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Impedance description of coherent synchrotron radiation with account of bunch deformation
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We are concerned with coherent longitudinal motion in a storage ring, especially with situations in
which coherent synchrotron radiation (CSR) can influence stability of the beam. The collective force from
CSR is usually described by an impedance or a wake function in such a way that the force depends only on
the charge distribution at the present time. This description is exact only for a rigid bunch, since causality
demands that the force depend on the prior history of the bunch. We show how to treat a deforming bunch
by applying the ‘‘complete impedance’’ Z�n;!�, a function of wave number and frequency. We derive this
impedance and study its analytic properties for a special model: radiation from circular orbits shielded by
parallel plates representing the metallic vacuum chamber. We analyze the corresponding collective force,
obtaining the usual formula as a first approximation, plus easily computed corrections that depend on
present and prior values of the time derivative of the charge density. In related papers we have applied
these results in numerical simulations of instabilities induced by CSR.
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I. INTRODUCTION

The concept of impedance is often invoked to discuss
beam stability in storage rings [1], for both longitudinal
and transverse motion. The longitudinal impedance, which
is presently our main object of interest, specifies the lon-
gitudinal collective force acting on the beam itself, in a
particular electromagnetic environment. Consequently, it
specifies a feedback mechanism that can lead to instabil-
ities at sufficiently high current. One often thinks of the
impedance as primarily a property of the environment,
namely, the metallic vacuum chamber surrounding the
beam, but it can also include effects of space charge and
trajectory curvature that are present even in the absence of
a vacuum chamber.

The idea of impedance, at least in its usual elementary
form, has significant limitations. It is useful primarily
when the transverse extent of the beam can be neglected.
Even in that case it does not give the exact form of the wake
field unless the charge distribution is rigid (independent of
time in the beam frame). To express the collective force on
an evolving distribution the common practice is to adopt
the formula for the rigid case, merely replacing the rigid
distribution by the evolving one evaluated at the present
time. This is not correct in principle, since causality and the
finite velocity of light demand that the present field depend
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on prior values of its source. This is obvious in the case of
particles following a curved trajectory, since a wave emit-
ted from a bunch at a particular time can catch up with the
bunch at a later time when the bunch has an altered form.

In this paper we extend the scope of the impedance
description to account for retardation with bunch deforma-
tion. This requires a function Z�n;!� of two variables
(wave number and frequency). We call this function the
complete impedance, to distinguish it from the impedance
as conventionally defined which is Z�n� � Z�n; n!0�,
where !0 is the angular revolution frequency. We call
Z�n� the elementary impedance. We derive and analyze
the complete impedance only for a special model, the case
of radiation from circular orbits with a parallel plate model
of the vacuum chamber. The analysis points to certain
features that can be expected in a more general setting,
but also features that must be quite peculiar to the model.
At present we cannot offer a model-independent version of
the extended impedance picture, but we expect that other
explicitly soluble models can be analyzed along the lines of
the present study.

The collective force as expressed in terms of Z�n;!�
involves a sum on n and integrals on ! and the time t, and
is therefore expensive to evaluate numerically. Fortunately,
one can find systematic approximations to the force that are
easy to compute.

Much of the present analysis was motivated by our work
on numerical simulation of many-particle longitudinal dy-
namics in the presence of coherent synchrotron radiation
(CSR) [2– 4]. Accordingly, the viewpoint of the following
is that the evolving charge density is not a given function,
2-1  2005 The American Physical Society
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but is determined dynamically in a self-consistent manner.
For that we carried out a time-domain integration of the
nonlinear Vlasov or Vlasov-Fokker-Planck equation, but
macroparticle simulations could be used as well.

In Sec. II we find the general form of the longitudinal
collective force, and also the radiated power, in terms of
the complete impedance and the time-dependent Fourier
transform of the charge distribution. The expression for the
force must be evaluated anew at each time step in a self-
consistent simulation. Since an evaluation of the exact
formula would be too expensive, it is essential to find
good approximations that are easier to compute. In
Sec. III we derive a systematic sequence of approxima-
tions. At lowest order we find the simple adaptation of the
rigid bunch formula mentioned above, which was em-
ployed in Refs. [2,3]. The first correction, which was ex-
plored numerically in [4], involves present and prior values
of the time derivative of the charge density. The work of
Secs. II and III depends on detailed analytic properties of
the complete impedance, which are determined in Sec. IV.
We find both the longitudinal and transverse forces,
although it is usually believed that the latter have minor
dynamical importance. Section V gives a summary and the
outlook for further work.
II. COLLECTIVE FORCE IN TERMS OF THE
COMPLETE IMPEDANCE

We work in cylindrical coordinates �r; �; y�, with the y
axis perpendicular to perfectly conducting infinite plates
located at y � �g; h � 2g. We suppose that the charge/
current distribution has the form of a ‘‘vertical ribbon
beam.’’ In the bunch frame the line density is ���; t�, and
in the laboratory frame the normalized particle density 

and current density J are as follows:


�r; �; y; t� � ����!0t; t�
��r� R�
R

H�y�;

J � �Jr; J�; Jy� � �0; Q�0c
; 0�;Z 2�

0
���; t�d� � 1; ���� 2�; t� � ���; t�;

Z g

�g
dyH�y� � 1;

(1)

where Q � �eN is the total charge and !0 � �0c=R is
the angular velocity.

