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Coherent synchrotron radiation and bunch stability in a compact storage ring
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We examine the effect of the collective force due to coherent synchrotron radiation (CSR) in an electron
storage ring with small bending radius. In a computation based on time-domain integration of the
nonlinear Vlasov equation, we find the threshold current for a longitudinal microwave instability induced
by CSR alone. The model accounts for suppression of radiation at long wavelengths due to shielding by
the vacuum chamber. In a calculation just above threshold, small ripples in the charge distribution build up
over a fraction of a synchrotron period, but then die out to yield a relatively smooth but altered distribution
with eventual oscillations in bunch length. The instability evolves from small noise on an initial smooth
bunch of rms length much greater than the shielding cutoff.
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I. INTRODUCTION

The particles in a bunch traveling on a curved trajectory
in free space emit synchrotron radiation with a broad
spectrum of wavelengths. At wavelengths comparable to
the bunch length or larger, the radiation from various
particles is coherent, giving a radiated power proportional
to N2, where N is the bunch population. Being so much
larger than the incoherent power at shorter wavelengths,
proportional to N, this coherent radiation could actually
prevent operation of an electron storage ring if it were not
suppressed by the effect of the metallic vacuum chamber
surrounding the beam. This shielding effect was recog-
nized in the 1940s, and was first computed in simple
models of the vacuum chamber by Schwinger [1,2],
Schiff [3], and Nodvick and Saxon [4].

In the model consisting of infinite parallel plates with
separation h, with the particles moving on a circle of radius
R in the median plane, the coherent radiation is exponen-
tially suppressed for wavelengths greater than about �0,
where

�0 � 2h
�
h
R

�
1=2

: (1)

A cutoff of roughly the same value holds for more elabo-
rate models [5,6], for instance a smooth, resistive, toroidal
chamber with rectangular cross section, if the transverse
dimensions are of order h. This ‘‘shielding cutoff,’’ which
differs from the familiar waveguide cutoff �w � 2h by the
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typically small factor �h=R�1=2, is usually quite small com-
pared to typical bunch lengths in storage rings. Coherent
radiation of a certain wavelength � can be produced only if
the Fourier spectrum of the bunch has an appreciable
component of that wavelength. From this we might con-
clude that coherent synchrotron radiation (CSR) will not be
a big effect in most storage rings, since if the bunch form is
smooth and nearly Gaussian with rms spread �z, then the
bunch spectrum cuts off quickly for � < 2��z. We must be
cautious about this point, however, since there might be
higher modes associated with some sort of small-scale
structure on the bunch form. If at high current the field
from coherent radiation is sufficiently strong to cause even
more prominent small-scale structure, there might be an
exponential buildup and eventual large-scale changes in
the bunch form. A reason for worry in this regard is that the
CSR wake field can be huge at wavelengths just smaller
than the shielding cutoff. In the parallel plate model the
maximum real part of Z�n�=n, where Z is the longitudinal
impedance, is given approximately in ohms by

�
ReZ�n�

n

�
max

�
360

e
h
R
� 132

h
R

�: (2)

Here n specifies an azimuthal mode of the electromagnetic
field with wavelength 2�R=n. Following convention we
write Z�n� although it would be more appropriate to write
Z�n=R�, thereby recognizing that Z is a function of the
wave number. For rings with small bending radii, like the
example we shall study, the value (2) can be quite large
compared to typical machine impedances, but those are
usually most important at lower frequencies. Figure 1
shows Z�n�=n for the parameters of the example treated
presently.
2-1  2005 The American Physical Society
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FIG. 1. Real (solid line) and imaginary (dashed line) part of
Z�n�=n for the parallel plate model with h � 1 cm, R � 25 cm,
and energy E0 � 25 MeV.
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The maximum value (2) occurs at n � �
���
2

p
�R=h�3=2,

whereas the cutoff �0 corresponds to n0 � ��R=h�3=2.
[Note that this definition of the cutoff is somewhat
arbitrary, being a point at which the impedance is still
appreciable but falling rapidly as n decreases. At n ����

2
p

�R=h�3=2 the ratio ReZ�n�=n is off by a factor of about
2000 from its maximum value.]

Although ReZ�n� is exponentially suppressed for wave-
lengths larger than the shielding cutoff, that is not true of
ImZ�n�. This is because we define the impedance to rep-
resent the entire longitudinal field for the chosen model of
the vacuum chamber, not just the part due to curvature. At
low energies there is a prominent space charge contribution
to ImZ, which in our example is large enough to cause
noticeable potential well distortion with bunch shortening.

It is interesting to recall that the first observation of
coherent synchrotron radiation [7] involved a nominal
bunch length much larger than �0. Since the bunch came
from a linac, which could easily produce a ragged, non-
Gaussian bunch profile, there was probably enough small-
scale structure to allow coherent radiation in spite of
shielding. Furthermore, the first evidence of CSR in exist-
ing storage rings [8–12] was under conditions with nomi-
nal bunch length greater than �0, but was associated with
a microwave instability that could cause the bunch
substructure necessary to overcome shielding [13].
Correspondingly, the observations showed only intermit-
tent bursts of radiation. Now there is evidence of steady
radiation at BESSY in a situation with a very short
bunch achieved through a lattice with low momentum
compaction [14].

