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Cumulative beam breakup in linear accelerators with time-dependent parameters
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A formalism presented in a previous paper for the analysis of cumulative beam breakup (BBU) with
arbitrary time dependence of the beam current and with misalignment of the cavities and focusing
elements [J. R. Delayen, Phys. Rev. ST Accel. Beams 6, 084402 (2003)] is extended to include time
dependence of the focusing and coupling between the beam and the dipole modes. Such time dependence,
which could result from an energy chirp imposed on the beam or from rf focusing, is known to be effective
in reducing BBU-induced instabilities and emittance growth. The analytical results are presented and
applied to practical accelerator configurations and compared to numerical simulations.
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I. INTRODUCTION

The cumulative beam breakup instability (BBU) in lin-
ear accelerators results when a beam is injected into an
accelerator with a lateral offset or an angular divergence
and couples to the dipole modes of the accelerating struc-
tures [1]. The dipole modes that are excited in a cavity by
the previous bunches can further deflect the following
bunches and thereby increase the excitation of the dipole
modes in the downstream cavities. In the case of bunches
of finite length, a particle will also experience the wake-
field generated by all the particles ahead of it within the
same bunch. In this process the transverse displacement
can be amplified and lead to a degradation of beam quality
and possibly beam loss. This instability is cumulative since
the transverse deflection of a particular bunch or particle
results from the additive contributions from all the pre-
vious particles whether in the same bunch or in previous
bunches.

Cumulative BBU has been studied in the past mostly in
the context of high energy electron accelerators where the
beam current profiles were comprised of periodic trains of
pointlike bunches [2–8] or for high-current quasi-dc
beams [9–13]. Growing interest in high-current supercon-
ducting ion accelerators for spallation sources, where the
bunches have a finite length, motivated an investigation of
cumulative BBU in linear accelerators with periodic beam
current profile [14]. BBU in recirculating and energy re-
covering linacs is also very much of interest but is not
addressed here; studies of multipass BBU to date have
been limited to beams comprised of pointlike bunches
[15,16].

More recently a general analysis of BBU with arbitrary
time dependence of the beam current and injection offsets,
as well as random displacement of cavities and focusing
elements, was developed [17,18]. This analysis is extended
here to include time dependence of the focusing and of the
coupling between the beam and the dipole mode in order to
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control or suppress the BBU instability and the resulting
emittance growth. This can be accomplished either with rf
focusing or by introducing an energy spread within a single
bunch as originally proposed [19], or, more recently, by
introducing an energy spread between the bunches [20].

Several analyses of what is often referred to as BNS
(Balakin-Novokhatsky-Smirnov) damping have been made
before [21–30], usually under simplifying assumptions for
the current profile, wake function, or time dependence of
the parameters. We present here an analysis that provides
an exact solution for arbitrary beam current profile, wake
function, offset parameters, misalignment of cavities and
focusing elements, and time dependence of focusing and
BBU coupling strengths. The analytical results are com-
pared to numerical simulations and are found to be in
complete agreement.
II. FORMULATION AND GENERAL SOLUTION

In a continuum approximation, the transverse motion of
a relativistic beam in a misaligned accelerator under the
combined influence of focusing and coupling to the dipole
modes can be modeled by

@2

@�2
x��; �� � �2�x��; �� � df����

� "
Z �

�1
w�� � �1�F��1��x��; �1� � dc����d�1: (1)

In this expression � � s=L is the distance from the
entrance of the accelerator normalized to the accelerator
length L; � is the normalized focusing wave number; � �
!�t�

R
ds=c� is the time made dimensionless by an an-

gular frequency ! and measured after the arrival of the
head of the beam at location �; F��� � I���=I, the current
form factor, is the instantaneous current divided by the
average current; w��� is the wake function of the dipole
modes; " is the coupling strength between the beam
and the dipole modes; and df��� and dc��� are the
lateral displacements of the focusing elements and the
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cavities, respectively, as a function of location along the
accelerator.

The dimensionless BBU coupling strength " is given by

" �
w0IeL2

�mc2!
; (2)

where w0 is the wake amplitude. With these definitions the
wake function w��� is a dimensionless function of a di-
mensionless variable and includes only the functional de-
pendence on � .

The continuum model assumed in Eq. (1) relies on a
number of approximations that are addressed in [17].
Equation (1) also assumes a coasting beam in a uniform
accelerator but, as shown in Appendix A of [17], an
accelerated beam can, under general assumptions, be re-
duced to a coasting beam with the introduction of appro-
priate variable and coordinate transformations.

