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Compensation of detector solenoid effects on the beam size in a linear collider
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In this paper, we discuss the optics effects of the realistic detector solenoid field on beam size at the
interaction point (IP) of a future linear collider and their compensation. It is shown that most of the
adverse effects on the IP beam size arise only from the part of the solenoid field which overlaps and
extends beyond the final focusing quadrupoles. It is demonstrated that the most efficient and local
compensation can be achieved using the novel method of weak antisolenoids near the IP, while a
correction scheme which employs only skew quadrupoles is less efficient, and compensation with strong
antisolenoids is not appropriate. One of the advantages of the proposed antisolenoid scheme is that this
compensation works well over a large range of the beam energy.

DOI: 10.1103/PhysRevSTAB.8.021001 PACS numbers: 29.17.+w, 41.85.–p, 41.75.Ht, 29.27.–a
I. INTRODUCTION

A linear collider (LC) must collide nanometer scale flat
beams at the interaction point (IP) in order to reach the
desired luminosity. The LC beam sizes are typically sev-
eral nanometers in vertical and several hundred nanometers
in horizontal plane. To produce these very small beam sizes
requires strong optics and careful attention to any effects
that can degrade the ideal beam, and, in particular, com-
pensating the coupling and other distortions introduced by
the detector solenoid.

In circular colliders, the standard methods of compen-
sating for the detector solenoid include antisolenoids or
skew quadrupoles or their combination. The simplest cor-
rection employs a pair of antisolenoids installed on either
side of the detector solenoid. In this scheme of strong
antisolenoids, the combined strength of the compensating
and detector solenoids on each side of IP must vanish in
order to cancel the beam tilt both at the IP and outside of
the solenoid. This is automatically achieved if there are no
other magnets inside the solenoid. The advantage of this
scheme is that it is completely local and corrects all en-
ergies at once, but the drawback is that the antisolenoids do
not permit the interaction region (IR) quadrupoles to be
placed close to the IP. This limits the strength of the final
beam focusing and hence the luminosity. This type of
compensation was used in the early SPEAR and PEP [1]
colliders and is presently used at KEK-B [2].

The strong antisolenoid method can be expanded to
include quadrupoles inside the solenoid field. In this
case, each quadrupole inside the field must be rotated by
the same angle as the coupled beam would have at
that quadrupole location. The tilted quadrupoles do not
generate additional coupling, and hence the solenoid-
antisolenoid compensation is preserved. For ideal correc-
tion, however, the quadrupole frame would have to rotate
continuously along the quadrupole length to follow the
beam angle. For practical purposes, the continuous rotation
can be replaced by an average tilt angle in each quadrupole
05=8(2)=021001(15) 02100
and the remaining residual coupling minimized by small
adjustment of the tilt angles as is done at DAFNE [3]. One
disadvantage of this scheme is that operating at a different
energy or different solenoid field requires a mechanical
adjustment of the quadrupole tilt, which may be techni-
cally difficult.

Solenoid compensation using only skew quadrupoles
has been implemented, for example, at the e�e� colliders
LEP [4] and PEP-II [5]. In this scheme, local compensation
of the coupling terms at the IP requires up to four skew
quadrupoles on each side of the IP. The number of correc-
tors may be reduced if the optics is symmetric about the IP
or if some coupling terms can be neglected. Advantages of
this method are that the skew quadrupoles are shorter than
the antisolenoids, do not require space near the IP, can be
adjusted for changing optics parameters, and can correct
coupling coming from other sources. The drawback is that
this correction, typically, is not as local as the strong
antisolenoid scheme because the skew quadrupoles have
to be placed at locations with specific phase advance from
the IP. Consequently, the longer correction region in the
real machine includes more magnet errors and, hence,
requires a more careful implementation.

Compared to circular machines, the solenoid compensa-
tion in linear colliders has a few distinctive features:
(1) correction is essential up to the collision point but
may not be so stringent afterwards, (2) the IP beam focus-
ing is much stronger than in existing rings, and (3) the
optics must accommodate a large range of beam energy.
For example, in the next generation linear collider, the IP
must be designed to cover 90 GeV to 1 TeV in the center of
mass. The standard methods of solenoid compensation
used in circular accelerators are not appropriate for a linear
collider. A novel method of weak antisolenoids appears to
be the optimal compensation strategy.

This paper evaluates the effects of the detector solenoid
field on the beam size and orbit at the IP of the Next Linear
Collider (NLC). The study assumes the design optics of
the NLC beam delivery system (BDS) with realistic mod-
1-1  2005 The American Physical Society
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FIG. 2. (Color) Optics of the Next Linear Collider beam delivery
system near the IP showing betatron functions (top) and hori-
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els of the detector solenoid field, provides both the ana-
lytical estimate and particle tracking calculation of the
effects on the beam, and discusses possible methods of
compensation.

All presented calculations are for the optics of the first
interaction region in the NLC design [6] and for a beam
energy of 250 GeV. The ideal rms beam sizes at the IP are
�x0 � 243 nm and �y0 � 3 nm, and beam divergencies
�xp0 � 30:4 �rad and �yp0 � 27:3 �rad. The energy
spread has a two-horn distribution with the half-width of
0.4% and the effective rms value of �E � 0:25%. The IP
beta functions are 
x0 � 8 mm, 
y0 � 0:11 mm, and
there is a nonzero horizontal angular dispersion �0

x0 �
0:0094 at the IP. The latter is needed to create dispersion
at the final doublet (FD) sextupoles for a local correction of
the BDS chromaticity [7]. The optics of the complete BDS
is shown in Fig. 1 and the optics near the IP is shown in
Fig. 2. The free space between the IP and the final doublet
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FIG. 1. (Color) Optics of the Next Linear Collider (NLC) beam
delivery system. The IP is located at s � 1812:56 m. A skew
correction section is located in the first hundred meters.
Correction sextupoles, whose displacements form the linear
knobs, are at maxima of the beta function near s � 1270 and
1450 m and in the FD.

