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Betatron coupling: Merging Hamiltonian and matrix approaches
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Betatron coupling is usually analyzed using either matrix formalism or Hamiltonian perturbation
theory. The latter is less exact but provides a better physical insight. In this paper direct relations are
derived between the two formalisms. This makes it possible to interpret the matrix approach in terms of
resonances, as well as use results of both formalisms indistinctly. An approach to measure the complete
coupling matrix and its determinant from turn-by-turn data is presented. Simulations using methodical
accelerator design MAD-X, an accelerator design and tracking program, were performed to validate the
relations and understand the scope of their application to real accelerators such as the Relativistic Heavy
Ion Collider.
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I. INTRODUCTION

Betatron coupling in circular accelerators has been
widely studied using both matrix formalism and
Hamiltonian perturbation theory. In the matrix formalism
the transverse beam motion is parametrized by a 4� 4
one-turn matrix factorized into a block diagonal normal
mode form consisting of the respective Twiss functions and
a 2� 2 coupling matrix (C matrix). In the Hamiltonian
approach the coupling elements are considered to be a
perturbation to the uncoupled lattice. The equations of
motion are expanded up to the first order in those pertur-
bations. In this paper, direct relations between the two
approaches are derived and discussed in detail.

Numerical methods such as Fourier transform and sin-
gular value decomposition (SVD) have been demonstrated
to be effective in measuring relevant quantities in both
formalisms [1–4]. However, in the matrix formalism, mea-
surements have been constrained to three of the four ele-
ments in the coupling matrix [2,3]. The individual
elements of the coupling matrix usually have complicated
behavior around the ring. One often has to rely on fitting
techniques to identify sources of local coupling [2].

An approach to extend the existing methods to measure
the complete C matrix and hence the determinant is pre-
sented. The behavior of the determinant in the presence of
coupling sources is discussed in detail and its advantage of
localizing these coupling sources is transparent. The ap-
plicability of the expression relating closest tune approach
(�Qmin) and C matrix given in [5,6] is also studied.

II. HAMILTONIAN TERMS AND COUPLING
MATRIX

To relate the coupling matrix to the Hamiltonian terms
the expressions describing the turn-by-turn motion from
both formalisms are compared. This is achieved by intro-
05=8(3)=034001(10) 03400
ducing the canonical momentum in the matrix framework
and constructing a complex variable. Prior to this the two
approaches are briefly introduced.

A. Resonance driving terms

Using Hamiltonian and normal form theory a weakly
coupled lattice is treated as a perturbation to the uncoupled
lattice. The turn-by-turn normalized particle positions and
momenta at a location s are described as [7]

x̂� ip̂hx �
�������
2Ix

p
ei x � 2if1001

�������
2Iy

q
ei y

� 2if1010
�������
2Iy

q
e�i y ; (1)

ŷ� ip̂hy �
�������
2Iy

q
ei y � 2if�1001

�������
2Ix

p
ei x

� 2if1010
�������
2Ix

p
e�i x ; (2)

where Ix;y are the horizontal and the vertical invariants. The
phases of the oscillations  x;y are expressed as a function of
the tunes Qx;y, the turn number N and the initial phases
�x0;y0 as  x;y � 2�Qx;yN ��x0;y0. The resonance driving
terms (RDTs) f1001 and f1010 are proportional to the
Hamiltonian terms [7] and drive the difference and the
sum resonances, respectively. These terms are functions
of the uncoupled lattice parameters at the location of both
the coupling elements and the observation point s given by

f�s�1001
1010

� �
1

4�1� e2�i�Qx�Qy��

X
l

kl
������������
�lx�ly

q
ei���

sl
x ���sl

y �;

(3)

where kl is the lth integrated skew quadrupole strength,
�lx;y are the Twiss functions at the location of the lth skew
quadrupole, ��sl

x;y are the phase advances between the
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observation point s and the lth skew quadrupole, and Qx;y

are the horizontal and vertical tunes.