A. Time-independent parameters

When � and " are constant (independent of �) Eq. (1)
can be solved through the use of the Laplace transform
with respect to �: xy�p; �� � L��x��; ���. The Laplace-
transformed Eq. (1) is

p2xy�p; �� � px0��� � x00��� � �2�xy�p; �� � dyf �p��

� "
Z �

�1
w�� � �1�F��1��x

y�p; �1� � dyc �p��d�1;

(3)

and the solutions for xy�p; �� and x��; �� are [17]

xy�p; �� �
X1
n�0

"n

�p2 � �2�n�1 �x0phn��� � x00gn����

� �2dyf �p�
X1
n�0

"n

�p2 � �2�n�1 fn���

� dyc �p�
X1
n�0

"n�1

�p2 � �2�n�1 fn�1��� (4)

and

x��; �� �
X1
n�0

"n�x0hn���jn��;�� � x00gn���in��;���

� �2
X1
n�0

"nfn���in��;�� � df���

�
X1
n�0

"n�1fn�1���in��;�� � dc���: (5)

The functions fn���, gn���, and hn��� are defined by
identical recursion relations8><
>:
fn�1���
gn�1���
hn�1���

9>=
>; �

Z �

�1

8><
>:
fn��1�
gn��1�
hn��1�

9>=
>;F��1�w��1 � ��d�1; (6)
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with

f0��� � 1; (7a)

g0��� � x00���=x
0
0 �

1

x00

@
@�

x��; ��
����������0

; (7b)

h0��� � x0���=x0 �
1

x0
x�� � 0; ��; (7c)

where x0��� and x00��� are the lateral displacement and
angular divergence, respectively, of the beam at the en-
trance of the accelerator. The normalizing constants x0 and
x00 are introduced to make the functions h0��� and g0���
dimensionless.

The functions in��;�� and jn��;�� are defined in terms
of Bessel functions of order integer plus one half

in��;�� � L�1
�

�
1

�p2 � �2�n�1
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�����������
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Jn��1=2�����; (8a)

jn��;�� � L�1
�

�
p

�p2 � �2�n�1
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�
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n

�����������
���
2

r
Jn��1=2�����; (8b)

and

in��;�� � d��� �
Z �

0
in��; u�d��� u�du (9)

is the convolution of in��;�� and d���.
Applications of these results were presented in [17,18].

B. Time-dependent parameters

When the strengths of the focusing and of the coupling
between the beam and the dipole modes are time depen-
dent ["��� and ����] the beam displacement governed by
Eq. (1) is not given by Eq. (5) any more and the procedure
for solving Eqs. (1) and (3) needs to be modified since, as
shown in Appendix B of [17], to obtain Eqs. (4)–(6) " and
� were assumed to be independent of � in order to be taken
out of the integrals. This can be done by splitting the
focusing strength ���� in two parts, one constant and one
time dependent, such that

�2��� � �2
0�1� ������ � �2

0 � �2
1���: (10)

As shown in the Appendix, the displacement x��; �� and its
Laplace transform xy�p; �� are then given by
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xy�p; �� �
X1
n�0

1

�p2 � �2
0�

n�1 �px0h
?
n ��� � x00g

?
n ���� � �2

0d
y
f �p�

X1
n�0

1

�p2 � �2
0�

n�1 k
?
n ���

� dyc �p�
X
n�0

1

�p2 � �2
0�

n�1 ff
?
n�1��� � �2

0�k
?
n ��� � f?n ����g; (11)

x��; �� �
X1
n�0

�x0jn��0; ��h
?
n ��� � x00in��0; ��g

?
n ���� � �2

0

X1
n�0

k?n ���in��0; �� � df���

�
X1
n�0

ff?n�1��� � �2
0�k

?
n ��� � f?n ����gin��0; �� � dc���; (12)
where the functions f?n ���, g?n ���, h?n ���, and k?n ��� satisfy
identical recursion relations8>>>>><
>>>>>:

f?n�1���

g?n�1���

h?n�1���

k?n�1���

9>>>>>=
>>>>>;

� "���
Z �

�1

8>>>>><
>>>>>:

f?n ��1�

g?n ��1�

h?n ��1�

k?n ��1�

9>>>>>=
>>>>>;
w�� � �1�F��1�d�1

� �2
1���

8>>>>><
>>>>>:

f?n ���

g?n ���

h?n ���

k?n ���

9>>>>>=
>>>>>;
; (13)

and

f?0 ��� � 1; (14a)

g?0 ��� � x00���=x
0
0; (14b)

h?0 ��� � x0���=x0; (14c)

k?0 ��� �
�2���

�2
0

� 1�
�2
1���

�2
0

� 1� �����; (14d)

in��0; �� �
1

n!