zontal dispersion (bottom). Locations of the final doublet mag-
nets are shown, including quadrupoles QD0 and QF1, sextupoles
SD0 and SF1, octupoles OC0 and OC1, skew quadrupole SQ3,
and optional vertical corrector BXCOR. IP is at z � 0 m.
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is L� � 3:51 m, and the half crossing angle is c �
10 mrad. These figures also show the locations of the final
doublet quadrupoles, correcting sextupoles, octupoles and
skew quadrupole near the IP, and the location of the skew
correction section and sextupoles forming the linear knobs
in the BDS. Note that the beam line in Fig. 2 is shown in
the reversed direction, with the IP on the left side, for
easier comparison with the ANSYS plot of detector solenoid
field map. In all figures except Fig. 1 the IP location is at
z � 0 m.

Two realistic detector solenoid models were considered:
the silicon detector (SiD) and the large detector (LD). The
maximum field values are 5 and 3 T, respectively, and the
corresponding field integrals over half the detector are 16.7
and 14.4 T m. Figure 3 shows the ANSYS model for the SiD
detector and Fig. 4 shows the calculated longitudinal and
radial components of the solenoid field in these models.
Note that the LD field extends farther inside the FD
quadrupoles.

For comparison with the above realistic models, a ficti-
tious ‘‘tiny’’ solenoid model was also studied. This model
was scaled from SiD and compressed longitudinally with
the maximum field of 12 T and the field integral over half
the detector of 18.0 T m as shown in Fig. 4. The essential
feature of this model is that the solenoid is chosen to be
short enough so that it does not overlap with the final
doublet, in contrast to SiD or LD models.

The organization of this paper is as follows: Section II
recapitulates the optics transformation in the basic hard
edge solenoid model. Section III introduces the effects
generated in the realistic solenoid models with overlapping
solenoid field and final doublet quadrupoles. Section IV
provides an analytic description of the coupling and orbit
1-2
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FIG. 3. (Color) The model of the silicon detector (SiD) with
field lines calculated by ANSYS.
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effects at the IP caused by the overlapped quadrupoles and
solenoid, leading to the concept of weak antisolenoids for
detector solenoid compensation. The application of the
novel method of weak antisolenoids to SiD and LD com-
pensation is discussed in Sec. V, where the optimized
configurations of the antisolenoids and the results of com-
pensation are presented. The enhancement of the solenoid
effects at lower beam energies and performance of the
weak antisolenoid method as a function of energy are
discussed in the last part of Sec. V and compared with
the skew quadrupole compensation method.
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II. HARD EDGE SOLENOID MODEL

Let us first describe the well-known properties of a
simple hard edge solenoid with constant longitudinal field
B and length ‘. The first order matrix in this model can be
written as M̂S � M̂E M̂L M̂E

�1, where matrices M̂E and
M̂E

�1 represent the integral effect of a linear radial field at
the two solenoid edges and M̂L is the transformation
produced by the longitudinal field in the solenoid body
(see, for example, [8]):

M̂E �

1 0 0 0
0 1 �KS 0
0 0 1 0
KS 0 0 1

0
BBB@

1
CCCA; (1)

M̂L �

1 SC=KS 0 S2=KS
0 C2 � S2 0 2SC
0 �S2=KS 1 SC=KS
0 �2SC 0 C2 � S2

0BBB@
1CCCA; (2)

M̂S �

C2 SC=KS SC S2=KS
�SCKS C2 �S2KS SC
�SC �S2=KS C2 CS=KS
S2KS �SC �SCKS C2

0BBB@
1CCCA: (3)

Here, KS � B=�2B��, S � sinKS‘, C � cosKS‘, and
B� is the magnetic rigidity (equal to about 834 T m at
250 GeV). Note that the full solenoid matrix M̂S is sym-
plectic, but the individual matrices M̂E and M̂L do not
satisfy this condition. This is because the matrices are
written in terms of TRANSPORT variables (x; x0; y; y0), while
the symplecticity condition is derived and satisfied in the
canonical system (x; px; y; py). The two sets of variables
are equal in a purely transverse field, hence the matrices of
such magnets are automatically symplectic in a (x; x0; y; y0)
system. Inside a solenoid, however, there is a difference
between the mechanical (x0; y0) and canonical (px; py)
momenta created by the nonzero transverse components
of the magnetic vector potential of a longitudinal field.
Since the canonical transformation remains symplectic by
definition, the transformation of (x; x0; y; y0) inside a sole-
noid is no longer symplectic. This deviation arises only
while inside a solenoid and should not be a concern [9].

Analysis of Eq. (3) shows that M̂S can be expressed in a
simpler form using a symplectic 2	 2 matrix F̂:

M̂S �
CF̂ SF̂
�SF̂ CF̂

 !
; where F̂ �

C S=KS
�SKS C

	 

:

(4)

From here, it follows that M̂S can be written as a product of
an uncoupled matrix M̂F and a rotation matrix M̂R, both
being symplectic:

M̂S � M̂F M̂R � M̂R M̂F; (5)
1-3
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M̂F �
F̂ Ô
Ô F̂

 !
; M̂R �

CÎ SÎ
�SÎ CÎ

 !
; (6)

where

Î �
1 0
0 1

	 

; Ô �

0 0
0 0

	 

: (7)

Equations (5) and (6) clearly show that the solenoid
coupling is just a rotation of the beam envelope in the
x-y plane by the angle KS‘ � B‘=�2B��. The uncoupled
matrix M̂F provides equal transformation in the x and y
planes. In the approximation that the solenoid field is weak
with KS‘
 1 (typically true for detector solenoids in
accelerators), the M̂F can be represented by a thin focusing
lens surrounded by drifts of length ‘=2:

