. Power
degradation away from this optimal energy gain is approxi-
mately Gaussian given by Eq. (49), which is utilized to
evaluate the LCLS performance under the influence of the
ac resistive wall wakefield. The results discussed in this
paper may be used to facilitate the design of a fourth-
generation x-ray source based on a high-gain FEL system.
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APPENDIX A: WKB APPROXIMATION USING
THE MATRIX FORMALISM

We illustrate the WKB approximation using the matrix
formalism here. Consider a second-order differential equa-
tion for a function 5�x�:

d25

dx2
	 k2�x�5�x� � 0; (A1)

where the parameter k�x� is assumed to be slowly varying
in x. Equation (A1) can be regarded as the one-
dimensional, time-independent Schrödinger equation for
the wave function5�x�. Let us convert Eq. (A1) to a couple
of first-order differential equations as

d5
dx

� ’;
d’
dx

� �k2�x�5: (A2)

In the matrix form, we have

d
dx

�
5
’

�
� L

�
5
’

�
and L �

�
0 1

�k2�x� 0

�
: (A3)

Since k�x� is slowly varying, we expect the solution to
closely approximate the free-particle state, i.e.,�

5
’

�
� �0�x�eiS0�x� with

dS0

dx
� �k�x�: (A4)

The eigenvector given by �ik�0 � L�0 is

�	
0 �x� �

�
1

ik�x�

�
; ��

0 �x� �
�

1
�ik�x�

�
: (A5)

We define �0 as the adjoint eigenvector that satisfies
�ik�0 � �0L and find

�	
0 �x� �

�
1;

1

ik�x�

�
; ��

0 �x� �
�
1;�

1

ik�x�

�
: (A6)

The adjoint eigenvector ��
0 is orthogonal to the eigenvec-

tor ��
0 since the scalar product

��
0 �

�
0 � 0 and ��

0 �
�
0 � 2: (A7)

To take into account the slow variation of �0�x� in
Eq. (A4), we introduce first-order corrections as�

5
’

�
� ��0�x� 	�1�x��e

i�S0�x�	S1�x��; (A8)

where �1 and dS1=dx are considered small, but not S1.
Inserting this into Eq. (A3) and ignoring higher-order
terms d�1=dx and �1dS1=dx, we have
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d�0

dx
	 i

dS1

dx
�0 �

�
�i

dS0

dx
	 L

�
�1: (A9)

Applying the adjoint eigenvector �0 to Eq. (A9), the scalar
product of the right-hand side vanishes because
�0�idS0=dx� � �0L, and the scalar product of the left-
hand side becomes

�0

�
d�0

dx
	 i

dS1

dx
�0

�
�

1

k
dk
dx

	 2i
dS1

dx
� 0; (A10)

from which we obtain

S1 � i ln
���������
k�x�

p
: (A11)

Inserting S0 and S1 into Eq. (A8) and neglecting �1 in
comparison with �0, we obtain the WKB solution [11]

5�x� � C1 exp
�
i
Z
k�x�dx� ln

���������
k�x�

p �

	 C2 exp
�
�i

Z
k�x�dx� ln

���������
k�x�

p �

�
C1���������
k�x�

p exp
�
i
Z
k�x�dx

�
	

C2���������
k�x�

p
� exp

�
�i

Z
k�x�dx

�
; (A12)

where C1 and C2 are determined by initial and/or boundary
conditions.
APPENDIX B: GROWTH RATE FOR THE THREE-
DIMENSIONAL FEL SYSTEM WITH SLOWLY

VARYING BEAM AND UNDULATOR
PARAMETERS

We derive the (complex) growth rate for the three-
dimensional FEL system with slowly varying beam energy
and undulator parameter using the WKB method discussed
in Appendix A. Following the standard approach [17], the
Maxwell-Vlasov equations including the radiation diffrac-
tion and the betatron motion are

@
@ �z

� a�� �x; �z�

f�� �x; �p; ��; �z�

�
� iM

�a�
f�

�

�
i�� ��	

�r2
?