We shall define the impedance in terms of the mean
value of the longitudinal electric field with respect to the
transverse distribution:

E ��; t� �
Z 1

0
rdr

Z g

�g
dy
��r� R�

R
H�y�E��r; �; y; t�

�
Z g

�g
E��R; �; y; t�H�y�dy: (2)

By (1) the beam current is
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I��; t� �
Z 1

0
dr

Z g

�g
dyJ��r; �; y; t� � Q!0����!0t; t�;

(3)

which has the formal Fourier transform

Î�n;!� �
1

�2��2
Z 1

�1
dtei!t

Z 2�

0
d�e�in�I��; t�

�
Q!0
2�

Z 1

�1
dtei�!�n!0�t�n�t�; (4)

where

�n�t� �
1

2�

Z 2�

0
d�e�in����; t�: (5)

Depending on the model of �n�t�, the formal transform (4)
is not necessarily a proper Fourier transform. For instance
it may contain a delta-function component, as in the ideal-
ized case of a rigid bunch with �n�t� � �n � const. In that
case we have

Î�n;!� � Q!0�n��!� n!0�: (6)

To allow a deforming bunch we apply the Laplace trans-
form rather than the Fourier transform, redefining Î to be

Î�n;!� �
Q!0
2�

Z 1

0
ei�!�n!0�t�n�t�dt; Im!> 0:

(7)

To maintain contact with the familiar notation of Fourier
analysis, we use ! rather than the conventional Laplace
variable s � �i! as the variable conjugate to t.

To be precise we assume physically reasonable condi-
tions on �n�t� for t > 0, namely, that it has a continuous
second derivative and that j�nj; j�0nj; j�00nj are each
bounded. Then with Im! � v > 0 the following Laplace
transforms exist:

�̂ n�!� �
1

2�

Z 1

0
ei!t�n�t�dt; (8)

�̂ 0
n�!� �

1

2�

Z 1

0
ei!t�0n�t�dt � �i!�̂n�!� �

1

2�
�n�0�:

(9)

Since �n and �0n are both smooth and bounded, the inver-
sion theorem [5] guarantees that

�n�t� � lim
U!1

Z U�iv

�U�iv
e�i!t�̂n�!�d!; t > 0; (10)

and similarly for �0n�t�. The improper integral defined as a
symmetric limit in (10) is often called the ‘‘principal
value.’’ It exists under weaker conditions than are required
for existence of separate integrals over the two half-lines
��1� iv; iv�; �iv;1� iv�. We shall understand all !
integrals to be principal values, without a notational
indication.
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Correspondingly, we take the Laplace transform of
Maxwell’s equations with respect to t. The transform of
terms involving time derivatives of fields will produce
terms from the values of those fields at t � 0, as in (9).
We set those initial values to zero, since we are interested
only in two problems: (i) the initial value problem to be
discussed below, in which the beam current and the field
are zero for t 
 0; and (ii) the question of stability of an
equilibrium state under a small perturbation of the charge
distribution, the latter being zero until t � 0. In
problem (ii) we are concerned only with the additional
field produced by the perturbation, which is zero for t 

0. The field of the beam in equilibrium enters only in the
determination of the equilibrium state.

Defining Ê�n;!� to be the double transform of E��; t�
(Fourier in �, Laplace in t), we then find through solution
of Maxwell’s equations that Ê is proportional to Î; see
Sec. IV. This proportionality defines the impedance Z:

�2�RÊ�n;!� � Z�n;!�Î�n;!�: (11)

This does not imply that Z�n;!� is itself a proper Fourier-
Laplace transform of a continuous function. An expression
for Z�n;!� is given in Eq. (63).

From (11) and (7), and the inversion theorems for
Laplace and Fourier transforms, we find the induced volt-
age V as

V��;t���2�RE��;t�

�!0Q
X
n

ein�
Z
Im!�v

e�i!tZ�n;!��̂n�!�n!0�d!:

(12)

Except for a constant factor, V is the collective force that
appears in the Vlasov equation; see Eqs. (12) and (20) of
[2]. To retrieve the case of a rigid bunch we take v � 0 and
put (6) in place of (7) in (12) to obtain

V��; t� � !0Q
X
n

ein���!0t�Z�n; n!0��n: (13)

The quantity Z�n� � Z�n; n!0� is what is usually called
the impedance [1]. It is not entirely adequate to describe
the time-dependent case with evolving bunch form. We
need instead the function of two variables Z�n;!�, wave
number �n=R� and frequency, which we shall call the
complete impedance. One might conjecture, however,
that a first approximation to the collective force would be
obtained merely by replacing �n by �n�t� in (13), thus

V��; t� � !0Q
X
n

ein���!0t�Z�n; n!0��n�t�: (14)

We shall in fact derive this approximation, and corrections
to it as well, in Sec. III. This amounts to saying that the
force at time t is calculated as though the bunch form at
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time t� �t had held constant at all earlier times. Clearly,
retardation effects are not treated exactly.

The formula (12) seems to involve �n�t0� for t0 > t,
which would mean a violation of causality. To show that
such contributions in fact drop out, we invoke the fact that
Z�n;!� is analytic and bounded as a function of ! for
Im!> ", any " > 0. This and other required properties of
Z are proved in Sec. IV. Writing � � !� n!0, we first
integrate twice by parts on t0 so that (8) takes the form

�̂n��� �
1

2�i�

�
��n�0� �

�0n�0�
i�

�
1

i�

�Z t

0
�
Z 1

t

�
ei�t

0
�00n�t0�dt0

�
: (15)

Now it is seen that the term in the ! integrand from
R
1
t

contributes nothing to (12). It is analytic for Im!> " > 0
and O�j!j�2�, the latter because exponential increase of
e�i!t is compensated by exponential decrease of the

R
1
t .

We can push the contour to a semicircle at infinity, getting
zero in the limit.

Now define ~�n��; t� as (15) minus its final term which
we have just discarded. Convergence of the ! integral of
the first term in ~� follows from the asymptotic behavior of
Z�n;!� stated in (70); i.e., since Z tends to a constant (plus
an oscillating term) the integral converges by virtue of
oscillations of the factor e�i!t. The remaining ! integrals
converge absolutely.