�
�
2�0

�
n 1

�0

�������������
��0�
2

r
Jn��1=2���0��; (15a)

jn��0; �� �
1

n!

�
�
2�0

�
n

�������������
��0�
2

r
Jn��1=2���0��: (15b)

Equation (12) gives the transverse displacement, at lo-
cation � and time � , of a beam of arbitrary current F���,
entering the accelerator with lateral offset x0��� and angu-
lar divergence x00���, experiencing transverse forces due to
coupling "��� to cavity dipole modes of wakefield w���
and to focusing ����, and with displacement along the
accelerator dc��� of the cavities and df��� of the focusing
elements.

There is some arbitrariness in the way the focusing
strength ���� is split in two parts according to Eq. (10).
For example, it could be assumed that ���� has no constant
term ��0 � 0� and only a time-dependent term. In this case
xy�p; �� and x��; �� would be given by
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xy�p; �� �
X1
n�0

�
x0

h�n ���

p2n�1 � x00
g�n ���

p2n�2


� ��2dyf

X1
n�0

k�n ���

p2n�2

� dyc �p�
X1
n�0

�f�n�1��� � ��2k�n ����

p2n�2 ; (16)

x��;�� �
X1
n�0

�
x0

�2n

2n!
h�n ���� x00

�2n�1

�2n� 1�!
g�n ���



� ��2
X1
n�0

k�n ���
�2n�1 � df���

�2n� 1�!

�
X1
n�0

�f�n�1���� ��2k�n ����
�2n�1 � dc���
�2n� 1�!

; (17)

where the functions f�n ���, g�n ���, h�n ���, and k�n ��� satisfy
identical recursion relations
8>>>>><
>>>>>:

f�n�1���

g�n�1���

h�n�1���

k�n�1���

9>>>>>=
>>>>>;

� "���
Z �

�1

8>>>>><
>>>>>:

f�n ��1�

g�n ��1�

h�n ��1�

k�n ��1�

9>>>>>=
>>>>>;
w�� � �1�F��1�d�1

� �2���

8>>>>><
>>>>>:

f�n ���

g�n ���

h�n ���

k�n ���

9>>>>>=
>>>>>;
; (18)

and

f�0 ��� � 1; (19a)

g�0 ��� � x00���=x
0
0; (19b)

h�0 ��� � x0���=x0; (19c)

k�0 ��� �
�2���

��2 : (19d)

The arbitrary constant �� is introduced only to make the
function k�0 ��� dimensionless—similar to f�0 ���, g�0 ���,
and h�0 ���—and the final result given by Eq. (17) is inde-
pendent of its choice.
2-3



J. R. DELAYEN Phys. Rev. ST Accel. Beams 8, 024402 (2005)
While the expressions (11)–(15) and (16)–(19) for
xy�p; �� and x��; �� look very different, they are mathe-
matically equivalent and represent the same solutions of
Eqs. (1) and (3). They differ significantly, however, in their
rate of convergence, with expressions (16)–(19) converg-
ing very slowly. For expressions (11)–(15) to be of prac-
tical use, the separation of �2��� in two parts, as given by
Eq. (10), needs to be done in such a way that the time-
dependent part ����� is kept as small as possible. Since, in
practical applications, the focusing strength will change
only by a small amount, natural choices for �2

0 would be
the value of �2��� either at the beginning, the end, or its
average value while the beam is in the accelerator.

Equations (11)–(15) are very general. For the remainder
of this paper, in order to simplify the equations, we will
assume that the accelerator is perfectly aligned �df��� �
dc��� � 0�, that the injection offsets are time independent
�x00��� � x00; x0��� � x0�, and that the beam was turned on
at � � 0 �F�� < 0� � 0�. Extension of the following re-
sults to time-dependent injection offsets and misaligned
accelerators is straightforward by applying the results of
[17,18].