In this paper we report a dynamical simulation that
supports the picture of microbunching in a stored electron
beam as described above. We attempt to understand the
basic phenomenon in a model with a simplified picture of
the collective force from CSR. The force is computed as
though it came from a zero transverse emittance beam on a
circular orbit between parallel plates, the radius of the orbit
01420
equated to the bending radius (not the average ring radius)
of the actual machine. Aside from this representation of the
force, we adopt the usual picture of longitudinal motion
with the revolution time and slip factor for the actual ring.

For this first study we omit the usual wake fields due
to vacuum chamber corrugations. These might play some
role in a correct quantitative description of the instability
leading to microbunching, as has been suggested in
Refs. [8,15]. At least in some machines it seems that
CSR alone may adequately account for the threshold of
instability [10,16].

Within the limitations of the model and discretization
error in numerics, we find a threshold current at which
microbunching evolves from small noise on a smooth
bunch. Also, we follow characteristics of the bunch form
up to a kind of saturation of the instability, in which small-
scale structures die out to a large extent and oscillations of
a relatively smooth but altered bunch form ensue.

This study was initiated to provide guidance in design of
a compact storage ring [17], but we hope that the technical
experience gained will also help in analysis of CSR experi-
ments on existing storage rings [8,9,11,12,14] and in de-
sign of a possible steady CSR source [16,18]. In particular,
we have made progress in controlling a relatively new
approach based on time-dependent Vlasov dynamics
[13,19], in a situation where close analysis of short wave-
length phenomena is essential. Aspects of our technique
may prove to be useful as well in the important problem of
single-pass CSR in bunch compressors [20,21]. Currently
there is much concern about microbunching in high energy
bunch compressors with very small energy spread. This
problem is being studied with macroparticle tracking, in
which assessment of numerical noise tends to be difficult.
A Vlasov description like that used here is possibly an
interesting alternative. Maintaining a smooth distribution
in phase space, it allows microbunching without the un-
physical macroparticle phase space granularity.

In Sec. II we describe briefly the project that motivated
this work. In Sec. III we review the single-particle equa-
tions of motion, and the Vlasov equation. Section IV gives
the form of the collective force from shielded CSR that we
assume. Section VA reviews the theory of the linearized
Vlasov equation for a coasting beam in the frequency
domain. The discussion follows Landau’s original method,
but we bring out mathematical details that are often over-
looked, for instance the fact that one is dealing with an
integral equation of the third kind. Section V B reports a
first numerical exercise to test the Vlasov code, namely, a
calculation of the instability threshold for a coasting beam.
The result agrees well with the linear analysis. We also
compute nonlinear evolution of the coasting beam. Our
main numerical results, for the bunched beam, appear in
Sec. VI. We treat both the advent of the instability and its
‘‘saturation’’ at longer times, emphasizing evolution of the
Fourier spectrum of the bunch. Section VII contains a
summary and the outlook for further work.
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Our computation of the collective force from CSR is
done by means of the impedance rather than by using a
closed expression for the wake potential as some authors
prefer. A full discussion of the impedance formalism with
parallel plate shielding is given in Ref. [22]. This includes
questions of retardation that arise in the rigorous treatment
of a deforming bunch, which cannot be treated by a wake
potential. The practical application of the impedance re-
quires a fast evaluation of a certain Fourier sum. In
Appendix A we show how to relate this sum to the fast
Fourier transform (FFT). Appendix B reviews the method
used for time-dependent solution of the Vlasov equation.

II. MOTIVATION: A COMPACT ELECTRON RING
FOR COMPTON X-RAY PRODUCTION

A compact electron storage ring has been proposed as a
part of a Compton-scattering x-ray source [17]. The idea is
to produce usable x rays from interaction of a fast recircu-
lating bunch of electrons and a laser flash trapped in an
optical cavity [23]. The size of the storage ring confining
the electrons should be as small as possible in order to
maximize the collision frequency. We consider an example
with the following parameters:

E0 � 25 MeV; �E=E0 � 3 � 10�3; �z � 1 cm;

�s � 0:0184; !s � 5:4 MHz; R � 25 cm;

h � 1 cm; N � 6:25 � 109 � 1 nC: (3)

Here E0 is the nominal energy, �E and �z are rms energy
spread and bunch length, �s is the synchrotron tune, !s �
2�fs is the circular synchrotron frequency, R is the bend-
ing radius of each of the four 90	 bends, h is the vacuum
chamber gap, and N is the bunch population. The ring
lattice consists of the combination of two double bend
achromats joined by short drift sections to accommodate
an rf cavity, injection devices, and an interaction section
for a combined length of about 6.3 m.

The small value of R has raised concern that CSR could
become a limiting factor because of the unfavorable scal-
ing in this parameter. As indicated by Eqs. (1) and (2) a
small radius of curvature makes the screening by the
vacuum chamber less effective, causes the radiation fields
to be more intense, and allows a larger portion of the bunch
to radiate coherently. A first assessment of instability in the
linear approximation can be carried out using Boussard’s
argument to replace the bunched beam stability problem by
a roughly equivalent coasting beam problem. As is shown
in Sec. VA, this leads to a current threshold for instability
of 7.1 nC, about 7 times the intended design value. While
this value may appear sufficiently safe, the question re-
mains as to whether it would be possible, in view of
eventual luminosity upgrades, to operate the machine
above threshold. Moreover, one would like to corroborate
the coasting beam analysis with a more realistic modeling
of beam dynamics including the effect of bunching. This
01420
desire motivated the nonlinear, self-consistent calculation
of beam dynamics presented in this paper.