M̂F �

1 ‘
2 0 0

0 1 0 0
0 0 1 ‘

2
0 0 0 1

0BBB@
1CCCA

1 0 0 0
�K2

S‘ 1 0 0
0 0 1 0
0 0 �K2

S‘ 1

0BBB@
1CCCA

	

1 ‘
2 0 0

0 1 0 0

0 0 1 ‘
2

0 0 0 1

0BBBBB@

1CCCCCA; (8)

where the focusing terms �K2
S‘ are equal in the x and y

planes. Finally, taking into account that the rotation and
drift matrices commute, a weak solenoid of length ‘ can be
approximated by a thin solenoid with the matrix containing
only the focusing and rotation terms as follows [8]:

M̂S
thin �

1 0 KS‘ 0
�K2

S‘ 1 0 KS‘
�KS‘ 0 1 0
0 �KS‘ �K2

S‘ 1

0BB@
1CCA; (9)

and drifts of length ‘=2 on either side. Note that in this
approximation, M̂S

thin is symplectic only to the first order
of KS‘.

III. SOLENOID EFFECTS WITH REALISTIC
MODELS

The situation becomes much more complicated for real-
istic models of the detector solenoid. The solenoid field is
not constant along the longitudinal axis, the fringe field
extends well inside the FD quadrupoles, and the solenoid is
horizontally tilted with respect to the beam trajectory.
Because preservation of the small vertical beam size at
the IP is so essential for any linear collider, the most
important effects to be identified and compensated are
those that affect the vertical beam size.

The following discussions will often use the projection
method [10], where beam aberrations originating at various
locations in the lattice, for example, in the solenoid, are
projected to the IP by an appropriate optics transformation.
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The projected aberrations can be expressed in the form of
matrix terms at the IP which add linearly, thus simplifying
the analysis of their effects on the IP beam size. It is
convenient to normalize the projected matrix terms (also
referred here as beam correlations) to the nominal rms
beam size at IP. This makes all the terms dimensionless
for direct comparison of their effect on the beam size
growth. For example, after normalization the projected
matrix terms R31, R32, and R36 become hyxi � R31

�x0
�y0

,

hyx0i � R32
�xp0
�y0

, and hyEi � R36
�E
�y0

.

According to Eqs. (5) and (6), the vertical beam size
growth in a solenoid is caused by the hyxi coupling term,
and the rotation angle at IP is equal to � B‘=�2B��, which
is on the order of 0.01 in the NLC for 250 GeV beam.
Consequently, the vertical beam size would increase as
�y
�y0

�
����������������������������
1� ��x0�y0

B‘
2B��

2
q

yielding less than a factor of 2 of

beam size growth at the IP.
It was also shown in Refs. [11–13] and can be verified

using Eq. (9) that the geometric and chromatic orbit dis-
placements generated when the beam passes through the
solenoid at an angle are canceled at the IP as long as the
collision point is located on the solenoid axis and the
typically small transverse focusing due to the solenoid is
neglected. For example, the vertical orbit deviates from the
zero plane at the entrance to and along the solenoid, but
returns exactly to zero at the IP in this approximation. This
cancellation results from the fact that the solenoid radial
and longitudinal fields have opposite effects on the beam
orbit.

The above estimate, however, is correct only if there are
no other magnets inside the solenoid (such as in the tiny
model). Effects generated by the solenoid field extending
into the final focus quadrupoles have been evaluated in
several studies using numeric calculations with optics and
tracking codes (see, for example, [5,13–16]). It was noted
that the overlap of the solenoid and quadrupole fields gives
rise to new coupling terms at the IP and significantly
increases the vertical beam size. In particular, the hyx0i
correlation term at the IP [14] was observed to cause large
beam size growth at SLC.

Tracking results for the realistic NLC detector solenoid
models are presented in Fig. 5, which shows the beam
phase space at the IP obtained using the DIMAD code [17]
for three cases (SiD, tiny detector, and SiD with zero
crossing angle). One can see that the vertical beam size
growth is indeed about a factor of 2 for the tiny detector,
but it is almost 2 orders of magnitude larger in the other
three cases where the solenoid field extends into the FD
quadrupoles. Figure 5 shows that the main contribution to
the IP beam size is produced not by the hyxi term but by
hyx0i coupling when the solenoid and quadrupoles overlap.
Additionally, as shown in Fig. 6, there is a nonzero vertical
displacement of the beam at the IP. A quadrupole inserted
inside the solenoid breaks the natural compensation of the
1-4
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FIG. 6. (Color) Beam orbits obtained by tracking with four
different solenoid models. IP is at z � 0 m.

FIG. 5. (Color) Beam phase space at the IP obtained by tracking with two different detector solenoid models. Green dots show the
ideal beam (no detector field); red, with detector solenoid field. Coordinates are normalized to the ideal beam sizes. No correction of
the beam size was applied.
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IP orbit produced by the solenoid radial and longitudinal
fields.

A more systematic illustration of the effect of the sole-
noid and quadrupole overlap is presented in Figs. 7 and 8,
where the solenoid field integral of the tiny detector is
increased in two steps in order to add a small part of the
field (0.1 and 0.5 T m) on top of the FD quadrupoles. One
can see that even a small amount of solenoid field inside
the quadrupole significantly increases the coupling and
beam size at IP.

Solenoid effects for different detector field models are
summarized in Table I. It is clear that the major effect on
the IP beam size comes from that part of the solenoid that
overlaps with the final doublet. On the contrary, if the
solenoid field does not enter the quadrupoles, there is a
natural cancellation of the solenoid induced orbit at the IP
and, to a major extent, suppression of the beam size
1-5
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growth. Table I also shows that a nonzero crossing angle
does not significantly alter the uncompensated beam size.