Undoing the partial integrations that led to (15), we of
course get rid of boundary terms at t0 � 0 but acquire
boundary terms at t0 � t:

~� n��; t� �
1

2�

�
�
�0n�t�ei�t

�2
�
i�n�t�ei�t

�

�
Z t

0
ei�t

0
�n�t

0�dt0
�
: (16)

When (16) is used in (12), the ! integral of its first term is
seen to be zero, again by analyticity and decay as j!j�2.
The resulting expression of V is

V��; t� � !0Q
X
n

ein�
Z
Im!�v

d!Z�n;!�

�
1

2�

�
i�n�t�

e�in!0t

!� n!0

� e�i!t
Z t

0
dt0ei�!�n!0�t

0
�n�t

0�

�
: (17)

The ! integral of the first term in the square bracket exists
only by virtue of the integral’s definition as the principal
value. The same is true of the integral of the second term.

We can take the limit as v! 0 in (17) by applying the
usual rule for pushing a contour of integration against a
pole. Actually, there are other poles on the real axis to be
accounted for, since Z�n;!� has poles as a function of! at
the waveguide cutoffs. That matter is discussed in Sec. IV.
2-3



ROBERT WARNOCK et al. Phys. Rev. ST Accel. Beams 8, 014402 (2005)
In Sec. III we shall derive approximations to V��; t�
which are more economical to evaluate than (17). For
that we make stronger assumptions on smoothness of
�n�t�, namely, that for m � 0 it has m� 2 continuous
and bounded derivatives, with derivatives up to order m�
1 vanishing at t � 0:

�n 2Cm�2; j��k�n �t�j 
M; k� 0;1; . . . ;m� 2;

��k�n �0� � 0; k� 0;1; . . . ;m� 1: (18)

Thus we switch on the current with a certain degree of
smoothness at t � 0. One can think of the switching on as a
model of the beam injection process in a storage ring. Since
we make no restriction on the magnitude of derivatives for
t > 0, any profile of current building up from zero, even a
step function, can be approximated by a function satisfying
our conditions. With assumptions (18) we can integrate by
parts as many as m� 2 times in (8), and discard

R
1
t by the

same argument as before, to cast (12) in the form

V��; t� � !0Q
X
n

ein�
Z
Im!�v

e�i!tZ�n;!�

�'nk�!� n!0; t�d!;

'nk��; t� �
1

2���i��k�2

Z t

0
ei�t

0
��k�2�n �t0�dt0;

(19)

for any k 2 f0; 1; . . . ; mg. In Sec. III we shall use (19) to
derive approximations to V.

To compute the instantaneous radiated power, note that
the work done by the field E on a charge element dQ when
the charge moves a distance Rd� � R!0dt is equal to
dW � dQE��; t�R!0dt. The radiated power for the charge
element is the corresponding rate of change of field energy,
�dW=dt. Putting dQ � Q����!0t; t�d� and integrating
over � we find the total radiated power, from all charge
elements. From (11) that is

P �t� �
Q!0
2�

Z
d�����!0t; t�

X
n

ein�

�
Z
Im!�v

e�i!tZ�n;!�Î�n;!�d!

�Q!0
X
n

ein!0t��n�t�
Z
Im!�v

e�i!tZ�n;!�Î�n;!�d!:

(20)

In the case of the rigid bunch one can put v � 0 and apply
(6) to obtain the well-known formula

P � �Q!0�
2
X
n

ReZ�n; n!0�j�nj
2: (21)

As in (14), we replace �n by �n�t� in (21) for the approxi-
mation to P �t� used in numerical explorations to date [3].
In general the! integral in (20) can be expressed as in (17)
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or (19). Applying (17) we get

P �t� �
�Q!0�2

2�

X
n

��n�t�
Z
Im!�v

d!Z�n;!�
�
i�n�t�
!� n!0

�
Z t

0
dt0ei�!�n!0��t

0�t��n�t0�
�
: (22)
III. APPROXIMATIONS TO THE COLLECTIVE
FORCE

In this section we assume conditions (18) on the particle
density. These conditions form the basis for a rational
mathematical discussion, but it must be admitted that the
conditions are difficult to verify, since in practice �n�t� is
determined by a numerical realization of self-consistent
dynamics. Nevertheless, an important part of (18), the
requirement that time derivatives up to some order be
zero initially, can be simulated in a numerical solution of
the Vlasov equation. For that we multiply �n�t� by a
‘‘smooth ramp’’ f 2 Cm�2 that is zero for t < 0, has
vanishing derivatives up to order m� 1 at t � 0, and is
equal to 1 for t greater than some small t0. This was done in
Ref. [4].

One could, in principle, find the collective force in a
time-dependent Vlasov integration by direct numerical
evaluations of the two integrals and the sum in (17) or
(19). The integral over t0 would evolve dynamically in
steps �t of t. This would be an expensive algorithm,
however, involving evaluation of many negligible contri-
butions. It is expected that only components of the electric
field with phase velocity close to the particle velocity will
have a big effect on the beam, which is to say that the
important part of the ! integral should lie near ! � n!0.
To see that mathematically, consider (19) with k � 0, and
suppose that �n�t� can be approximated by a quadratic
function of t over any interval of length �t, which is to
say that �00n�t� is constant over such an interval. Then the
integral in (19) is

Z t

0
dt0ei�t

0
�00n�t0� � �t sinc

�
��t
2�

� XN�1
j�0

ei��j�1=2��t�00n�j�t�;