An unusual feature of the proposed ring is that radiation
damping and excitation due to incoherent synchrotron
radiation play no significant role in beam dynamics. The
damping time for a machine of this size and energy is of the
order of 1 sec, much larger than the cycle time correspond-
ing to the planned 100 Hz repetition rate. One cannot rely
on possible beneficial effects of radiation damping to con-
tain the emergence of instabilities and help relax the beam
distribution above threshold. Instead, because of relatively
small bunch sizes and low energy, intrabeam scattering is
expected to be significant. Over a machine cycle (10 ms)
both longitudinal and transverse emittances may double in
size [24]. This growth time is still quite large, however,
compared to the time for onset and saturation of the CSR
instability, which amounts to a few synchrotron periods.
Consequently, neglect of intrabeam scattering seems justi-
fied in the present study.
III. EQUATIONS OF MOTION

Our model of beam dynamics is based on the standard
picture of longitudinal motion with linearized rf accelerat-
ing field, augmented with the longitudinal force from CSR.
Transverse motion is neglected entirely.

The slip factor � is defined as the constant relating a
change in angular rotation frequency �r to a change in
momentum P, namely,

� � �
P0

�0

�
d�r

dP

�
P0

� �� 1=�2
0: (4)

Here P0 and �0 are the nominal (design) values of mo-
mentum and revolution frequency, respectively, while � is
the momentum compaction factor and �0 � E0=mc2 is the
Lorentz factor for the nominal energy. Note that some
authors define � with the opposite sign, and some call �
the momentum compaction.

As dynamical variables we choose the dimensionless
coordinates

q �
z
�z

; p � �sgn���
E� E0

�E
: (5)

Here z � s� s0 is the distance (in arc length along the
reference trajectory) to the synchronous particle, being
positive when the test particle leads. The deviation of
energy from the nominal energy is E� E0, and sgn��� is
1 for �> 0 and �1 for �< 0. For the moment, �z and �E
are regarded as arbitrary scale factors to render q and p
dimensionless and of convenient magnitude. In these var-
iables the standard linearized equations of motion [25] take
the form

dp
d 

� �aq;
dq
d 

�
p
a
;  � !st; (6)
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where !s is the angular synchrotron frequency and

a �
#0!s�z

c
E0

j�j�E
; #0 � v0=c: (7)

The system (6) has Hamiltonian

H�q; p� �
1

2a
p2 �

a
2
q2: (8)

In a normal electron storage ring, equilibrated by radiation
damping balancing quantum fluctuations, the phase space
density function at low current would be

f0�q; p� � exp��H�q; p��=2�: (9)

Recalling the definition of p in (5), we see that if �E is
identified with the low current rms energy spread, then a �
1 or

#0!s�z

c
�

j�j�E

E0
; (10)

where �z is the low current rms bunch length. This is a well
known formula, at least for #0 � 1.

In our example we do not have normal equilibration, but
we nevertheless choose a � 1 as a matter of convenience
in notation. Then if �z is taken to be a nominal bunch
length, Eq. (10) gives a definition of �E, which is now only
a scaling constant to define the dimensionless variable p of
(5), not the rms energy spread.

If the beam current is sufficiently high, significant col-
lective forces may arise. These include ‘‘geometric’’ wake
forces generated from interaction of the beam with the
surrounding environment. Our main interest here is in the
additional collective force due to trajectory curvature,
which entails both wake and precursor components.
Whatever the collective force, it may in principle be com-
puted from Maxwell’s equations under boundary condi-
tions at the chamber wall, given the charge and current
densities defined by the phase space density of the beam.
The exact phase space density, accounting for granularity
of charge, is replaced in Vlasov theory by a smoothed
density f, and the collective force is a functional of f.

In our one-dimensional model the Vlasov density is
denoted by f�q; p;  �, and the collective force by
IcF�q; f;  �. We define F to be positive when it contributes
a positive term to dE=d(; i.e., it has the same sign as the
collective electric field. The normalization of F is chosen
to give the current parameter Ic the value

Ic �
sgn���e2N
2��s�E

; (11)

where N is the bunch population and �s is the synchrotron
tune. In MKS units Ic is in coulombs per volt. By (5) and
(6) with a � 1 the single-particle motion is governed by
the equations
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dp
d 

� �q� IcF�q; f;  �;
dq
d 

� p: (12)

The distribution function satisfies the Vlasov equation,

@f
@ 

� p
@f
@q

�
@f
@p

�q� IcF�q; f;  �
 � 0: (13)

We normalize f to have unit integral. Then the particle
density on configuration space is

*�q;  � �
Z

dpf�q; p;  �: (14)
IV. COLLECTIVE FORCE DUE TO CSR

We do not yet have a numerical method to compute CSR
for arbitrary vacuum chamber walls and arbitrary particle
orbits. If the vacuum chamber is modeled by parallel plates
one can allow arbitrary orbits in planes parallel to the
plates, enforcing field boundary conditions on the plates
by the method of images. This would enable an account of
transverse horizontal spread in the beam due to energy
spread and angular deviation in horizontal motion. For
this first exploration we adopt the parallel plate vacuum
chamber, but for simplicity we assume that the horizontal
spread does not have a major effect in the field produced by
the beam. In fact, we compute the collective force as
though it came from particles on a fictitious circular orbit
with radius equal to the bending radius of the ring of
interest. Thus we neglect not only transverse spread but
also transient fields near magnet edges.