In the IR designs for TESLA and NLC, the FD quadru-
poles are placed inside the detector solenoid field. Earlier
studies of solenoid compensation for these projects used
skew quadrupole correction [13,15,16]. For both NLC and
TESLA, a skew quadrupole placed at the final doublet
removed most of coupling generated by the overlapped
quadrupoles. By adding a second skew quadrupole or using
a skew correction section and compensating the beam
waist position, the IP beam size could be brought close
to design. However, in this scheme the skew quadrupoles
have to become stronger for lower beam energies.
TABLE I. Uncompensated solenoid effects on t
models. Here B‘ is the full field integral over half
final doublet, i.e., for z > 3:51 m. The correlatio
nominal rms beam sizes.

Detector B‘ (T m) B‘FD (T m) yIP (�m

SiD 16.7 1.7 �18:5
SiD, 0-xing 16.7 1.7 0
LD 14.4 4.4 �74:5
LD, 0-xing 14.4 4.4 0
Tiny 18.0 0 0
Tiny �!1 20.2 0.1 �1:0
Tiny �!2 22.1 0.5 �5:2
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Naturally, it is desirable to compensate the coupling
effects of an overlapped quadrupole at its source, i.e., at
the quadrupole, thus restoring the properties of a bare
solenoid. In this paper, we discuss such a method of
compensation in the linear collider IR using weak antiso-
lenoids overlapping with the final doublet. An important
feature of this scheme is that the weak antisolenoids do not
need to compensate the entire field of the detector solenoid,
but only the much smaller part which overlaps with the
final doublet.

As will be shown below, compensation with weak anti-
solenoids is superior compared to skew quadrupole correc-
tion, and it is effective over the entire NLC energy range
from 50 to 250 GeV=beam. It is also insensitive to changes
of the beam optics, and compatible with compensation of
the vertical orbit angle at the IP [18].
IV. ANALYTIC DESCRIPTION OF EFFECTS OF
SOLENOID OVERLAPPING WITH FINAL

DOUBLET

To investigate analytically the effect of the solenoid on
the NLC beam, it is useful to consider a short test solenoid
with field integral B‘ � 0:5 Tm, placed at various posi-
tions near the IP, instead of the full detector solenoid. The
overall effect of a realistic solenoid field can then be
evaluated by integration.

Two cases are discussed: (1) the test solenoid is coaxial
with the detector and (2) the test solenoid is coaxial with
the beam, analogous to the possible configurations of the
he 250 GeV beam for different NLC detector
the detector, and B‘FD is its fraction over the

n terms hyx0i and hyEi are normalized to the

) �x=�x0 �y=�y0 hyx0i hyEi

1.1 31.5 �32:8 �0:33
1.1 43.6 �32:7 �28:4
2.2 149.2 �153:4 �18:0
2.1 187.1 �141:1 �122:9
1.0 1.31 0.0 0.0

5 1.0 2.34 �2:00 �0:15
2 1.03 10.5 �10:51 �0:98
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weak compensating antisolenoid discussed in Sec. V that
can be built into the detector or wound on a final quadru-
pole. In both cases, the incoming beam travels at an angle
to the detector axis equal to half of the NLC crossing angle
c. The difference between the two cases is the radial field
seen by the beam at the entrance to the test solenoid. In the
first case, this field is not zero since the incoming beam is
horizontally offset with respect to the solenoid axis. In the
second case, there is no radial field on the beam axis.

The derivations presented in this section are performed
in the approximation of a weak solenoid and assumption
that solenoid transverse focusing can be neglected, in
particular, that the unperturbed design Twiss functions of
BDS can be used, and the effects of the solenoid focusing
on the orbit are small. The validity of this assumption will
be discussed later.

Below, we will first analyze the beam orbit caused by the
solenoid, which is nonzero only for the case of the test
solenoid placed on the detector axis, and then investigate
the beam correlations at the IP. This will lead us to the
conditions for cancellation of the solenoid effects and to
the concept of weak compensating antisolenoids.

Let us consider how the test solenoid placed on the
detector axis affects the beam orbit. As follows from
Eq. (9), a thin solenoid located at distance Zs from the IP
and traversed at horizontal radius �Zsc and angle c will
cause the vertical orbit and angle to change by

!y �
B‘Zsc
2B�

and !y0 � �
B‘c
2B�

: (10)

Clearly, if there are no focusing elements between the
solenoid and the IP, then the vertical offset at the IP will
exactly cancel since yIP � !y� Zs!y

0 � 0. If there is a
quadrupole field after the solenoid, it focuses the orbit and
breaks the cancellation. Note that the IP orbit angle pro-
duced by the solenoid does not cancel.

An example of the orbit created by the test solenoid
located at Zs � 10 m is shown in Fig. 9. Here the orbit
obtained by tracking in DIMAD is compared with an ana-
lytic calculation integrating the horizontal field Bx of the
solenoid and FD quadrupoles (including the additional
case of a very thin solenoid with ‘! 0):

d2y

dz2
�
Bx
B�

�
G�z�y
B�

; (11)

where G�z� is the gradient of the FD quadrupoles. One can
see that the thin solenoid approximation is in a good
agreement with the calculation of the exact model using
analytic and tracking methods. In DIMAD tracking, the FD
region was modeled by a sequence of short, typically 1 cm
long slices containing all the solenoid, dipole, quadrupole,
sextupole, and octupole fields, using the realistic solenoid
field map and the design BDS optics.