(23)

where sinc�x� � sin��x�=��x�, �t � t=N, and � � !�
n!0. Take v � 0, which is the relevant value in following
considerations. The sinc factor is strongly concentrated
where j�j�t & 2�. This is to be contrasted with the total
concentration at� � 0 in the case of a rigid bunch existing
for all time. Writing �t � 'Ts, where Ts is the synchrotron
period, we may state the concentration condition as a limit
on the deviation of the phase velocity from the nominal
particle velocity. Since the phase velocity is !=kn, where
kn � n=R is the wave number, we see that for (23) to be
appreciable we must have
2-4



IMPEDANCE DESCRIPTION OF COHERENT . . . Phys. Rev. ST Accel. Beams 8, 014402 (2005)
j!=kn � �0cj
�0c

&
!s
'n!0

: (24)

In the example of Ref. [2] we have !s=!0 � 0:0045 and
the important n are around 700. If the variation of �n�t� can
be regarded as quadratic over a hundredth of a synchrotron
period, which may be a reasonable guess in view of our
simulations to date, then ' � 0:01 and the relative devia-
tion of phase velocity from the nominal particle velocity is
small compared to 1 at important n, being 6:4� 10�4.
Since (24) refers to the spectrum of the source, it is only
a necessary condition for a particular phase velocity to be
involved. For a sufficient condition one requires in addition
that the impedance Z�n;!� be appreciable in the region
where !=kn satisfies (24).

Notice that there is an additional mechanism to concen-
trate the! integral near n!0, in that there is a second order
pole in (19) at that point. For higher values of k in (19)
there is even more concentration, both because of higher
order poles���k�2� and because ��k�2�n tends to be constant
over bigger intervals �t, giving sharper peaking of the sinc
factor.

Although the above argument is not very precise, it does
give a motivation for expanding the impedance in (12) as
follows:

Z�n;!� � Z�n; n!0� �D2Z�n; n!0��!� n!0� � � � � ;

(25)

where D2 denotes partial derivative with respect to the
second argument of the function. This cannot be done for
n such that n!0 is close to the poles of Z at waveguide
cutoffs, �/pc, which are displayed in (68). We can, how-
ever, subtract the pole contribution Z� and expand the
remainder:

~Z�n;!� � Z�n;!� � Z��n;!�

� ~Z�n; n!0� �D2 ~Z�n; n!0��!� n!0� � � � � :

(26)

Both Z� and ~Z are analytic and bounded for Im!> v> 0,
which implies that the contribution of Z� to (12) can be
written either as in (17) or as in (19), and similarly for ~Z.
Applying (17) with Z� in place of Z, we evaluate the !
integral by the method of residues to find

V���;t���
!0QZ0�R
2�0h

X
n�0

ein���!0t�sgn�n�
X
p

�p
Z t

0
dt0�n�t0�

��A�p;n�eiA�p;n��t
0�t��B�p;n�eiB�p;n��t

0�t��;

(27)

A�p; n� � /pc� n!0; B�p; n� � �/pc� n!0:

(28)

To evaluate the contribution of ~Z through use of a
truncated Taylor expansion (26), we assume conditions
01440
(18) with m equal to the degree of the Taylor polynomial.
Putting the Taylor polynomial of ~Z in place of Z in (19) and
choosing k � m, we see that the resulting ! integral con-
verges quadratically. We evaluate the contribution of any
monomial�k in the polynomial by using'nk in (19). Thus
the integral for �k is

e�in!0t

2���i�k�2

Z
Im��v

d�
e�i�t

�2

Z t

0
ei�t

0
��k�2�n �t0�dt0: (29)

At every order k we have concentration of the integral near
� � 0, both from the second order pole and from the t0

integral in analogy to (23). This provides an heuristic
justification for using the Taylor expansion, since at every
order the integrand is large only in a neighborhood of the
expansion point.

The integral in (29) can be evaluated by pushing the
contour to a semicircle at infinity in the lower half-plane.
Its value is �2�i times the residue of the second order
pole, which is�

d
d�

�
e�i�t

Z t

0
ei�t

0
��k�2�n �t0�dt0

��
��0

� �i��k�n �t�: (30)

Thus the contribution to V from the Taylor polynomial of
~Z is

~V��; t� � !0Q
X
n

ein���!0t�
Xm
k�0

1

k!
D�k�
2
~Z�n; n!0�ik�

�k�
n �t�:

(31)

The first term of the sum contains an alarmingly large piece
from �Z��n; n!0�. One is relieved to find that this is
canceled by a part of (27), namely, the boundary term
that arises when (27) is integrated by parts.

Invoking that cancellation, we find the full approxima-
tion to V, based on replacing ~Z by its Taylor polynomial:

V��; t� � 2!0QRe
X1
n�1

ein���!0t�
�
Z�n;n!0��n�t�

�
Xm
k�1

1

k!
D�k�
2
~Z�n;n!0�i

k��k�n �t�� i
Z0�R
2�0h

�
X
p

�p
Z t

0
dt0�0n�t

0��eiA�p;n��t
0�t� � eiB�p;n��t

0�t��

�
:

(32)

We were able to replace the full sum on n by twice the real
part of the sum on positive n, because the summand S
satisfies S�n� � S��n��; S�0� � 0.

The integral in (32) represents retardation effects asso-
ciated with waveguide cutoffs. It is expected to be largest at
those �p; n� for which A�p; n� � /pc� n!0 is small, giv-
ing a primarily reactive effect. The presence of the integral
does not add a lot to the cost of a dynamical calculation,
since one can store each of the integrals as a matrix
2-5
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M�p; n; t�, and update that matrix at each time step �t by
adding the integral from t to t� �t.

In the numerical work of Refs. [2,3] we retained only the
first term of (32). Preliminary numerical work to assess the
role of correction terms in (32) was reported in [4], where
the full formula with m � 1 was applied. The added terms
seemed to have minor importance, and we take that as
justification for neglecting them in [2,3]. A more thorough
investigation should be made, however, since the Vlasov
integration of [4] did not include a case of fully developed
instability.