We work in cylindrical coordinates, with the y axis
perpendicular to the plates located at y � �g; h � 2g.
We suppose that the charge/current distribution has the
form of a ‘‘vertical ribbon beam.’’ In the bunch frame the
line density is ��(; t�, and in the laboratory frame the
normalized particle density * and current density J are as
follows:

*�r; (; y; t� � ��(�!0t; t�
-�r� R�

R
H�y�;

J � �Jr; J(; Jy� � �0; Q#0c*; 0�;Z 2�

0
��(; t�d( � 1; ��(� 2�; t� � ��(; t�;

Z g

�g
dyH�y� � 1;

(15)

where Q � �eN is the total charge and !0 � #0c=R.
Here R is the bending radius of the ring, and the velocity
#0c is identified with the nominal velocity of the ring. Note
that !0 differs from the revolution frequency of the ring,
which is �0 � 2�#0c=C for ring circumference C.

We shall compute the collective force as the mean value
of the longitudinal electric field with respect to the trans-
verse distribution:
2-4
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E�(; t� �
Z 1

0
rdr

Z g

�g
dy

-�r� R�
R

H�y�E(�r; (; y; t�

�
Z g

�g
E(�R; (; y; t�H�y�dy: (16)

The corresponding induced voltage is V�(; t� �
�2�RE�(; t�. For the case of a rigid bunch the voltage is
given in terms of the impedance function Z�n;!� and the
Fourier transform �n of the line density ��(� as

V�(; t� � !0Q
X
n

ein�(�!0t�Z�n; n!0��n: (17)

In Ref. [22] we obtain the generalization of this formula for
a deforming bunch, which involves the complete imped-
ance Z�n;!�, not just its ‘‘diagonal’’ value Z�n; n!0�. The
latter, which we call the elementary impedance, corre-
sponds to modes with phase velocity equal to the particle
velocity. The exact form involves an integral over the
frequency ! as well as a sum on n. In that paper we also
find the first approximation to the exact formula and sys-
tematic corrections. The first approximation, which will be
the basis for calculations reported here, amounts to replac-
ing �n in (17) by the time-dependent Fourier transform

�n�t� �
1

2�

Z 2�

0
d(e�in(��(; t�: (18)

Thus the voltage is computed as though the present charge
distribution had existed for all time, meaning that retarda-
tion effects are not treated properly. Nevertheless, a first
evaluation of corrections showed them to have a minor
effect [26], at least over a limited time interval. We plan to
make further checks in later work.

The impedance is given by [22]

Z�n;!�

Z0
�

��R�2

#0h

X
p�1;3;...

�p

�
!#0

c
J0n��pR�H

�1�0
n ��pR�

�

��p

�p

�
2 n
R
Jn��pR�H

�1�
n ��pR�

�
: (19)

Here H�1�
n � Jn � iYn, where Jn and Yn are Bessel func-

tions of the first and second kinds, respectively, and �p �

�p=h, �2
p � �!=c�2 � �2

p, �p � 2�sin x=x�2, with x �

�p-h=2. Here h is the distance between the parallel plates,
and �p is given for the case in which the vertical distribu-
tion H�y� is constant for jyj � -h=2 and zero otherwise. In
MKS units Z0 � 120� �. Evaluation of the Bessel func-
tions requires appropriate asymptotic formulas for large n
[5]. Henceforth we follow convention in defining Z�n� �
Z�n; n!0�.

Translating to the notation of the previous section, we
have
01420
F�q; f;  � � �
1

Q
V
�
!0 
!s

�
�zq
R

;
 
!s

�

� �!0

X
n

exp
�
in

�zq
R

�
Z�n��n

�
 
!s

�
; (20)

where

�
�
(;

 
!s

�
�

R
�z

Z
f
�
R
�z

(; p;  
�
dp: (21)

Note that (20) can be rewritten as a convolution of �
with the Fourier transform of Z�n�, the latter being what is
called the wake potential. Although one can give an ap-
proximate closed form for the wake potential [27], the
computation of its convolution with � requires special
care since it is sharply peaked in a region small compared
to typical mesh cells in the Vlasov integration.
Consequently, we prefer the impedance formulation,
which also seems to provide an easier route to corrections
to formula (20), as explained in [22].

Once we have adopted the approximation (20), so that
the collective force depends only on f evaluated at time  ,
we make the change of notation

F�q; f;  � ! F�q; f��;  ��: (22)

The argument f��;  � indicates that F depends on the
f�q0; p0;  � at fixed  , with �q0; p0� ranging over the whole
phase space.
V. CSR EFFECTS IN COASTING BEAMS

A. Linearized Vlasov equation

In order to establish useful guidelines for our numerical
study as well as a benchmark for the code, it is convenient
to consider first the dynamics of coasting beams. The linear
motion for coasting beams can be studied analytically and
the results of the stability analysis extended to bunches— if
the conditions for the validity of the Boussard criterion are
met [28–30]. Boussard stated that a bunched beam and a
coasting beam (with current equal to the peak current of the
bunched beam) should exhibit similar thresholds for insta-
bility provided that the wavelength of the unstable mode is
small compared to the bunch length. One can hope to apply
this criterion to our case. Because of shielding CSR can
only excite perturbations with wavelength � & �0 �

2h�h=R�1=2. For radius of curvature of the order of R �
25 cm and chamber height h � 1 cm the cutoff is about
�0 � 4 mm, smaller than a rms bunch length of 1 cm of
interest here.