B. Matrix formalism

In the matrix approach, the coupled motion [8] is pa-
rametrized by factoring the one-turn matrix into block
diagonal normal mode form by means of the similarity
transformation given by the symplectic 4� 4 matrix V, of
the form

V �
�I C

�C� �I

� �
; (4)

where I is the 2� 2 identity matrix, C is the 2� 2
coupling matrix, and C� is its symplectic conjugate requir-
ing jCj � �2 � 1. By means of another similarity trans-
formation, the � dependence is normalized out of C,

C � GaCG�1
b ; (5)

where

Ga;b �

1�������
�a;b

p 0

�a;b�������
�a;b

p
���������
�a;b

p
2
64

3
75

are the normalization matrices for the a and b modes [9].
Note that jCj � jCj. The normalized motion in the hori-
zontal and vertical planes is given by [9]

x̂
p̂x
ŷ
p̂y

0
BBB@

1
CCCA �

� 0 C11 C12

0 � C21 C22

�C22 C12 � 0
C21 �C11 0 �

0
BBB@

1
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Ax cos x
Ax sin x
Ay cos y
Ay sin y

0
BBB@

1
CCCA:
(6)

Using the above expressions for normalized positions
and momenta, the complex variables are given by

x̂� ip̂x � �Axe
i x �

Ay
2
��C11 � iC12 � iC21 �C22�e

�i y

��C11 � iC12� iC21�C22�e
i y�; (7)

ŷ� ip̂y � �Aye
i y �

Ax
2
��C11 � iC12 � iC21 �C22�e

�i x

���C11 � iC12 � iC21 �C22�ei x�: (8)

Note that the convention for momenta used in
Hamiltonian theory described in [7] is the negative
of that used in matrix formalism described in [10]
(p̂hx � �p̂x).

C. Relating the C matrix to RDTs

The relation to the Hamiltonian formalism can now be
established by directly comparing Eqs. (1) and (2) to
Eqs. (7) and (8) obtaining
03400
f1001 �
1

4�
�C12 � C21 � iC11 � iC22�; (9)

f1010 �
1

4�
��C12 � C21 � iC11 � iC22�; (10)

or, equivalently expressing C as a function of the RDTs,

1

2�
C12

21
� �Reff1010 � f1001g; (11)

1

2�
C11

22
� Imff1001 � f1010g; (12)

where Re and Im stand for real and imaginary parts,
respectively. The determinant of C can also be related to
the RDTs as

jCj
4�2

� jf1001j2 � jf1010j2; (13)

and using jCj � �2 � 1 yields

jCj � 1�
1

1� 4�jf1001j2 � jf1010j2�
; (14)

�2 �
1

1� 4�jf1001j2 � jf1010j2�
: (15)

These expressions have a direct interpretation: If jCj is
positive the difference resonance (f1001) dominates; and if
it is negative the sum resonance (f1010) dominates. From
these expressions it is also observed that a null jCj does not
imply null coupling, but jf1001j � jf1010j. If jf1010j2 >
�14 � jf1001j�, then �2 < 0 and the particle motion is un-
stable [see discussion in [9] after Eq. (12)].

In [4] it was demonstrated that the amplitude of the
RDTs remains constant along sections free of coupling
sources and experiences abrupt jumps at locations with
couplers. In [4] it is also shown that the relative longitudi-
nal variations of the RDTs become smaller as the tunes
approach the resonance. On the resonance, the amplitude
of the RDTs becomes invariant around the ring. Thus, by
virtue of Eq. (13), the determinant of C also tends to be
invariant around the ring as the tunes approach the
resonance.

D. Simulations

To confirm the relations derived above, simulations were
carried out with the aid of MAD-X [11]. A simple ring
consisting of 80 FODO cells is constructed using parame-
ters shown in Table I. Three skew quadrupoles of different
strengths were placed at arbitrary locations to introduce
transverse coupling in the lattice.
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TABLE I. FODO lattice parameters.

Species Length (m) Strength

Dipoles 6.5 0.039 rad
Quadrupoles 0.5 0:1 m�2

Skew quadrupoles 0.2 4:3� 10�3 m�2

Drifts 0.25 � � �
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1. f1001 and C matrix

Twiss functions and coupling matrix elements in the
form of R matrix (Edwards-Teng parametrization [8])
are directly available from MAD-X. The C matrix is deter-
mined by a simple transformation of the R matrix given by

C �
1

1� jRj
J�1RJ; (16)

where

J �
0 1
�1 0

� �
:

C is obtained from Eq. (5) by normalizing out the beta
dependence from C . To calculate the RDTs f1001 and f1010
from MAD-X, the first order approximation given by Eq. (3)
is used. Figure 1 shows a comparison between the RDTs
and C matrix elements as derived in Eqs. (9) and (13). The
rms of the differences between the compared quantities
are smaller than 10�6, thus numerically validating the
relations.
 0.2

 0.4

 0.6

 0  0.2  0.4  0.