Using the formalism of beam transport matrices, the
orbit at the IP can be expressed as
02100
yIP � !ym33 �!y0m34; y0IP � !ym43 �!y0m44:

(12)

Here mij are elements of the transport matrix M from the
test solenoid to the IP. Substituting the well-known Twiss
expressions for the matrix terms, the formula for yIP can be
written as

yIP �
B‘c
2B�

����������������

y0=
y

q
�ZsCY � Zs%ySY � 
ySY�; (13)

where CX � cos��x�, SX � sin��x�, CY � cos��y�, and
SY � sin��y� are functions of the horizontal and vertical
phase advance �x;y between the test solenoid and the IP. 

and % are the Twiss parameters at the location of the test
solenoid, and 
0 and %0 � 0 are the Twiss parameters at
IP, for the corresponding planes. Taking into account the
analytic expressions for 
, %, and �, one can verify that in
the final drift before the IP

ZsCY � Zs%ySY � 
ySY � 0; (14)

and hence yIP is exactly cancelled if there is only a drift
between the test solenoid and the IP. Note that in Eq. (14)
the terms which mutually cancel are very large, of the order
of L2�=
y0, where L� is the length of the final drift. If the
test solenoid overlaps the FD quadrupoles, the sine terms
become dominant, and the maximum offset at the IP can be
estimated roughly as

yIP �
B‘c
B�

L�: (15)

The effect of the test solenoid on the beam offset at the
IP is shown in Fig. 10 (lower plot), where one can see the
1-7
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perfect orbit cancellation when the test solenoid is in the
last drift and good agreement between tracking and ana-
lytical results obtained using Eq. (13). Similar calculation
for the test solenoid placed on the beam axis is shown in
Fig. 11.

Now let us consider the effect of the solenoid on the
dominant IP aberration terms—the coupling hyx0i and
vertical dispersion hyEi. Figures 10 and 11 show these
terms and the beam size growth at the IP as a function of
the test solenoid position, where the tracking results are
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FIG. 11. (Color) Beam size, major correlations, and Y position
at the IP for the short test solenoid placed on the beam axis at
distance z from IP. Symbols: tracking; solid line: analytic solu-
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compared with analytical values given by the expressions
derived below.

If the test solenoid is placed on the beam axis, the
projected coupling term hyx0i does not depend on the
crossing angle and is given by (normalized to the nominal
rms beam sizes):

hyx0i�0 �
�xp0
�y0

B‘
2B�

�m12m33 �m11m34�: (16)

This equation is derived by taking into account that the
solenoid matrix MS projected to IP [10] is

MS proj � M MS M�1 : (17)

Expanding Eq. (16) in terms of Twiss parameters, we
obtain

hyx0i�0 �
�xp0
�y0

B‘
2B�

���������������

x0
y0

p ������������

x
y

p �%y
xSXSY � 
xSXCY

� 
ySYCX � %x
ySXSY�: (18)

The terms in the parentheses are very large, of the order of
L3�=�
x0
y0�; however, they again cancel exactly when the
test solenoid is in the last drift. The latter is easy to see
applyingm11 � m33 � 1 andm12 � m34 � Zs in Eq. (16),
or using Eq. (14). Another case of exact cancellation is the
so-called ‘‘parallel-to-point’’ transformation, wherem11 �
m33 � 0, which roughly represents the matrix from the
drift prior to the final doublet where the beam is almost
parallel. In general, cancellation of hyx0i in Eq. (16) occurs
for a symmetric x and y transformation with m11 � m33

and m12 � m34. This can also be concluded from Eqs. (5)
and (6) which show that a symmetric x-ymatrix commutes
with the solenoid rotation matrix, hence does not change
the solenoid coupling.

Obviously, when the test solenoid is inside the final
doublet, the opposite quadrupole focusing in two planes
breaks the x and y symmetry and, hence, the cancellation
of hyx0i. Thus, one can conclude that the physical reason
for the breakdown of the cancellation is that the FD quad-
rupoles affect two planes differently, i.e., defocus in one
plane and focus in another.

The maximal effect of this coupling term, with the test
solenoid in the FD, can be estimated as

hyx0i�0 �
�xp0
�y0

B‘
B�
L�: (19)

We can see in Fig. 11 that agreement between tracking
and the analytical formula is very good. It is also very
interesting to note, from this figure, that there is a very
good cancellation also for the case when the test solenoid is
placed after the final doublet. As we just discussed above,
this happens because the beam after the final doublet is
almost parallel in both planes. Equation (18) shows that in
this case the cancellation is only approximate, since the
1-8
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effective image points upstream of the FD for the x and y
planes usually do not occur at the same location.

For the test solenoid placed on the beam axis, the
vertical dispersion at the IP hyEi arises from the solenoid
coupling of the horizontal dispersion into the vertical
plane:

hyEi�0 � �
�E
�y0

B‘
2B�

�m33�x �m34�
0
x�; (20)

where �x and �0
x are the horizontal dispersion and its

derivative at the location of the test solenoid. Expanding,
we obtain

hyEi�0 � �
�E
�y0

B‘
2B�

�
����������������

y0=
y

q
�CY � %ySY��x

�
�������������

y0
y

q
SY�

0
x�: (21)

For the case where the angular horizontal dispersion is
nominally nonzero at the IP, and the dispersion itself is
zero, Eq. (20) can be rewritten as

hyEi�0 �
�E
�y0

B‘
2B�

�0
x0�m12m33 �m11m34�; (22)

which has exactly the same dependence as the coupling
term in Eq. (16). This means that both major correlations
can be corrected simultaneously by the weak antisolenoid
discussed in Sec. V.