First, consider linearizing the Vlasov equation (13)
around an equilibrium. Having set f � f0 � f1, where
f1 is a small perturbation of equilibrium f0, we find
2-5
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@f1

@ 
� p

@f1

@q
�

@f1

@p
�q� IcF�q; f0��;  ���

@f0

@p
IcF�q; f1��;  �� � 0: (23)

Next, in the spirit of Boussard’s analysis we drop the rf
focusing term, and consider a coasting beam with distri-
bution function f�q; p;  � � f0 � f1, periodic in q with
period L � 2�R=�z. Now coordinate space is the interval
�0; L
, and the unperturbed distribution normalized to have
unit integral is f0 � exp��p2=2�=�

�������
2�

p
L�. This distribu-

tion is indeed an equilibrium, since F�q; f0��;  �� � 0. A
uniform charge distribution produces no wake force;
equivalently, Z�n� vanishes at n � 0. The resulting line-
arized Vlasov equation can be used to investigate the linear
dynamics of our original problem. Applying (20) and (21)
we see that the equation of interest is

@f1

@ 
�p

@f1

@q
�Id!0

@f0

@p

X1
n��1

Z�n�einq�z=R
R
�z

*1n� ��0;

(24)

where

*1n� � �
1

L

Z
dqe�2�niq=L

Z
dpf1�q; p;  �; (25)
01420
with

L � 2�R=�z; Id � LIc=
�������
2�

p
�q: (26)

The current parameter Id is chosen so that the
charge density of the coasting beam is the same as the
peak charge density of the bunched beam. We have
assumed that the bunched beam is nearly Gaussian, so
that its normalized particle density is approximately
exp�� �q=�q�

2=2�=
�������
2�

p
�q. We seek solutions of (24) of

period L in q, and L is typically so large that the periodicity
imposes no substantial restriction on the form of the
perturbation.

To find a solution we take the Fourier transform of (24)
with respect to q and the Laplace transform with respect to
t �  =!s. As in Eq. (7) of [22] we use the notation of
Fourier analysis, taking ! to be the variable conjugate to
time rather than the usual Laplace variable s � �i!.
Nevertheless, our analysis is strictly in terms of the
Laplace transform, since time integrals are on the positive
real line and Im!> 0. The double transform of (24) exists
if jf1n�p;  �j � Mernt for some positive rn, and the series
in (24) converges uniformly in q. We shall construct a
solution of (24) assuming these conditions, and then ob-
serve that the solution in fact satisfies the same conditions.
Taking the transform for Im!> rn we have that
�
�i

!
!s

� inp
�z

R

�
f̂1n�p;!� � Id!0Z�n�

R
�z

f00�p�*̂1n�!� �
1

2�!s
f1n�p; 0�: (27)
The initial value f1n�p; 0� will be largely arbitrary, subject
only to conditions of decay in p and n, and smoothness in
p. To be specific, let us assume convenient conditions
(which can certainly be weakened); first, that f1n�p; 0� is
continuously differentiable in p, and that the function and
its derivative decay at large jpj as a power. We also need a
condition on decay at large n, uniform in p, in order that
the Fourier series converge. For simplicity, we may take
f1n�p; 0� � 0, jnj> �n.

Now (27) implies that the zero mode amplitude,
f10�p;  �, is actually independent of  , since its Laplace
transform as a function of ! is a simple pole at ! � 0.
Thus we can restrict attention to modes with n � 0, since
only such modes are potentially unstable.

For n � 0 the transformed Eq. (27) is an integral equa-
tion for f̂1n�p;!� with separable kernel. With reference to
n and ! suppressed, it has the form

d�p�f̂1�p� � af00�p�
Z

f̂1�p0�dp0 � bf1�p; 0�: (28)

Clearly, any solution may be represented in its p depen-
dence as f̂1�p� � �bf1�p; 0� � �f00�p��=d�p�. Substituting
this expression in (27) and solving for the constant �, we
find the solution of (27) as
f̂ 1n�p;!� �
bn

dn�p;!�

�
f1n�p; 0� � an

f00�p�
Dn�!�

�
Z f1n�p0; 0�dp0

dn�p0; !�

�
; (29)

where

dn�p;!� � p�
R!

�z!sn
; an � Id!0

Z�n�
in

�
R
�z

�
2
;

bn �
R

2�i!s�zn
; Dn�!� � 1 � an

Z f00�p�dp
dn�p;!�

:

(30)

By integrating (29) over p we find the transform of the
charge density as

*̂ 1n�!� �
bn

Dn�!�

Z f1n�p; 0�dp
dn�p;!�

: (31)

For sufficiently large Im!> 0 the dispersion function
Dn�!� has no zero, since it tends to 1 as Im! ! 1. Let rn
be the largest non-negative number so that Dn�!� has no
zero for Im!> rn. Then (29) is analytic in ! for Im!>
rn. The inverse Laplace transform can be taken along a
contour Im! � r > rn, and that contour can then be
2-6