10
-2

 |4
f 1

00
1|

Longitudi

S
Q

1

S
Q

|4f1001|

| [−C12-−C21+i−C11+i−C22]/γ |

 0

 0.5

 1

 0  0.2  0.4  0.

10
-4

 |− C
|/γ

2

|−C|/γ2

4(|f1001|2-|f1010|2)

FIG. 1. (Color) Top: 4jf1001j and j��C12 � C21� � i�C11 � C22��=�j p
and 4�jf1001j

2 � jf1010j
2� plotted as a function of longitudinal posi

17:257, respectively.

03400
2. Dependence on skew quadrupole strengths

The relations between jCj and the RDTs are first order
approximations. To investigate the accuracy of these rela-
tions, the mean of the ratio of the quantities compared in
Fig. 1 is computed for increasing skew quadrupole
strengths. The horizontal and vertical tunes are fixed at
Qx � 18:226 and Qy � 17:232, respectively. Figure 2
shows a plot of this mean ratio along with the standard
deviation of the ratio as a function of closest tune approach
(�Qmin) produced by the three skew quadrupoles. For this
particular case, the quantities compared agree in the per-
cent level for a �Qmin lower than 3� 10�3.

3. Stop-band limits

To explore the behavior of Eq. (13), a scan of horizontal
tune (Qx) is performed with the vertical tune fixed at Qy �

0:228. Figure 3 shows the driving terms jf1001j
2 and

jf1010j2 as well as jCj=�2 plotted as a function Qx for the
FODO lattice described above. The dominance of f1001 or
f1010 is seen in Fig. 3 depending on the proximity to either
the difference or sum resonance, respectively. This transi-
tion is also evident from the behavior of jCj=�2 as it
switches sign when we move from difference to the sum
resonance in accordance with Eq. (13). There are missing
data points at Qx � 0:5 due to the 1=2 integer resonance.
III. DETERMINANT OF C

It has been demonstrated that C12=�, C11=�, C22=�
are measured using turn-by-turn data from beam posi-
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tion monitors (BPMs) [2,3]. From C12=�, one relies
on fitting techniques to determine the location of coupler
and estimate its strength to correct local coupling [2,10].
However, the jCj like the RDTs is a constant in coupler
free regions and exhibit abrupt jumps at the location of a
coupler. These discontinuities are intuitive and can be
identified simply by visual inspection to the nearest
BPM, as seen in Fig. 1. The jCj also allows one to easily
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FIG. 3. (Color) jf1001j2, jf1010j2, and jCj=�2 plotted as a function of
resonance show the dramatic increase in these functions. The 1=2 i
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estimate global quantities like �Qmin and local quantities
like the strength and polarity of the coupler which are
useful during machine operation. However, it will be
seen that C12=� has a better signal-to-noise ratio.
Additionally, it has better resolution to locate an isolated
coupler more accurately using appropriate fitting tech-
niques, while jCj has a resolution to within a region
between the two nearest BPMs.
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To calculate the determinant, we propose a method to
calculate C21 given C12, C11, and C22 at two locations with
an arbitrary phase advance in both normal modes. Given
two locations (1) and (2) in a coupler free region, C�1�

21 is
given (see Sec. 1 in the appendix) by

C �1�
21 � ��C�1�

11 cos�a sin�b � C�1�
12 cos�a sin�b

� C�1�
22 sin�a cos�b � C�2�

12 �=�sin�a sin�b�; (17)

where �a and �b are the phase advances between the two
observation locations of the normal modes. We will dem-
onstrate the effectiveness of such a calculation in a simple
FODO lattice as well as in a complicated lattice such as
RHIC where the coupling sources are mainly localized in
the interaction regions with little or no coupling in the arcs.

It is also important to note that RDTs calculated using
fast-Fourier-transform techniques in [4] can be extended to
compute C matrix and hence the determinant according to
Eqs. (11)–(15). The approach of N-turn map presented in
[6] could also be extended to calculate both � and jCj.

A. Calculation of C12=� using SVD

For the purpose of this paper, we use an SVD-based
method to construct the physical modes of beam [3,12]. We
will briefly introduce this method to show how the C
matrix and its determinant are computed. A data matrix
Bt�m consisting of t columns of turn-by-turn data at the
mth BPM is decomposed using SVD [13] given by

B � U�VT �
X
i

!iuiv
T
i ; (18)

where � is a diagonal matrix of singular values !i with
!1 � !2 � � � � � !n � 0.Ut�t and Vm�m are normalized
eigenvectors of AAT and ATA representing the temporal
and spatial patterns of the leading singular values.