2 �a� 	
R
1
�1 d �p

R
1
�1 d ��f�

a�
@f0
@ �� � i�5	 ����z� � i� �x0 @

@ �x 	 �p0 @
@ �p��f�

0@ 1A; (B1)

where x � �x; y� represents the transverse coordinates,
�x � x

���������������
2k0ku�

p
, �r2

? � @2=�@ �x2�, �x0 � d �x=d�z � �p, �p0 �

d �p=d�z � � �k: �x, �k: � k:=�2ku�� with k: � 1=h:i being
the average betatron wave number, 5 � ��� � �p2 	
�k2: �x

2�=2, and f0� �p2 	 �k2: �x
2; ��� is the average distribution

function that is matched to the undulator focusing lattice.
Note that ��� �z� � ��c�z� � �r�z��=���0� describes the rela-
tive change of the beam energy to the resonant energy.
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As illustrated in Sec. III and Appendix A, we seek a
solution of Eq. (B1) in the form of Eq. (21), i.e.,

) 


�
a�
f�

�

� exp
�
�i

Z �z

0
��0�$� 	�1�$��d$

�
��0��z� 	�1� �z��:

(B2)

The zeroth-order terms are given by

��0 	M��0��z� � 0 with �0 �

�
A0� �x; �z�

F 0� �x; �p; ��; �z�

�
:

(B3)

From the second row of Eq. (B3), we obtain

F 0� �x; �p; ��; �z� �
@f0
@ ��

Z 0

�1
d$A0� �x	; �z�ei�5	

����0�$;

(B4)

where �x	 � �x cos� �k:$� 	 � �p= �k:� sin� �k:$�. If the energy-
shifted detune and growth rate defined in Eq. (18) are used,
we obtain the same FEL eigenmode equation as in a
constant-parameter FEL [18]:�
�̂� �̂	

�r2
?

2

�
A0� �x; �z�

� i
Z 1

�1
d �p

Z 1

�1
d ��

Z 0

�1
d$A0� �x	; �z�ei�5��̂�$

@f0
@ ��

:

(B5)

Here �̂��z� � ��� ����z� is a �z-dependent frequency detune
because of the energy change. As a result, both �̂��̂��z�� �
�0 � ���z� and A0 � A0� �x; �̂� �z�� are functions of �z deter-
mined by Eq. (B5).

To take into account the next-order correction in the
complex growth rate, we make use of the adjoint eigen-
vector introduced in Refs. [19–21] for the initial value
solution of the 3D FEL system because M in Eq. (B1) is a
non-Hermitian operator [17]. Defining the scalar product
of two arbitrary vectors )1 and )2 as [19,20]

h)1j)2i �
Z 1

�1
d �xa�1a�2

	
Z 1

�1
d �x

Z 1

�1
d �p

Z 1

�1
d ��f�1f�2; (B6)

we construct an adjoint eigenvector �0 � � ~A0; ~F 0� so that
it is orthogonal to �0, i.e.,

h��m�
0 j��n�

0 i � �nmh�
�n�
0 j��n�

0 i: (B7)

Here the index n � 1; 2; 3; . . . indicates a discrete set of
eigenvalues ��n�

0 and eigenvectors ��n�
0 that satisfy

Eq. (B5), and �nm is the Kronecker delta function. We
also designate the first mode (n � 1) to be the growing
mode with the largest growth rate Im��0�. It can be shown
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that the eigenvalue corresponding to the adjoint eigenvec-
tor is also �̂, and that ~A0 � A0 [19–21] and

~F 0 �
Z 0

�1
d$A0� �x��ei�5	

����0�$; (B8)

with �x� � �x cos� �k:$� � � �p= �k:� sin� �k:$�.
Assuming the set of eigenvectors is complete, we can

expand the first-order correction �1 in Eq. (B2) as �1 �P
n;n�

�n�
0 . Inserting Eq. (B2) into Eq. (B1) and dropping

the higher-order terms �1�1 and �0
1, we obtain

�0
0 � i�1�0 � i��0 	M��1 � i��0 	M�

X
n

;n�
�n�
0

� i
X
n

��0 ���n�
0 �;n�

�n�
0 : (B9)

Since we are interested in the high-gain behavior when the
first mode with its largest growth rate dominates, we take
�0 � ��1�

0 and apply its corresponding adjoint eigenvector
to form the scalar product at both sides of Eq. (B9). The
scalar product of the right-hand side vanishes in view of the
orthogonality relation of Eq. (B7), and the scalar product of
the left-hand side is

h�0j�
0
0 � i�1�0i � 0: (B10)

Thus, the first-order correction to the complex growth rate
for the 3D FEL system is

�1 � �i
h�0j�

0
0i

h�0j�0i
: (B11)

It is straightforward to show that Eq. (B11) reduces to
Eq. (28) in the 1D case since A0� �x� becomes independent
of �x and the scalar product h�0j�0i � �Ah�0j�0i1D,
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where �A is the area of the electron beam transverse cross
section and h�0j�0i1D is given in Eq. (25).
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