With these assumptions xy�p; �� and x��; �� are given
by

xy�p; �� �
X1
n�0

x00 � px0
�p2 � �2

0�
n�1 f

?
n ���; (20)

x��; �� �
X1
n�0

�x0jn��0; �� � x00in��0; ���f?n ���; (21)

f?0 ��� � 1; (22a)

f?n�1��� � "���
Z �

0
w�� � �1�F��1�f

?
n ��1�d�1

� �2
1���f

?
n ���: (22b)

From Eqs. (22) we see that

f?1 ��� � "���
Z �

0
w��1 � ��F��1�d�1 � �2

1���: (23)

Thus, by choosing

�2
1��� � "���

Z �

0
w�� � �1�F��1�d�1; (24)

we have

f?n>0��� � 0; (25)
and

x��; �� � x0j0��0�� � x00i0��0��

� x0 cos�0��
x00
�0

sin�0�: (26)

As a result the beam progresses in the accelerator as
though it were only experiencing a constant focusing
force without interaction with the deflecting mode.
Equation (24) is the general condition for complete sup-
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pression of BBU by imposing a time dependence on the
focusing or the coupling strength. This condition is often
referred to as autophasing [23].

It should be noted that the autophasing condition
Eq. (24) that eliminated the BBU instability was obtained
in the case of a perfectly aligned accelerator with time-
independent injection offsets. As can be seen from
Eq. (12), the autophasing condition would still be effective
with time-independent offsets and identical displacements
of cavities and focusing elements �dc��� � df���� but
would not be effective if the injection offsets were time
dependent, or if the misalignments were different for the
cavities and the focusing elements.

III. SINGLE VERY SHORT BUNCH

The results of the previous section will be first applied
to the case of a single, very short bunch. In this case the
wake function is assumed to be linear �w��� � �� and the
current density along the bunch is assumed to be constant
�F��� � 1�. We will further assume that the BBU coupling
strength is constant.

If the time dependence of the focusing is assumed to be
quadratic

�2��� � �2
0�1� #�2�; (27)

then the functions f�n��� can be easily calculated:

f?0 � 1; (28a)

f?n ��� �
�2n

�2n�!

Yn
k�1

�"� �2k� 1��2k��2
0#�: (28b)

This, together with Eq. (21), defines completely the dis-
placement x��; ��. If the focusing modulation parameter #
is chosen such that # � "=�2�2

0�, then f?n>0��� � 0 and the
coupling between the beam and the dipole mode is com-
pletely suppressed.

In the case of a linear time dependence of the focusing,

�2��� � �2
0�1� #��; (29)

the functions f?n ��� can be obtained through the recursion
relations

f?n ��� �
X2n
k�n

an;k�k; a0;0 � 1;

an;k �
"an�1;k�2

k�k� 1�
� �2

0#an�1;k�1:

(30)

In particular,

f?0 ��� � 1; (31a)

f?1 ��� �
"
2
�2 � �2

0#�; (31b)

f?2 ��� �
"2

24
�4 �

2

3
"�2

0#�
3 � �4

0#
2�2: (31c)

These results are illustrated in Fig. 1, which shows the
shape of a bunch of length �b at the exit (� � 1) of an
2-4
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FIG. 1. (Color) Bunch shape at the exit of the accelerator as a function of focusing modulation for a quadratic (left) or linear (right)
time dependence of the modulation. The parameter # is the amount of focusing modulation defined by Eqs. (27) and (29). See text for
the other parameters.
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accelerator for quadratic (left) and linear (right) time de-
pendence of the focusing modulation. The parameter #
represents the rate of modulation of the focusing as defined
by Eqs. (27) and (29). The focusing strength is set at �0 �
100:5�; this implies that, since � � 1, the lateral displace-
ment is due entirely to the coupling with the deflecting
mode and to the focusing modulation, and not to the
02440
betatron motion without focusing modulation. The strength
of the coupling to the dipole mode is assumed to be " �
0:8 and the length of the bunch is assumed to be �b � 1 .
Figure 1 illustrates how the right amount of quadratic
modulation can cancel the effect of the coupling to the
dipole modes, while a linear modulation can reduce it but
not eliminate it.
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TABLE I. Nominal top-level linear-collider design parameters
[17,18,28,29].