In the presence of coupling, the physical modes of beam
motion are related to the SVD modes by a 4� 4 rotation
matrix O [12]. The normal modes are reconstructed from
BPM data of either horizontal or vertical planes with the
knowledge of the O matrix. From the horizontal plane,
C12=� is given by [3]

C12

�
� sgn�sin� a�

��������������������������������������������
~Aa ~Ab
AaAb

sin� a sin� b

s
: (19)

Here A2
a;b �

�Ja;b�a;b�
2 and ~A2

a;b � �Ja;b�b;ac
2
a;b, where

�Ja;b are the average actions and �a;b are the beta functions

for the two normal modes. � �
����������������
1� jCj

p
, cb ����������������������

C2
11 � C2

12

q
, and � b � arctan�C12=C11�. The vertical

plane is expressed by replacing x to y and a to b, and

with ca �
���������������������
C2
22 � C2

12

q
and � a � � arctan�C12=C22�.

Therefore,
03400
C11

�
�
C12

�
cot� b; (20)

C22

�
� �

C12

�
cot� a: (21)
B. Calculation of jCj=�2 from tracking data

Using Eqs. (17) and (19)–(21), jCj=�2 can now be
calculated from turn-by-turn BPM data. Single-particle
tracking is performed using MAD-X on the FODO lattice
described earlier to generate turn-by-turn data at a large
number of BPM locations. For all simulations, we assume
dual-plane BPMs capable of measuring transverse posi-
tions in both planes, unless otherwise mentioned. The
location of BPMs (1) and (2) in Eq. (17) to calculate
C21=� is arbitrary and only requires that there are no
coupling sources present between them. For the purpose
of the simulations BPM (2) is chosen to be the next up-
stream detector from location (1). Figure 4 shows a com-
parison of MAD-X model and SVD computed values of
jCj=�2. The overall discrepancy is smaller than 0.01%
and increases up to 1% in the coupler regions. To minimize
the discrepancy in the coupler region, C21=� at the BPM
location just before the coupler can be calculated using the
previous BPM (downstream) instead of the BPM upstream.
This maintains the region between the two BPMs to be
coupler free and the calculation of C21=� exact.

To investigate the effect of noise in BPMs, different
levels of Gaussian noise were introduced into turn-by-
turn tracking data used to compute C matrix. Figure 5
shows the normalized rms of the difference for jCj=�2

and C matrix elements between model and calculated
values as a function of !noise=signal amplitude. It is clear
that noise deteriorates the measurements. We observe that
C12=� is more robust against noise than the other elements
of the C matrix. The discrepancy of the effect of noise
between C12=� and C11

22
can be attributed to the calculation

of � b;a and is under study. C21=� inherently has large
errors since Eq. (17) is exact only in a coupler free region.
This can be improved by the choice of appropriate BPMs
for the calculation as explained above. It was shown that
the choice of number of turns in tracking affects the
computation of C matrix due to the periodicity effect
caused by the number of significant digits in the tune [3].
In real data C11

22
unlike C12=� were shown to be susceptible

to large errors due to signal ‘‘leaks’’ in BPMs and their
corresponding electronics [1,10].

C. Calculation of jCj=�2 for RHIC lattice

Single-particle tracking using RHIC lattice was per-
formed to verify the applicability of this approach for a
more realistic operating accelerator with several coupling
1-5
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sources. RHIC consists of two threefold symmetric rings
with six interaction regions. Each arc is made of 11 FODO
cells with 80� phase advance, and interaction regions con-
sist of almost the same FODO cells without the dipoles
[14]. A model of RHIC containing realistic but uncorrected
errors is used to track a single particle for 2000 turns with
Qx � 28:266 and Qy � 29:212. The �Qmin for this lattice
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is 4:37� 10�2: Figure 6 shows a calculation of jCj=�2

from turn-by-turn data compared to model values from
MAD-X. One can clearly see that the coupling sources are
quite strong and mainly located in interaction regions. The
agreement between model and calculated values of jCj=�2

is better in the arcs than in the interaction regions (IRs).
The larger discrepancies arising in the IRs are due to the
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AD-X model and SVD computed values for increasing amount of
re Qx � 18:226 and Qy � 17:257, respectively.
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presence of strong coupling sources. However, even in a
complicated lattice like RHIC, the sources are clearly
identified and all errors are below 5%.