FIG. 2. Keil-Schnell stability diagram. The dashed line defines
the onion-shaped stability boundary characteristic of an unper-
turbed distribution that is Gaussian in momentum. The solid
lines represent �IcZ�n�=I0n with Ic equal to the critical value
Ith
c � 0:8183 �Q � 7:1 nC� for instability (thicker line) and Ic �

1:018 (thinner line). I0 �
�������
2�

p
�q��z=R�

2=!0.
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pushed down to the real axis, possibly encircling a pole
from a zero of Dn if rn > 0. [The limit of f̂1n�p;!� as !
approaches the real axis exists because of our assumption
of smoothness of f1n�p; 0� and f00�p�]. The pole residue
will have a factor ernt, showing that the initial perturbation
f1n�p; 0� grows exponentially at a rate 1=rn. Thus we
justify, a posteriori, the assumption on large-t growth
that was made in deriving (27). For sufficiently small
current Ic we have rn � 0, and as the current is increased
we expect to reach a value Ith

c at which a zero of Dn crosses
the real axis to the upper half-plane, giving an instability in
mode n. We also expect that one mode n0, determined by
specific properties of the impedance, will be the ‘‘most
unstable,’’ the first to destabilize with increasing current.

One might consider pushing the ! contour still farther,
down to a semicircle at infinity in the lower half-plane,
thinking to represent the complete distribution as a sum of
pole contributions from all stable and unstable modes. This
is problematic, however, and not of much practical interest.
Analytic continuation to the lower plane of the integrals
involving f1n�p; 0� and f00�p� requires global analyticity of
those functions in p. Smoothness of a distribution function
seems a natural requirement, as an approximation to the
actual granular particle distribution when the number of
particles is large, but the much stronger requirement of
global analyticity seems unmotivated. Even if an analytic
function such as the Gaussian is chosen, the contribution of
the semicircle at infinity need not be zero.

The Eq. (28) is a singular equation, classified as an
integral equation of the third kind [31,32], owing to the
zero of the factor dn�p� in its first term. The solution has a
pole at that zero. In the linearized Vlasov equation for a
bunched beam the analogous singularity must be handled
less directly, since the solution of the integral equation is
not known explicitly. In Ref. [33] it is shown that a simple
change in the choice of unknown function is sufficient to
remove the singularity and produce a scheme that is en-
tirely analogous to the coasting beam theory.

To search for unstable modes we look for zeros of Dn�!�
in the upper half-plane, for the case of Gaussian f0. In that
case Dn can be expressed in terms of the error function of
complex argument w�z� � e�z2

erfc��iz� � e�z2
�1 �

2i=
����
�

p Rz
0 exp�92�d9
, as defined in [34], Sec. 7.1.3. With

the definition

W�z� �
1�������
2�

p
Z pe�p2=2

p� z
dp � 1 � iz

����
�
2

r
w�z=

���
2

p
�; (32)

the equation Dn�!� � 0 reads

Ic!0�������
2�

p
�q

�
R
�z

�
2 Z�n�

n
�

i
W�!R=�!s�zn��

; (33)

where Ic is defined in (11). Remember that
E0; #0; �E; �z; �s; !s; N are design parameters for the
ring of interest. On the other hand, R is the bending radius
rather than the average radius of the ring, and the imped-
01420
ance is computed as though it came from a bunch on a
circular path of radius R with angular revolution frequency
!0 � #0c=R.

Henceforth we report results for the parameters of
Eqs. (3), suitable for the compact ring discussed in
Sec. II. The energy is assumed to be above transition, so
that sgn��� � 1 in (11). We suppose that the lattice is
designed so that the slip factor � satisfies (10) when the
other parameters in that equation are from (3). In Sec. VI A
we find the value 0.961 for the normalized equilibrium
bunch length �q. For the present approximate calculation
we put �q � 1.

A convenient way to represent mode stability as pre-
dicted by (33) is by means of a Keil-Schnell diagram; see
Fig. 2. In the complex plane one draws a stability boundary
(dashed line in the picture) defined parametrically by the
real and imaginary components of �i=W��� for Im� � 0
as we let Re� run from �1 to �1. In the same plane we
can also locate the negative of the left-hand side (LHS) of
Eq. (33) as a function of n for specified values of the
current (solid lines in the picture). Points falling outside
the Keil-Schnell curve identify unstable modes with posi-
tive imaginary part of frequency Im!> 0. Those falling
inside represent stable modes. In Fig. 2 the thick line
corresponds to a normalized current Ic � 0:8183 pC=V.
The fact that the thick curve in the picture is tangent to the
stability boundary qualifies Ic � 0:8183 pC=V (Q �
7:1 nC) as the current threshold. The most unstable mode
has mode number n � 702 (marked in the picture) corre-
sponding to a wavelength � � 2�R=n � 2:2 mm.