The reader might have noticed that the terms from the
Taylor polynomial of ~Z can be obtained more directly by
putting ~Z for Z in (12) and invoking the Laplace inversion
theorem. The various terms in the polynomial, multiplied
by �̂n���, give Laplace transforms of derivatives of �n�t�,
provided that enough initial value terms are zero. This
calculation gives the same result we have obtained, and
the conditions to use the inversion theorem are weaker than
(18); namely, for an mth degree polynomial, that �n have
only m� 1 continuous and bounded derivatives, and that
��k�n �0� � 0, k � 0; . . . ; m� 1 when m � 1. Our stronger
conditions (18) are needed to justify the Taylor expansion
through the argument about concentration of the integral
near � � 0. Concentration from two sources, the second
order pole and the t0 integral, is not obtained under the
weaker conditions.
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The function ~Z�n;!� is free of poles at ! � �/pc, but
it does have a logarithmic singularity at those points from
log�4pR� in (67). Fortunately, the coefficient Up�n;!� of
the logarithm is exactly the function that displays the
shielding cutoff; it and its derivatives with respect to !
are totally negligible at! � n!0 � /pc, a point far below
the shielding cutoff for mode p as defined in (73) below.
Effectively, ~Z�n;!� behaves as an entire function of! near
n!0, and therefore will be well represented by its Taylor
polynomial of appropriate degree.
IV. FIELDS IN THE PARALLEL PLATE MODEL

The longitudinal field for the parallel plate model was
derived in the early work of Refs. [6,7], but those papers
dealt only with the steady state, effectively finding only the
elementary impedance. The elementary impedance for
pillbox and toroidal models of the vacuum chamber was
found in Ref. [8]. The technique of that paper, which is
easily generalized to get the complete impedance, is ap-
plied here to the simpler case of perfectly conducting
parallel plates. The model could be extended to allow finite
conductivity of the plates by using the technique of non-
harmonic Fourier series introduced in [8,9].

All field components can be expressed in terms of the
Fourier-Laplace transforms of Ey and Hy. The fields may
be represented as
�
Ey�r; �; y; t�
Hy�r; �; y; t�

�
�

Z 1

�1
d!e�i!t

X1
�1

ein�
X1
p�0

cos�/p�y� g��Êynp�r; !�
sin�/p�y� g��Ĥynp�r; !�

" #
; /p �

�p
h
; (33)
where the! integral follows a path! � u� ivwith some
fixed v > 0. The other fields and the charge/current den-
sities have similar expansions with sine or cosine of
/p�y� g� chosen by the following rules:

�Er;H�;Hr; E�� $ �sin; cos; cos; sin�;

�Jr; J�; Jy; 
� $ �sin; sin; cos; sin�:
(34)

The Maxwell equations are satisfied term-by-term in the
Fourier-Laplace developments, as are the boundary con-
ditions,

Hy � 0; Er � E� � 0; y � �g: (35)

The Fourier-Laplace amplitudes of Ey;Hy must satisfy
the wave equations�

1

r
@
@r

�
r
@
@r

�
�

�
�2p �

n2

r2

���
Êynp
Ĥynp

�

�
Z0��i�!=c�Ĵynp �Q/pc
̂np�
��@�rĴ�np�=@r� inĴrnp�=r

" #
; (36)

�2p � /2p � �!=c�2: (37)
Z0 �
�
'0
"0

�
1=2

� 120� � �MKS� �
4�
c

�cgs�: (38)

In general, the Laplace transform of the terms of
Maxwell’s equations with time derivatives would lead to
initial value terms, but we set those to zero following the
argument in Sec. II before (11). We first solve the equations
(36) for real ! and �2p > 0, later performing an analytic
continuation to Im! � 0.

The general solution of (36) is the general solution of the
homogeneous equation (a linear combination of modified
Bessel functions [10], Sec. 9.6) plus a particular solution of
the inhomogeneous equation, thus

Êynp�r� � AnpIn��pr� � BnpKn��pr� � eynp�r�;

Ĥynp�r� � CnpIn��pr� �DnpKn��pr� � hynp�r�:
(39)

Given any particular solutions eynp; hynp, the coefficients
Anp; . . . ; Dnp must be chosen to satisfy the boundary con-
ditions; namely,

Ê ynp�0�<1; (40)
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lim
r!1

exp��pr�Êynp�r�<1; �p > 0; (41)

and similarly for Ĥynp. Here (41) means that below the
frequency of the waveguide cutoff the field must die ex-
ponentially away from the source.

It is easy to construct particular solutions by the method
of variation of parameters, in such a way that those solu-
tions satisfy the boundary conditions by themselves. Then
no solution of the homogeneous equations need be added.
Specializing to the source for our model, in which Jr �
Jy � 0, we get the fields meeting all conditions as

Êynp�r�

Ĥynp�r�

24 35
�

"
Kn��pr�

Z r

0
uduIn��pu�� In��pr�

Z 1

r
uduKn��pu�

#

�
�Z0Q/pc
̂np�u�

�uĴ�np�u��
0=u

" #
: (42)

Noting the value of the Wronskian [10], Sec. 9.6.15,

In�x�K
0
n�x� � Kn�x�I

0
n�x� � �

1

�x
; (43)

it is easy to check that (42) satisfies (36). The boundary
conditions (40) and (41), are easily verified as well.
Because the sources are confined to a finite region of r,
the second term drops out at large r, and the large-r
behavior is given by the Kn, which decreases as
exp���pr�r�1=2. At small r, the asymptotes In�x� �
�x=2�n=n!, Kn�x� � �x=2��n�n� 1�!=2 �n � 0�, K0�x� �
� lnx show that the fields are bounded at r � 0, for the
type of sources that we consider.