Figure 11 shows that agreement between the simulations
and these analytical expressions is good. Similar to
Eq. (19), the estimate for the maximal effect on the vertical
dispersion term can be written as

hyEi�0 �
�E
�y0

B‘
B�
�0
x0L�: (23)

Let us now derive the coupling and dispersion terms for
the case when the test solenoid is placed on the detector
axis. This case must include the kick on the orbit !y and
!y0 at the location of the test solenoid as given by Eq. (10).
Since these kicks are large, the second order transfer
matrix T (its elements are tijk) from the test solenoid to
the IP must also be taken into account.

Correspondingly, the hyx0i coupling will be given by

hyx0i � hyx0i�0 �
�xp0
�y0

���t331!y� t341!y
0�m12

� �t332!y� t342!y
0�m11�; (24)

where the additional term is proportional to c.
Similarly, the vertical dispersion hyEi will have three

additional terms: (a) the term due to the energy dependence
of the kicks !y and !y0:
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*hyEi �
�E
�y0

��m33!y�m34!y
0�

�
�E
�y0

B‘
2B�

��m33Zs �m34�c; (25)

(b) the term due to the vertical orbit offset in the quadru-
poles of the final doublet, which can be obtained by inte-
gration of the known orbit or, equivalently, by using the
second order matrices:

*hyEi �
�E
�y0

�t336!y� t346!y
0�; (26)

and finally (c) the term driven by the horizontal dispersion
�x and �0

x and orbit kick !y and !y0 via the second order
matrix T:

*hyEi �
�E
�y0

��t331!y� t341!y
0��x

� �t332!y� t342!y
0��0

x�: (27)

Figure 10 shows that the analytical results agree perfectly
with tracking. Figure 12 shows that contributions to the
total effect can combine in a more or less favorable man-
ner, depending on the sign of the dispersion with respect to
the crossing angle, which is defined by the geometry of the
beam delivery and the location of the detector. In particu-
1-9
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lar, the reason that the vertical dispersion is smaller with
the nominal crossing angle, as seen in Table I, is the partial
compensation of the horizontal dispersion and crossing
angle terms.

For the case of zero crossing angle, it was shown above
that a weak antisolenoid overlapping the FD can compen-
sate both the hyx0i coupling and hyEi dispersion simulta-
neously. In this case, the condition for the combined
detector solenoid and antisolenoid field to restore the so-
lenoid cancellation at the IP is to have

Z 0

�1

Bz
B�

�m12m33 �m11m34�dz � 0; (28)

or, equivalently,

Z 0

�1

Bz
B�

1������������

x
y

p �%y
xSXSY � 
xSXCY�


ySYCX � %x
ySXSY�dz � 0: (29)

Note that the validity of the above integration for the
combined field of the detector solenoid and antisolenoids
follows from the use of the projection method. In this
approach, the total solenoid field can be replaced by a
sequence of short solenoid slices. Starting from the nearest
to IP slice, they all can be effectively projected to IP with
the coupling terms of the same form as derived earlier for
the short test solenoid. With the assumption of negligible
focusing from the solenoid, the projected coupling matrix
terms at IP from all slices will linearly add, thus validating
the integration.

It is also clear that the conditions for cancellation of the
solenoid effects do not depend on the optics parameters at
the IP. For example, changing the IP 
 function or angular
dispersion �0 would not affect the cancellation because
they do not change the final doublet strength, which is
defined to a major extent just by the geometry. Therefore,
all matrix elements remain the same, and Eq. (28) remains
valid independent of the IP beam parameters.

In the case with a crossing angle, it may be possible to
express the cancellation conditions in a similar manner. In
this case, however, the analytical approach would require
derivation of the behavior of all the linear and second order
optics functions along the longitudinal coordinate in the IR
of the final focus, which goes well beyond the scope of the
paper. We therefore will resort to computer simulations and
demonstrate in the next section that the weak antisolenoid
compensation can be achieved for the nonzero crossing
angle and different detector models considered in this
paper.

Finally, we include formulas for the two other beam
correlation terms which do not cancel even if the solenoid
does not overlap the final doublet:

hyxi �
�x0
�y0

Z 0

�1

Bz
2B�

�m21m34 �m22m33�dz; (30)
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and

hyy0i �
�y00
�y0

Z 0

�1

	
Bz
2B�

m34



2
dz; (31)

where the former corresponds to beam rotation, and the
latter is the solenoid focusing proportional to the square of
the field. These terms do not depend on c, and they are
usually much smaller than the other beam distortions con-
sidered above.

As noted above, the solenoid focusing was neglected in
the presented consideration. Taking this focusing into ac-
count, it is easy to estimate that a short test solenoid placed
in the final drift would result in the following residual
offset at the IP:

!yIP � �

	
B‘
2B�



3 cZ

2
s

‘
; (32)

for Zs � ‘. This would give about 0.024 nm if the above
test solenoid is located at Zs � 3 m. For the solenoid field
that fills the final drift entirely, the estimate is

!yIP � �

	
B‘
2B�



3 cL�

3
; (33)

yielding about 10 nm for a typical detector model at the
nominal parameters, which is sufficiently small and does
not affect the validity of formulas presented in this section.
V. COMPENSATION OF IP BEAM SIZE USING
WEAK ANTISOLENOIDS

In this section, the method of the weak antisolenoids is
illustrated on the example of compensation of the SiD
solenoid. Performance of the method is then investigated
as a function of beam energy, and compared with the
compensation using skew quadrupoles. Compensation of
the LD solenoid was performed in a similar way and is
described in detail in [19]. This study showed that the weak
antisolenoids provide good compensation for the suffi-
ciently different SiD and LD detector solenoid models.
Based on these results and flexibility of the method, we
conclude that this compensation can be applied to any
realistic model of detector solenoid field with the over-
lapped quadrupoles.