Parameter Value

Total initial energy ��0�mc2 10 GeV
Total final energy ��1�mc2 1 TeV
Linac length L 10 km

J. R. DELAYEN Phys. Rev. ST Accel. Beams 8, 024402 (2005)
Such modulations could be provided by rf focusing; a
linear modulation would be obtained by operating the rf
focusing elements sufficiently far off crest with respect to
the beam, while a quadratic modulation would be obtained
by operating the focusing elements on crest. A similar
effect could be obtained by introducing linear or quadratic
energy modulations along the bunch [31] .
Number of betatron periods 100
Bunch charge 1 nC
Number of bunches in train N 90
Bunch spacing ' 2.8 ns
Deflecting-wake frequency !=2� 14.95 GHz
Deflecting-wake amplitude w0 1015 VC�1 m�1
IV. FINITE TRAIN OF POINTLIKE BUNCHES

The results of Sec. II will be applied here to a finite train
of N identical pointlike bunches separated, in the labora-
tory frame, by ', so that bunch M is defined by � � M!'.
The displacement of bunch M is then given by

xM��� �
X1
n�0

f?n �M!'��x0j0��0; �� � x00i0��0; ���; (32)

f?n�1�M!'� � !'"�M!'�
XM
k�0

f?n �k!'�w��M� k�!'�

� �2
0���M!'�f?n �M!'�: (33)

As an example, the analytical results expressed by
Eqs. (32) and (33) will be applied to a beam representative
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FIG. 2. (Color) Normalized lateral displacement of a finite train of p
different values of the Q of the deflecting mode and of the modu
parameters.

02440
of a linear collider. For comparison we will use the same
parameters as those used in [17,18,28,29] and listed in
Table I. Since this is an accelerated beam, the transforma-
tions described in Appendix A of [17] will be used.
Converting the parameters in Table I to those used in this
paper we have "�� � 0� � w0qeL2

��0�mc2!' � 38:02, ��� �

0� � 1100�, &�� � 1� � 2=11, and !' � 263:014. The
wake function is assumed to be of the form w��� � u����
sin� exp���=�2Q��.
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ointlike bunches at the exit of a representative linear collider for
lation of the focusing strength. See Table I for the choice of
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This example illustrates the relative effects of a finite Q
of the deflecting mode and of a time-dependent focusing
strength of the form

�2�M!'� � �2
0

�
1� #

M
N � 1


; (34)

where M (from M � 0 to M � N � 1) is the bunch num-
ber and N is the total number of bunches.

The transverse displacement at location � for bunch M
is given by Eq. (32), where the functions f?n �M!'� are
calculated using the recursion relation of Eq. (33). The
transverse displacements of the bunches at the exit of the
accelerator for the beam and accelerator parameters of
Table I are shown in Fig. 2. The rows are (top to bottom)
for a Q of the deflecting mode of 1, 10 000, 5000, and
2000. The columns are (left to right) for modulation pa-
rameter # of 0, 0.01, 0.02, and 0.03.

The top right-hand plot in Fig. 2 �Q � 1; # � 0:03�,
which was obtained analytically, is identical in all details to
Fig. 4 of [29], which was obtained numerically by tracking
successive bunches as they progress along the same
accelerator.

While this example assumes a linear time dependence of
the focusing strength and a simple wake function, other
more complicated profiles and wake functions can be as
easily accommodated by the recursion relations [Eq. (33)].
02440
V. SUMMARY

This paper presents a formalism to address analytically
cumulative beam breakup in linear accelerators with time-
dependent parameters. Such time dependence, which could
result from an energy chirp imposed on the beam or from
the use of rf focusing, can be effective in reducing the
coupling between the beam and the dipole modes.

This formalism allows, in principle, direct calculation,
for any time and any position in an accelerator, of the
transverse displacement of a beam of arbitrary current
profile, entering the accelerator with arbitrary time-
dependent lateral displacement and angular divergence,
and with random displacements of the cavities and focus-
ing elements.

When applied to a colliderlike accelerator, the analytical
results presented here reproduce exactly the numerical
simulations that were done previously.
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APPENDIX: GENERAL SOLUTION OF THE
EQUATION OF MOTION

The equation of motion for the transverse displacement
is
@2

@�2
x��; �� � �2����x��; �� � df���� � "���

Z �

�1
w�� � �1�F��1��x��; �1� � dc����d�1: (A1)

We separate the focusing in two parts, one constant and one time dependent, such that

�2��� � �2
0�1������� � �2

0 � �2
1���; (A2)

and we apply the Laplace transform with respect to � to obtain

p2xy�p; �� � px0��� � x00��� � �2
0�x

y�p; �� � dyf �p�� � �2
1����x

y�p; �� � dyf �p��

� "���
Z �

�1
w�� � �1�F��1��x

y�p; �1� � dyc �p��d�1: (A3)