For the above simulation, we assumed dual-plane BPMs
in the lattice. However, this is not true for RHIC and most
operating hadron colliders. RHIC consists of 160 BPMs
per plane per ring: 72 dual-plane BPMs distributed through
the IRs and 176 single-plane BPMs distributed in the arcs
capable of acquiring 1024 turns. The single-plane BPMs in
RHIC are confined to the arc regions where coupling
sources are minimal. A more sophisticated algorithm to
estimate jCj=�2 with lattices consisting of both single and
double plane BPMs is under investigation. In real accel-
erators, many BPMs routinely fail resulting in unreliable
data. It has been shown that preprocessing of BPM data is
usually effective in removing faulty BPMs and maintaining
data integrity [15] to obtain reliable measurements.

D. Calculation of skew quadrupole strengths

In [16,17] a method to obtain multipolar strengths from
the measurement of RDTs was proposed. Skew quadrupole
strengths are equivalently obtained from the measurement
of the C matrix by use of the above relations. According to
Fig. 7 we assume that only one skew quadrupole of inte-
grated strength k exists between the two BPMs where the C
matrices have been measured. From [16,17] the integrated
strength �k is given by
03400
�k � �4e�i��
skew
x ��skew

y ��f�l�1001e
i��l

x��l
y�

� f�l�1�
1001 e

i��l�1
x ��l�1

y ��; (22)

with �k � k
�����������������������
�skew
x �skew

y

q
. Here k is the strength of coupler,

�skew
x;y and �skew

x;y are the Twiss functions at the location of
the skew quadrupole,�l

x;y and�l�1
x;y are the betatron phases

at the lth and �l� 1�th BPMs, respectively, and f�l�1001 and
f�l�1�
1001 are the corresponding RDTs. These terms are given

by Eq. (9) as a function of the measured C matrix. The
RDT f1010 can also be used leading to a similar equation. It
is also interesting to relate the change of the determinant of
1-7
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C to the strength of the skew quadrupole. By manipulating
the above expressions (see alternate derivation in Sec. 2 of
the appendix),

�k � �
1

*

�
jC�l�j

��l�2
�

jC�l�1�j

��l�1�2

�
; (23)

where * is given by

*�
1

��l�
��sin+�x sin+�yC

�l�
21�cos+�x cos+�yC

�l�
12

� sin+�x cos+�yC
�l�
22�cos+�x sin+�yC

�l�
11�; (24)

where +�x;y � �skew
x;y ��l

x;y are the phase advances be-
tween the skew quadrupole and the second location of
observation. Using Eq. (A4), Eq. (24) can also be ex-
pressed as

* �
Cskew
12

�l
: (25)

To determine the applicability of the above expressions,
a simulation using strongly coupled RHIC lattice is per-
formed. The �Qmin for this lattice is 4:37� 10�2. Figure 8
shows skew quadrupole strengths determined from
Eq. (23) for the RHIC lattice. The presence of large cou-
pling sources leads to relative errors of calculated strengths
in the 20% level. This is due to the fact that these expres-
sions are first order approximations and deviate with large
coupling as illustrated in Sec. II D 2.
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IV. CLOSEST TUNE APPROACH

The following expression relating the closest tune ap-
proach and the determinant of C is given in [5,6],

�Qmin �
2��cos2�Qx � cos2�Qy�

��sin2�Qx � sin2�Qy�

�������
jCj

q
: (26)

This equation cannot hold true in general since its left-hand
side is invariant around the ring but the right-hand side is
not, as explained in Sec. II C. Only close to the difference
resonance the determinant of C tends to be invariant and
Eq. (26) is considered to be a good approximation. Under
this assumption the closest tune approach can also be
related to the resonance terms,

�Qmin �
cos2�Qx � cos2�Qy

��sin2�Qx � sin2�Qy�

�

�
4

�������������������������������������
jf1001j

2 � jf1010j
2

p
1� 4�jf1001j2 � jf1010j2�

�
; (27)

and since we assume the tunes to be close to the difference
resonance, the approximation jf1001j � jf1010j might also
be used [5,6]. A computer simulation is performed to
investigate the validity of Eqs. (26) and (27). The same
FODO lattice with three skew quadrupoles were used with
horizontal and vertical tunes Qx � 18:226 and Qy �

17:239, respectively. Since jCj varies around the ring,
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Ts and C matrix are compared to MAD-X model values. Note that
ddle: jCj=�2 is plotted as a function longitudinal position. A
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1-8



 0

 0.4

 0.8

 1.2

 1.6

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1
10

-3
 ∆

Q
m

in

10-3 k [m-1]