The so-called ‘‘Keil-Schnell criterion’’ is an approxima-
tion to (33) obtained by putting W � 1 and replacing
Z�n�=n by the maximum value of jZ�n�=nj. The threshold
obtained from the exact equation is about 20% larger than
the prediction of the Keil-Schnell criterion.
2-7



FIG. 3. Coasting beam. Left: Logarithm of the amplitude of
Fourier mode �n � 702� versus time for six values of the current
parameter Ic (between Ic � 0:76 and Ic � 0:88 in steps of
0.024). Right: Evolution of normalized rms energy spread �p.
In both pictures  is the normalized time.
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B. Numerical solution of the nonlinear Vlasov equation

For numerical integration of the Vlasov equation we
define the distribution function f in terms of its values on
a �2N � 1� � �2N � 1� grid with both (normalized)
position and momentum q and p belonging to the interval
��;; ;
 with ; ’ 6:04. We used the method of Appendix A
to compute the collective force, and the method of
Appendix B to integrate the Vlasov equation. In the case
of the coasting beam, the distribution function is con-
structed so that it is periodic in q with period 2;; i.e.,
f��;; p� � f�;; p� is imposed in the interpolation scheme
described in Appendix A. This period is much smaller than
the period L � 2�R=�z of our basic Fourier analysis, but
still much larger than the wavelengths of the unstable
modes that we study. It would be impractical and unnec-
essary to use period L in numerical work. We use the same
; for both the bunched and coasting cases. Since the
number of mesh points per unit distance is then the same,
we can expect to resolve ripples of similar size in either
case.

To check the performance of the Vlasov solver we first
calculated the current threshold and compared the outcome
with the linear theory. We started by placing a small
sinusoidal perturbation in space on top of a distribution
that is Gaussian in momentum and uniform in space:

f �
e�p2=2�������

2�
p

�
1 � A sin

�
nq�z

R

��
; (34)

with n � 702 corresponding to a wavelength � �
2�R=n � 2:2 mm (see Sec. VA).

Above threshold and after a short transient the charge
density perturbation is well approximated as a traveling
wave with exponentially growing amplitude /
e�I sin�nq�z=R� �R �, where �R and �I are the real
and imaginary part of � � !=!s with ! given by
Dn�!� � 0. This can be seen by taking the inverse
Laplace transform of (31). Pushing the ! contour to the
real axis, we get the traveling wave from the pole contri-
bution (multiplied by ein(), plus a background from the
integral along the real axis. The latter can be understood as
the source of the transient. We set the initial value of the
perturbation amplitude to be small enough to avoid non-
linearities, A � 10�3, and computed the amplitude of the
mode versus time up to  � 0:6 for different values of the
current parameter Ic. A logarithmic plot of the mode
amplitude is reported in Fig. 3. The growth rates are
computed by numerical fitting (upon discarding the initial
transient). The resulting dependence of the growth rates on
Ic was then used to estimate the threshold by interpolation.

To check convergence to the theoretical value Ith
c �

0:8183 pC=V, we repeated the calculation for various
choices of the grid sizes N � 200, 400, and 600 and
found Ith

c � 0:8341; 0:8202; 0:8189 pC=V, respectively.
Coarser grids appear to overestimate the thresholds. The
smallest wavelengths resolved by these three grids (twice
01420
the size ;�z=N of a cell in the grid) are respectively
0:6; 0:3; 0:2 mm (to be compared with the perturbation
wavelength � � 2:2 mm). Charge conservation during
the calculation, which is one figure of merit to evaluate
the overall accuracy, was about one part in 105 or better,
and improved with the density of mesh points.

Having gained confidence in the code we proceeded to
follow the evolution of the instability over a longer time
into the nonlinear regime. The results reported in Fig. 4
[which were obtained with Ic � 0:98 and an initial pertur-
bation as in (34) with n � 702], represent some typical
behavior of beam dynamics for a wide range of currents
above threshold. The perturbation undergoes an initial
exponential growth, then reaches saturation during the
advent of a richer mode spectrum, eventually relaxing to
some sort of pseudostationary distribution. Saturation of
the energy spread is seen in the graph on the right in Fig. 3
and also in the third line of Fig. 4.

The resonance which in Fig. 4 is already apparent at
time  � 1:2 can be interpreted in terms of particle-wave
interaction. When a single unstable mode dominates, the
coherent force in (24) is proportional to e�I sin�nq�z=R�
�R �, so that the single-particle motion will look like
pendulum motion in a comoving frame, over a restricted
time interval in which the variation of e�I is not too severe.
Particles with momentum near the perturbation phase ve-
locity p � �RR=�zn undergo ‘‘resonant trapping’’ and
cause the appearance of a ‘‘knee’’ on the profile of the
momentum distribution (with size comparable to the width
of the resonance). In the framework of a quasilinear theory
this phenomenon sets the stage for the onset of saturation.
As time progresses one observes a widening and distortion
of the resonance islands and the appearance of ‘‘tongues’’
in the phase space distribution, branching outward and
resulting in an enlargement of momentum spread. At a
later time the charge density becomes smoother and the
momentum distribution settles to some profile persistent in
time as large-scale structures in phase space appear to get
washed away. This process is reflected by the evolution of
the Fourier spectrum of the charge density; see the bottom
row in Fig. 4. The initial spectrum is a delta function at
m � 702=13 � 54. The nonlinearities first generate a cas-
2-8
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FIG. 4. Evolution in time of coasting beam by effect of CSR. Instability initiated by a small perturbation with mode number n � 702
(wavelength � � 2:2 mm). From top to bottom: snapshots of contour plots of phase space density (top row), charge density (second
row), momentum distribution (third row), and spectrum of charge density (bottom row). Pictures are taken at (normalized) time  �
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COHERENT SYNCHROTRON RADIATION AND BUNCH . . . Phys. Rev. ST Accel. Beams 8, 014202 (2005)
cade of modes with mode numbers that are multiples of
702 and eventually a smoother spectrum. While some of
the smoothing may be an artifact of the numerical integra-
tion, the qualitative behavior appears to be independent of
the choice of mesh and time step, suggesting that we have
believable representations of the exact solution.