The fields of the SiD with an optimized weak antisole-
noid are shown in Fig. 13. The antisolenoid is placed on the
detector axis, and its field is approximated by

Bz antisol �
Bz0

1� ��z� z0�=zw�
4 ; (34)

where the location z0 � 4:14 m, width zw � 0:5 m, and
strength Bz0 � �1:56 T are optimized to cancel the beam
offset at the IP and the two major beam distortions. The
integral strength of this solenoid is 1.74 T m. The particular
functional dependence of this approximation is irrelevant
-10
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because the parameters can be easily reoptimized for cal-
culated fields of realistic coils.

Orbits through the SiD with this antisolenoid are shown
in Fig. 14. The IP vertical orbit offset is now canceled.1 The
beam phase space in SiD with this antisolenoid but without
any other correcting knobs is shown in Fig. 15. The beam
size is compensated to within 30%. Comparing with the
bare SiD results given in Fig. 5 and Table I, it appears that
this weak antisolenoid has compensated 99% of the effect.

The remaining deviation of the beam size from nominal
is easy to correct with linear tuning knobs. These include
BDS sextupole displacement knobs and skew quadrupole
knobs in the skew correction section of the BDS, which
allow orthogonal correction of the hyEi, hyy0i, hyxi, and
hyx0i terms, and similar terms in the horizontal plane, if
necessary. The beam phase space in SiD with the antiso-
lenoid, and with additional optimal linear knobs, is shown
in Fig. 16. One can see that the beam size is compensated to
within 0.3% of nominal, which is within the resolution.

We have seen earlier in Table I and Sec. IV that with the
bare SiD or LD solenoids, and with a positive crossing
angle, the vertical dispersion term hyEi is rather small
because the crossing angle term and the horizontal angular
dispersion term approximately cancel each other. For a
negative crossing angle, the hyEi term is doubled.
However, this peculiar dependence on the crossing angle
1The small nonzero horizontal offset at the IP can be easily
corrected, and the vertical angle is of no concern for luminosity,
since in the e�e� collider the orbits will be antisymmetrical, and
the beams will still collide head-on. For the e�e� version of the
collider, or if more careful preservation of the beam polarization
is needed, the vertical angle at the IP can also be locally
compensated using the so-called detector integrated dipole
(DID) corrector, as suggested in [18], which is compatible
with the beam size compensation using weak antisolenoids.
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mostly disappears when the antisolenoid is used. Figure 17
shows the dependence of the beam IP position and major
beam distortions hyx0i and hyEi on the crossing angle, with
and without the weak antisolenoid. The antisolenoid com-
pensates the vertical IP position, coupling, and vertical
dispersion, and also eliminates most of the dependence
on the crossing angle.

Agreement between analytical and tracking results
shown in Fig. 17 is acceptable. A small difference of about
0.1 in the vertical dispersion term and several tens of
nanometers in the vertical orbit is explained by the effect
of the solenoid focusing, which was neglected in our
analytic derivations. One can see that the assumption of
the negligible solenoid focusing is indeed justified for our
case, since these differences are small.

Regarding the technical implementation of the weak
antisolenoid, it is essential that this antisolenoid is aligned
on the detector axis, so it should be built as an integral part
of the SiD detector. The antisolenoid should have at least
two coils, separated longitudinally and individually pow-
ered, in order to provide fine adjustment of both the am-
plitude and longitudinal position of the antisolenoid field.
It should be compact, to minimize interference and space
taken from the detector, and should be able to withstand the
longitudinal forces acting on the antisolenoid due to the
main solenoid field (these forces prohibit the use of an
antisolenoid wound on QD0 quadrupole and placed on the
beam axis). The necessary accuracy of the antisolenoid
parameters are rather relaxed. In particular, in the SiD case
the following variations of the antisolenoid parameters
would cause the beam correlations to change by about
30% (thus beam size to change by about 10%): !z0 �
6 mm, !zw � 40 mm, !Bz0=Bz0 � 1%.

The use of antisolenoids to shielding the final quadru-
pole was considered by the GLC project [20], but their
purpose was to protect the iron electromagnetic quadrupole
from saturation in the solenoid field and not for beam size
compensation. The design of this solenoid can be modified
-11
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to also provide beam size compensation. In this case, the
iron of the quadrupole would also shield part of the sole-
noid field, helping the compensation, but any remaining
field beyond the first quadrupole in the FD would also need
to be compensated.

The antisolenoids optimized for the LD case are de-
scribed in [19]. Here the field extends much farther into
the FD, and it was found that a single antisolenoid solution
may not be practical, since the antisolenoid location ex-
tends into the detector tracking region by about a meter. A
more practical solution for LD consists of two antisole-
noids, the main one is located on the detector axis in the LD
yoke region (thus do not interfere with detector operation)
and overlaps with part of QD0 (z0 � 5:4 m, zw � 0:6 m,
Bz0 � �1:7 T, the integral strength 2.3 T m), and the sec-
ond one is on the beam axis, overlapping with QF1 (z0 �
8:8 m, zw � 0:8 m, Bz0 � 0:04 T, the integral strength
0.07 T m). This second solenoid could actually be wound
on QF1 (provided QF1 is not an iron quadrupole) since the
forces from the main solenoid are already very small. In
spite of the fact that this second antisolenoid is very weak,
it gives an additional flexibility to correct all the beam
correlations and to move the main antisolenoid outside of
-12
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the LD central part. Only with the two antisolenoids the
beam size is compensated within 23% of nominal. Thus the
weak antisolenoids compensated 99.8% of the effect. With
the antisolenoids and with additional linear knobs the beam
size is compensated within 0.9% of nominal.

Compensation with weak antisolenoids is very effective.
The integrated strength of these antisolenoids is only 10%–
15% of the SiD or LD integrated strength, so they can be
made compact to minimize interference with the detector,
yet they cancel more than 99% of the effect of the detector
solenoid. The remaining beam distortions are sufficiently
small to be easily corrected with the linear tuning knobs of
the BDS.