By analogy with the time-independent case [where �2
1��� � 0], we assume that xy�p; �� is of the form

xy�p; �� �
X1
n�0

1

�p2 � �2
0�

n�1 �px0h
?
n ��� � x00g

?
n ���� � �2

0d
y
f �p�

X1
n�0

1

�p2 � �2
0�

n�1 k
?
n ��� � dyc �p�

X
n�0

1

�p2 � �2
0�

n�1 l
?
n�1���;

(A4)

where the functions g?n ���, h?n ���, k?n ���, and l?n ��� are to be determined.
We see from Eq. (A4) that the transverse displacement is a linear combination of the displacements caused by the

injection offsets and the misalignments.
To determine g?n ���, we assume that x0��� � 0, and df��� � dc��� � 0, so that xy�p; �� reduces to

xy�p; �� � x00
X1
n�0

1

�p2 � �2
0�

n�1 g
?
n ���; (A5)

and must satisfy
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�p2 � �2
0�x

y�p; �� � �2
1���x

y�p; �� � x00��� � "���
Z �

�1
w�� � �1�F��1�x

y�p; �1�d�1: (A6)

This implies that

X1
n�0

1

�p2 � �2
0�

n�1 �g
?
n�1��� � �2

1���g
?
n ��� � "���

Z �

�1
w�� � �1�F��1�g

?
n ��1�d�1� � g?0 ��� �

x00���
x00

� 0; (A7)

which leads to

g?0 ��� �
x00���
x00

; (A8a)

g?n�1��� � "���
Z �

�1
w�� � �1�F��1�g?n ��1�d�1 � �2

1���g
?
n ���: (A8b)

The functions h?n ��� are determined in a similar fashion by assuming x00��� � 0, and df��� � dc��� � 0. They satisfy
the same recursion relation as g?n ��� but with h?0 ��� � x0���=x0.

To determine k?n ��� we assume that x0��� � x00��� � 0 and dc��� � 0, so that xy�p;�� reduces to

xy�p;�� � �2
0d

y
f �p�

X1
n�0

1

�p2 � �2
0�

n�1 k
?
n ���; (A9)

and must satisfy

�p2 � �2
0�x

y�p; �� � �2
1���x

y�p; �� � �2���dyf �p� � "���
Z �

�1
w�� � �1�F��1�xy�p; �1�d�1: (A10)

This implies that

X1
n�0

1

�p2 � �2
0�

n�1 �k
?
n�1��� � �2

1���k
?
n ��� � "���

Z �

�1
w�� � �1�F��1�k?n ��1�d�1� � k?0 ��� �

�2���

�2
0

� 0; (A11)

which leads to

k?0 ��� �
�2���

�2
0

� 1�
�2
1���

�2
0

� 1� �����; (A12a)

k?n�1��� � "���
Z �

�1
w�� � �1�F��1�k

?
n ��1�d�1 � �2

1���k
?
n ���: (A12b)

To determine l?n ��� we assume that x0��� � x00��� � 0 and df��� � 0, so that xy�p;�� reduces to

xy�p;�� � �dyc �p�
X1
n�0

1

�p2 � �2
0�

n�1 l
?
n�1���; (A13)

and must satisfy

�p2 � �2
0�x

y�p; �� � �2
1���x

y�p; �� � "���
Z �

�1
w�� � �1�F��1��x

y�p; �1� � dyc �p��d�1: (A14)

This implies that

X1
n�0

1

�p2��2
0�

n�1

�
l?n�2�����2

1���l
?
n�1����"���

Z �

�1
w����1�F��1�l

?
n�1��1�d�1


�l?1 ����"���

Z �

�1
w����1�F��1�d�1�0;

(A15)

which leads to
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l?1 ��� � "���
Z �

�1
w�� � �1�F��1�d�1; (A16a)

l?n�1��� � "���
Z �

�1
w�� � �1�F��1�l

?
n ��1�d�1 � �2

1���l
?
n ���: (A16b)

If we define the functions f?n ��� by

f?0 ��� � 1; (A17a)

f?n�1��� � "���
Z �

�1
w�� � �1�F��1�f?n ��1�d�1 � �2

1���f
?
n ���; (A17b)

then

l?1 ��� � f?1 ��� � �2
1��� � f?1 ��� � �2

0�k
?
0 ��� � f?0 ����: (A18)

Since the functions f?n ���, k?n ���, and l?n ��� satisfy the same recursion relation, we obtain

l?n�1��� � f?n�1��� � �2
0�k

?
n ��� � f?n ����: (A19)
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