By the Lorentz force law, the longitudinal and transverse
forces on the particles are determined by the fields

E�; Fr � Er � �0Z0Hy; Fy � Ey � �0Z0Hr:

(44)

In Fourier space the Maxwell equations can be solved
algebraically for the corresponding Fourier amplitudes:

Ê�np �
i

�2p

�n/p
r
Êynp�

Z0!
c

�@Ĥynp
@r

� Ĵ�np

��
;

F̂rnp �
1

�2p

�
/p
@Êynp
@r

�
Z0!n
cr

Ĥynp

�
��0Z0Ĥynp;

F̂ynp �
�0
�2p

�
!n
cr
Êynp�Z0/p

�@Ĥynp
@r

� Ĵ�np

��
� Êynp:

(45)
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To compute (42), note that by (1), (34), and (4) we have


̂np �  np��r� R�=R; Ĵ�np � Q�0c
np;

 np � Hp
1

2�

Z 1

0
ei�!�n!0�t�n�t�dt;

Hp �
1

g

Z g

�g
sin�/p�y� g��H�y�dy:

(46)

Hence, evaluation of (42) gives

Êynp�r� ��Z0Q/pc np���r�R�Kn��pr�In��pR�

� ��R� r�In��pr�Kn��pR��;

Ĥynp�r� ���pQ�0c np���r�R�Kn��pr�I
0
n��pR�

� ��R� r�In��pr�K
0
n��pR��;

(47)

where

��x� �
�
1; x � 0;
0; x < 0:

(48)

Thus Êynp is continuous at r � R, but the magnetic field
makes a jump that can be computed from (43):

Ĥ ynp�R� 0� � Ĥynp�R� 0� �
Q�0c np
�R

: (49)

Of course, Ampère’s law requires a jump at the ribbon
beam. There is no discontinuity in Ê�np and F̂ynp since
@Ĥynp=@r� Ĵ�np is continuous.

Introducing (47) in (45) and evaluating at r � R� 0 we
obtain

Ê�np�R� � �iZ0Qc np

��/p
�p

�
2 n
R
Kn��pR�In��pR�

�
!�0
c
K0
n��pR�I

0
n��pR�

�
; (50)

F̂rnp�R� 0� � �Z0Qc np

�/2p
�p
K0
n��pR�In��pR�

�

�
�0 �

!n

cR�2p

�
�0�pKn��pR�I0n��pR�

�
;

(51)

F̂ynp�R���Z0Qc np

�
/p

�
1�

�0!n

cR�2p

�
Kn��pR�In��pR�

��20/pK
0
n��pR�I0n��pR�

�
; (52)

and

F̂ rnp�R� 0� � F̂rnp�R� 0�

�
Z0Qc np
�R

��/p
�p

�
2
� �20 �

�0!n

cR�2p

�
: (53)
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The longitudinal impedance is defined in terms of the
longitudinal field averaged over the transverse distribution,
as in Eq. (2). By (34) the Fourier series for E� involves
Hp sin�/p�y� g��. We define the dimensionless factor �p
in terms of the y average of that factor, noting (46):

�p � hHp
Z
sin�/p�y� g��H�y�dy � 2�gHp�

2: (54)

If H�y� is even we have �p � 0 for even p. For the case of
a square step distribution, constant for y 2 ���h=2; �h=2�
and zero otherwise, we have

�p � 2 sinc2�x�; x �
p�h
2h

; p odd: (55)

For a Gaussian distribution with rms width9y � h and the
y average taken over ��9y;9y� we have

�p � 2 sinc�x�e�x
2=2; x �

p9y
h
; p odd: (56)

In either case �p � 2 for small p, which means that there
is not much dependence on the vertical size of the beam,
since at the values of n of interest only a small number of p
modes are unshielded. In the numerical work of [2–4] we
chose the square step model.

Now suppose that �!=c�2 </21, which is to say that the
frequency is below all waveguide cutoffs. Then by (11),
(4), and (46), we get the longitudinal impedance from (50)
and (54) as

Z�n;!� �
2�iZ0R

2

�0h

X1
p�1

�p

��/p
�p

�
2 n
R
In��pR�Kn��pR�

�
!�0
c
I0n��pR�K

0
n��pR�

�
; !2 < �/1c�

2:

(57)

Below all cutoffs the impedance is purely imaginary. At
higher frequencies the �p become imaginary one-by-one
as the ascending cutoffs are passed, giving the impedance a
real part.

In a similar way one can derive horizontal and vertical
transverse impedances from the forces (51) and (52). We
leave to the reader the appropriate definitions of those
impedances, which may depend on the application of
interest.

The low frequency limit of the elementary longitudinal
impedance can be derived from (57) by the ordinary large-
argument expansions of In; Kn ([10], Sec. 9.7.1), supposing
that �R=h is large compared to 1. The resulting formula is
the same as the corresponding one for the pillbox or
rectangular torus model, given in Eq. (4.12) of [8]:

Z�n; n!0�
n

��������n�0�
iZ0
�0

X1
p�1

�p
p

�
1

420
�
3�20 � 1
8

�
h
�pR

�
2
�
:

(58)
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For a general complex frequency in the upper half-plane
it is convenient to express the impedance in terms of the
analytic function

4p�!� � ��!=c�2 � /2p�
1=2 � ���2p�

1=2; (59)

defined in the ! plane with a cut from �/pc to /pc, and
positive for !>/pc. With this definition we have

4p��!� � �4p�!�; j!j>/pc; (60)

and the boundary values on the cut satisfy

4p�u� i0�� ij4p�u� i0�j� i�p�u�; �/pc<u</pc:

(61)

Now recall the following relations that hold for ��<
arg x 
 �=2 [10], Secs. 9.6.3, 9.6.4:

In�x� � i�nJn�ix�;

Kn�x� � ��=2�in�1�Jn�ix� � iYn�ix��;
(62)

where Jn and Yn are Bessel functions of the first and second
kinds, respectively, [10], Sec. 9.1. Substituting (62) in (57)
and applying (61) we find

Z�n;!� � Z0
��R�2

�0h

X1
p�1

�p

�
!�0
c
J0
jnj�4pR�H

�1�0
jnj �4pR�

�

�/p
4p

�
2 n
R
Jjnj�4pR�H

�1�
jnj �4pR�

�
; Im!> 0:

(63)

Here and in the following we invoke the Hankel functions
H�1;2�
n �x� � Jn�x� � iYn�x�. We have used Bessel function

behavior under n! �n ([10], Sec. 9.1.5), to state (63) in a
form correct and convenient for either sign of n.

Since Jn�z� is an entire function of z, and Yn�z� is
analytic in the z plane with a cut along the negative real
axis [10,11], we see from (63) that Z�n;!� is analytic in the
upper half! plane at fixed integer n. To describe and study
the singularities of Z on the real! axis, it is useful to define
the functions

Up�n;!� �
!�0
c
J02
jnj�4pR� �

�/p
4p

�
2 n
R
J2
jnj�4pR�;

Vp�n;!� �
!�0
c
J0
jnj�4pR�Y

0
jnj�4pR�

�

�/p
4p

�
2 n
R
Jjnj�4pR�Yjnj�4pR�; (64)

thus

Z�n;!� � Z0
��R�2

�0h

X1
p�1

�p�Up�n;!� � iVp�n;!��:

(65)

Referring to the expressions of Jn and Yn by power series
([10], Secs. 9.1.10, 9.1.11), we see that Up involves only
2-8
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even powers of 4p, and represents an entire function of !.
On the other hand, Vp involves poles and branch points on
the real axis where 4p � 0. By [10], Sec. 9.1.11, the
functions Yn�z� � �2=�� ln�z=2�Jn�z� and Y0

n�z� � �2=���
ln�z=2�J0n�z� are meromorphic (analytic except for poles)
in the whole z plane. Consequently, it is useful to rewrite
Vp as Vp � V�1�

p � V�2�
p , where

V�1�
p � Vp �

2

�
ln
�4pR
2

�
Up; (66)

V�2�
p �

2

�
ln
�4pR
2

�
Up: (67)

Now V�1�
p �n;!�, involving only even powers of 4p, is

meromorphic in!, whereas V�2�
p �n;!� is an entire function

of ! times the logarithmic factor that is analytic in the !
plane with branch cut ��/pc;/pc�. The poles of V�1�

p come
from 4�2

p and J0
jnjY

0
jnj, except for n � 0, in which case there

is no pole. The poles alone make the following contribution
to the impedance:

Z��n;!� � isgn�n��1� �0n�
Z0�R
2�0h

X
p

�p

�n!0 � /pc
!� /pc

�
n!0 � /pc

!� /pc

�
; (68)

where sgn�n� is the sign of n. The pole location! � �/pc
is the pth waveguide cutoff for the parallel plate system.
Below the cutoff frequency the pth mode is ‘‘evanescent’’
(spatially localized), then at cutoff turns into a propagating
wave, allowing energy to radiate to infinity.
Correspondingly, this is also the point at which Up � iVp
first acquires a real part, as the frequency is increased from
zero. As we shall see, the poles are associated with retar-
dation effects in the deforming bunch formalism.

The poles do not show up as infinities or even
sharp peaks in Z�n� � Z�n; n!0�, since Z��n; n!0� �
isgn�n�Z0��R=�0h�

P
p�p is bounded and independent

of n except for a sign. Consequently, it is likely that the
poles have not been noticed by previous investigators, who
studied mostly Z�n�.

In Sec. II we encountered the question of the asymptotic
behavior of Z�n; u� iv�, u! �1, v > 0. Let us first use
the reflection properties of Bessel functions ([10],
Secs. 9.1.35, 9.1.39) and Eq. (60) to write the impedance
in a form convenient to show its behavior at u � �1. We
have

Z�n;�!� � Z0
��R�2

�0h

X1
p�1

�p

�
!�0
c
J0
jnj�4pR�H

�2�0
jnj �4pR�

�

�/p
4p

�
2 n
R
Jjnj�4pR�H

�2�
jnj �4pR�

�
; (69)

where on the right-hand side 4p � 4p�!�. As a check of
01440
(69) one may verify the reality property Z�n; u� �
Z��n;�u�� using (63), (60), and (61). Now evaluate
(63) at ! � u� iv and (69) at ! � u� iv, and apply
the large-argument asymptotic forms of Bessel functions
([10], Sec. 9.2). The result is

Z�n; u� iv� �
Z0�R
h

�1� e2iuR=c�
X
p

�p; u! �1:

(70)

Now we see that the ! integral of the first term in the
square bracket of (17) exists since it is understood as the
symmetric limit of (10), the constant term in Z being the
same in the two limits of (70). The integral with factor
exp�iuR=c� converges by virtue of oscillations, without the
benefit of asymptotic cancellations.

In deriving (70) we have invoked uniform convergence
of the p series with respect to u to justify taking the limit
under the sum. Such convergence holds for the Gaussian
model of the vertical distribution, as is seen from (56) and
the integral representation ([12], Sec. III.14.19a)

H�1�
n �z� �

�
2

�z

�
1=2 ei�z��n=2��=4�

��n� 1=2�

�
Z 1

0
e�ttn�1=2

�
1�

it
2z

�
n�1=2

dt: (71)

The corresponding formula for H�2�
n �z� is obtained by

changing i to �i in (71), and an integral representation
for Jn is given by Jn � �H�1�

n �H�2�
n �=2. Using these results

and remembering that 4p never vanishes because v > 0,
one can show that the coefficient of�p in the p sum of (63)
or (69) has a bound of the form Cp2, where C is a constant,
independent of u. By (56) and the WeierstrassM test, the p
sum converges uniformly in u. A similar result holds for
any vertical distribution that is sufficiently smooth to en-
sure that

P
pp
2j�pj converges.