To maximize physics capabilities, the detector should
operate with the same solenoid field for any beam energy in
the range of the collider. For the first stage of NLC opera-
tion, this spans from 50 to 350 GeV, with a nominal beam
energy of 250 GeV. Thus, it is important to characterize the
performance of the beam size compensation over the full
range of energies. As the beam energy decreases, the
solenoid effect on the beam size increases at least linearly,
and for certain terms quadratically [such as hyy0i, see
Eq. (31)].

The effect of the SiD solenoid on the IP beam size as a
function of energy is shown in Fig. 18 (top plot). The beam
size at 50 GeV increases to more than a hundred times the
nominal size (the latter depends on energy as 1=

����
E

p
). The

dominant beam distortion is hyx0i coupling, and the second
largest term at low energy becomes hyy0i focusing.

The advantage of weak antisolenoids is that they com-
pensate the effects of the detector solenoid on the IP beam
size almost completely, and the major coupling terms are
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FIG. 18. (Color) Beam size and beam distortions in SiD, as a
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practically canceled for any beam energy. Figure 18 (bot-
tom plot) shows the IP beam size and distortions for the
SiD with the antisolenoid. The antisolenoid compensates
more than 99% of the solenoid effect at 300 GeVand more
than 90% at 50 GeV.

For SiD with the antisolenoid, the remaining linear
distortions can be corrected by linear knobs. At the lowest
beam energy, the quadrupoles QD0 and QF1 were adjusted
to compensate the solenoid focusing term hyy0i, skew
quadrupoles in the skew correction section were used to
correct the hyxi term, and sextupole displacement
knobs were used for fine adjustment of hyEi, hxEi,
and hyx0i. The beam size at the IP is shown in Fig. 19 for
SiD plus antisolenoid and corrected using only these
knobs. The beam size correction is better than 10% at
100 GeV=beam, and within 35% at 50 GeV. The remaining
increase of the beam size is due to higher order distortions,
in particular, the second order coupling term hyx0x0i shown
in Fig. 20, which arise because the linear knobs such as
hyxi needed at low energy are too strong. Further correc-
tion of the beam size at low energy requires tuning with
higher order knobs. For example, knobs acting on hyx0x0i
and hyEEi require rotation of the BDS sextupoles. Other
second order knobs also adjust the sextupole strength. A
discussion of this procedure is beyond the scope of this
paper and can be found in [21].

The performance of solenoid compensation using weak
antisolenoids was compared with compensation using
skew quadrupoles in the FD, for the SiD detector. The
best results with skew quadrupoles were obtained not
with the skew quadrupole SQ3 located next to the FD,
but with a rotation of QD0, which gives a more local
correction of the hyx0i coupling.
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FIG. 19. (Color) Beam size in SiD with the antisolenoid as a
function of beam energy. The beam size is corrected only with
linear knobs.
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FIG. 20. (Color) One of the remaining second order terms at the
IP, hyx0x0i, for the SiD model with an antisolenoid corrected only
with linear knobs.
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Using only the quadrupole rotation, the IP vertical orbit
is not automatically compensated. To cancel the IP orbit
requires offsets of QD0 and QF1 and an additional dipole
corrector (BXCOR in Fig. 2) located between 6.6 and 7.6 m
in the FD. These three dipole correctors cancel both the
vertical dispersion and vertical offset at the IP, without
introducing a second order vertical dispersion.

The rest of the distortions were compensated as for the
antisolenoid case, adjusting the QD0 and QF1 strength to
correct hyy0i, and the BDS skew correction to cancel hyxi.
Using the QD0 rotation and these linear knobs, the vertical
beam size was corrected to �y=�y0 � 1:71 at 50 GeV, in
comparison with the �y=�y0 � 1:48 that was achieved
with the antisolenoid.

This suggests that, though the weak antisolenoid correc-
tion gives better performance, the skew quadrupole method
may also be feasible, although it would require a more
sophisticated linear and higher order tuning. However, one
of the disadvantages of the rotated quadrupole method is
that changing the beam energy would require either me-
chanical rotation of QD0 or adjustment of its skew wind-
ing, if it is superconducting, as well as a readjustment of all
the knobs.

In the case of the weak antisolenoids, the fact that the
compensation is largely independent of beam energy is an
advantage that would significantly ease operation of the
machine.

Finally, the effect of the crab cavity on the solenoid
compensation and beam size at the IP has been investigated
and found negligible. This cavity is located about 12 m
from the IP, and produces a horizontal beam kick corre-
lated with the longitudinal position within the bunch. As a
result, the beam at the IP becomes tilted in the x-z plane by
021001
the angle c, providing the nominal head-on collision with
the opposite beam. Because of the detector solenoid cou-
pling, the crab-cavity kick would also cause a y-z tilt at the
IP which is easily corrected by rotation of the crab cavity
about the longitudinal axis. Once this (energy dependent)
correction is made, the effect of the crab cavity on the
beam size vanishes.

VI. CONCLUSION

The solenoid field of a linear collider experimental
detector will distort the beam size at the interaction
point unless compensated. This paper discusses optics
perturbations at the IP caused by the realistic detector
solenoid field, and the performance of various methods
of compensation. Most of the effect on beam size is caused
by the part of the solenoid field which overlaps and
extends beyond the final focusing quadrupoles. It is shown
that the most efficient and most local compensation is
achieved with weak antisolenoids placed near the over-
lapped quadrupoles. A compensation scheme using only
skew quadrupoles is found less efficient but also feasible.
The important advantage of the antisolenoid method is that
the compensation is effective over a large beam energy
range.
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