Model
SQ1
SQ2
SQ3

 0

 0.4

 0.8

 1.2

 1.6

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

10
-3

 ∆
Q

m
in

Model
SQ1
SQ2
SQ3

FIG. 9. (Color) Top: �Qmin calculated using the three different values of RDTs at respective locations of skew quadrupoles as a
function of their strength. Bottom: �Qmin calculated using three different values of jCj at respective locations of skew quadrupoles as a
function of their strength (Qx � 18:226, Qy � 17:239).
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�Qmin is calculated with the three values of jCj at the three
locations of skew quadrupoles and plotted as a function of
increasing skew quadrupole strengths as shown in Fig. 9.
We observe a dispersion in the �Qmin curves depending on
the choice of the jCj value used to calculate �Qmin. If the
tunes are closer to the coupling resonance, the relative
longitudinal variation in jCj around the ring is smaller,
hence reducing this dispersion.

V. CONCLUSIONS

Direct relations are established between the coupling
matrix and the RDTs. This allows reinterpretation of the
coupling matrix in terms of resonances and using results
from both formalisms indistinctly. Numerical simulations
are carried out to confirm these relations and explore their
scope of application to real accelerators. The determinant
of C and the RDTs (f1001

1010
) have been demonstrated to

exhibit distinct behavior that unambiguously reveals the
region of the coupling sources.

A new approach to compute the full C matrix and hence
the determinant from turn-by-turn data is presented and
comparison to model shows excellent agreement. An ap-
proach to extract the skew quadrupole strengths previously
using RDTs is also extended to C matrix. The applicability
of the expression for �Qmin from the jCj has been
discussed.
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APPENDIX: PROPAGATION OF THE C MATRIX

In a coupler free region C matrix is simply propagated
by an arbitrary phase advance in both modes, which is
given by [9]

C 2 � Rx��x�C1R�1
y ��y�; (A1)

where

Rx;y �
cos�x;y sin�x;y
� sin�x;y cos�x;y

� �
:

If coupling is small and couplers modeled as thin skew
quadrupoles, the C is propagated to first order given by
[10]

C 2 � C1 � k; (A2)

where

k �
0 0
k 0

� �
; (A3)

with k �
�����������������������
�skew
a �skew

b

q
k, and k is the strength of the cou-

pler. Here � is assumed to be 1.
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1. C21 in coupler free region

Using Eq. (A1), C matrix elements at two locations are related in terms of the phase advance alone, which is expressed
as

C�2�
11

C�2�
12

C�2�
21

C�2�
22

0
BBBB@

1
CCCCA �

c�xc�y c�xs�y s�xc�y s�xs�y

�c�xs�y c�xc�y �s�xs�y s�xc�y

�s�xc�y �s�xs�y c�xc�y c�xs�y

s�xs�y �c�xc�y �c�xs�y c�xc�y

0
BBB@

1
CCCA

C�1�
11

C�1�
12

C�1�
21

C�1�
22

0
BBBB@

1
CCCCA; (A4)
where c� � cos��� and s� � sin���. Given two BPM

locations at which turn-by-turn data is recorded, C12=�,
C11=�, andC22=� are calculated as illustrated in Sec. III A.
The phase advances between the two locations can also be
determined using SVD techniques from the same turn-by-
turn data [13]. Rearranging the second row of Eq. (A4),
C21=� is exactly calculated in a coupler free region which
is given by

C �1�
21 � ��C�1�

11 cos�a sin�b � C�1�
12 cos�a sin�b

� C�1�
22 sin�a cos�b � C�2�

12 �=�sin�a sin�b�:

(A5)
2. Skew quadrupole strength from two BPMs

Using Eqs. (A1) and (A2), C matrix is propagated
between two observation points with one skew quadrupole
between them given by

C 2 � Rx��
skew�l
x ��Rx��

skew�l
x �C1R�1

y ��skew�l
y �

� k�R�1
y ��skew�l

y �; (A6)

where �skew�l
x;y are the phase advances between the skew

quadrupole and locations (1) and (2), respectively.
Determinants are distributive (jABj � jAj � jBj), there-
fore

jC2j � jRx��skew�l
x �C1R�1

y ��skew�l
y � � kj; (A7)

since jRx��x;y�j � 1. Using Eqs. (A4) and (A7) �k is ex-
pressed as

�k � �
jC�2�j � jC�1�j

Cskew
12

; (A8)

which is equivalent to Eq. (23) derived from RDTs given
that � � 1.
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