In a similar way we can find the asymptotic behavior of
Z�n;!� as ! tends to infinity along any direction in the
upper half-plane. To get the behavior in the first quadrant
put ! � iv� 
 exp�i<�, 0 
 < 
 �=2 in the right-hand
side of (63) and let 
! 1 at fixed <. For behavior in the
second quadrant do the same in (69), but with ��=2 

< 
 0. Thus we find that Z is bounded at infinity in the
upper half-plane, a result that we require in closing con-
tours at infinity.

For further analysis we require a method to evaluate the
Bessel functions. Since the important values of n are quite
large, asymptotic expansions for large n are essential. We
are mainly interested in ! close to n!0, so we consider
evaluation of Jn�nz�; Yn�nz� and the corresponding differ-
entiated functions, where

nz � 4p�n!0�R � n
�
�20 �

�
�pR
nh

�
2
�
1=2
: (72)

The transition from exponential to oscillatory behavior of
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the Bessel functions occurs near z � 1, with exponential
decrease of Jn�nz� and increase of Yn�nz� as z is decreased
below transition, and similarly for the derivatives. It is then
reasonable to define the shielding cutoff n0�p� for the pth
mode, and the corresponding z, as follows (assuming �0 �
1):

n0�p� � �p
�
R
h

�
3=2
; z �

�
�20 �

�
h
R

�
1=2

�
1=2
: (73)

This generalizes our previous shielding cutoff [2], which
was for p � 1, and ensures that Up�n; n!0� first becomes
appreciable on increasing n at roughly n � n0�p�.

Since the behavior of the Bessel functions changes
rapidly near z � 1, it is convenient when working in that
region to use expansions that are accurate at large n uni-
formly in z. We use the Olver expansions ([10],
Secs. 9.3.35–9.3.46) which are expressed in terms of
Airy functions and are uniform in z to a remarkable extent,
in the entire sector j argzj 
 �� ", any " > 0. Using
results of Decker [13], we get a fast evaluation of the
Olver expansions, as explained in [8].

For z a bit less than 1 the function Up�n;!� of (65)
becomes negligible, but we still have to evaluate Vp�n;!�.
For that it is sufficient to use the simpler Debye expansions
[14]. Instead of evaluating the individual Bessel functions
and then combining their values numerically, it is essential
first to make an analytic reduction of Vp which accounts
for close cancellations of exponential factors (very large or
very small in this region). This was done in [14] for the
torus impedance. To retrieve the parallel plate case from
Eq. (2.19) of [14], put 9�M;E�

np � 0. Also note that the
definition of �p in this paper is twice that of [14].

In practice we make the change from Olver to Debye
expansions at about z � 0:9. We take enough terms in the
p expansion to give a negligible remainder, but in many
cases the first term alone gives a fairly good estimate,
especially in the important region near the first shielding
cutoff. Evaluating the first term, p � 1, by the leading term
in the Olver expansion, we get the result (for�0 � 1) given
in Ref. [15],

ReZ�n�
n

� 2Z0

�
�R
hn

�
2
exp

�
�
2

3n2

�
�R
h

�
3
�
: (74)

The results mentioned in connection with Eq. (2) of
Ref. [2] can be read off from this formula. The exact
evaluation for Fig. 1 of [2] included all modes up to p �
43, but the higher p affect mainly the behavior at large n.
V. SUMMARY AND OUTLOOK

We have shown how to extend the impedance formalism
to account correctly for a beam with evolving charge
density. This was done for a particular model in which
the particles move on circular orbits between conduct-
ing parallel plates. The basic technique was to make a
014402
Fourier-Laplace transform of the Maxwell equations
and the charge/current source, then make a detailed
study of the analyticity of the solution in the complex
frequency !. It will be interesting to study other soluble
models in a similar way, for instance, that in which
the parallel plates are replaced by a closed pillbox.
Models including electrical resistance of the vacuum
chamber, with or without trajectory curvature, are also of
interest.

The mathematics of this work is interesting and
much more subtle than we expected at the outset.
One has to be quite careful because of surprising cancella-
tions and convergence questions. We were able to give
reasonable assumptions on the charge density so that
most of our conclusions follow rigorously, except that we
have no analytic estimate of accuracy of the approxima-
tions displayed in Eq. (32). The first approximation
has been the mainstay of simulations to date. More
work will be needed to clarify the quantitative importance
and physical meaning of higher terms, especially the
integral in (32) which arose from poles at waveguide
cutoffs.

The transverse part of the CSR force has usually been
ignored in dynamical simulations, on the belief that its
electric and magnetic components nearly cancel for rela-
tivistic velocities. It would be worthwhile to test this
assumption concretely in a simulation, using the expres-
sions for the transverse force given in Sec. IV.

A complementary approach to the CSR force is to
work directly in space-time, rather than with integral
transforms. This was done for the same physical model
by Murphy, Krinsky, and Gluckstern [16]. Their analysis
does not deal with our questions of retardation with
bunch deformation, since it deals with the steady state
case and just results in a wake function, approximately
the Fourier transform of our elementary impedance. In the
time-dependent case with evolving bunch one can write
down the exact force as an integral over the space-time
Green function of the system. Evaluation of this integral
would be too expensive, but one could look for approx-
imations analogous to those that we derived by integral
transforms. That is another interesting topic for further
research.
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