There are a couple of conclusions that we can draw at
this point. The first is that our numerical modeling of the
coasting beam correctly displays the onset of the instability
in accordance with the linear theory and that this instability
leads to the appearance of a corrugation in the charge
density (microbunching). The second conclusion is that a
mechanism for the removal of the microbunching is pro-
vided by the intrinsic nonlinearities of the system.
01420
VI. CSR EFFECTS IN BUNCHED BEAMS

A. Equilibrium distribution

Because of the relatively low energy of the beams we
are considering, the space charge component of the im-
pedance results in a small but noticeable potential well
distortion. Since we do not want the stability analysis to
be affected by a mismatch, we consider initial distribu-
tions that are stationary solutions of the Vlasov equa-
tion, thus accounting for the potential well distortion. For
convenience of calculation we chose those stationary so-
lutions to be Haı̈ssinski distributions f0. These have the
form f0 � e�p2=2*0�q�=

�������
2�

p
, where *0�q� satisfies the

equation
2-9



FIG. 5. Charge density of a Haı̈ssinski solution (solid line) for
Ic � 0:844 pC=V (h � 1 cm and R � 25 cm). The normalized
rms bunch length is �q � 0:9609. The dashed line represents a
Gaussian bunch with unity rms length. The impedance yields the
complete longitudinal field, so that it contains a large space
charge component at low frequencies when the beam has low
energy.

FIG. 6. Bunched beam. Left: Logarithm of the amplitude of
Fourier mode n � 702 versus time for six values of the current
parameter Ic (between Ic � 0:76 and Ic � 0:88 in steps of
0.024). Right: normalized rms bunch length �q (solid line) and
energy spread �p (dashed line) versus time for Ic � 0:98.
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*0
0�q� � ��q� IcF�q; f0�����*0�q�; (35)

with normalization
R
*0�q�dq � 1. Because we expect that

an equilibrium distribution will be relatively smooth, only
the low-frequency part of the impedance should be relevant
in shaping its profile. The Fourier spectrum of a smooth
distribution representing a bunch of length �z traveling
along a circular orbit of radius R is significant only for
mode numbers smaller than a small multiple of the ratio
R=�z. For the choice of parameters (3) relevant for the
present study this number is well below the shielding cutoff
for the real part of the impedance; see Fig. 1. Moreover,
because the imaginary part of Z�n�=n is nearly constant
over the bunch spectrum, we conclude that the effective
impedance shaping the Haı̈ssinski solution is purely ca-
pacitive. In other words, for the purpose of determining the
equilibrium distribution the collective force can be mod-
eled as being proportional to the space derivative of the
bunch distribution. This can be seen easily. Having defined
Ẑ � limn!0Im�Z�n�=n� we have

F�q;  � ’ i!0

X1
n��1

Im�Zn�n!0�
e
inq�z=R�n

’ !0
R
�z

@
@q

X1
n��1

Ẑ einq�z=R�n

� !0Ẑ
�
R
�z

�
2 d
dq

*0�q�: (36)

Under the assumption that the potential well distortion is
not too large we can estimate the relative variation of rms
bunch length of the Haı̈ssinski solution as

&hq2i � �
1

4
����
�

p

�
R
�z

�
2
!0IcẐ: (37)

Because Ẑ > 0, the effect of the space charge part of the
impedance is to shorten the bunch. An example of
Haı̈ssinski profile is shown in Fig. 5. For this plot the value
of the current parameter Ic � 0:844 pC=V is close to the
threshold for instability.

B. Numerical solution of the nonlinear Vlasov equation

Our first task is to determine the current threshold for
instability. We superimposed a sinusoidal perturbation to
the charge density with mode number corresponding to the
most unstable mode expected by the linear coasting beam
theory. Because of rf focusing past the initial transient, the
growth of the modes is not purely exponential, as can be
observed from Fig. 6. Somewhat arbitrarily we define
growth rate in terms of an exponential fit of points falling
in the interval  2 �0:3; 0:6
. By doing so we find an
estimate for the critical current Ic � 0:836 pC=V (ob-
tained with a 800 � 800 mesh), or 7.20 nC of charge.
This should be compared with the critical value we
obtained by applying the Boussard criterion, Ic �
014202
0:8183 pC=V. The latter number is reduced to 0.786 if
we include the factor 1=�q, previously set equal to 1. We
conclude that the Boussard criterion is consistent with our
findings within about 6%. As in the calculation of coasting
beams we found little variation in the estimate of the
critical current as we increased the grid size to 1201 �
1201 (in which case Ith

c � 0:833 pC=V), while a coarser
401 � 401 grid resulted in a value Ith

c � 0:855 pC=V,
larger by a few percent.

Over a longer time the behavior of the bunch and that of
a coasting beam differ in some regards. However, they
share the feature that the nonlinearities cause a relaxation
of much of the short scale density perturbation that is seen
after onset of the instability. This process develops quickly
and takes place within one or two synchrotron periods.

The instability originates in the center of the bunch
where the charge density is the largest. A microbunch
structure emerges (see Fig. 7) in the form of a ripple on
the density profile with current-dependent amplitude. As
CSR is emitted forward it mostly affects the front of the
-10
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FIG. 7. Time evolution of bunch under effect of CSR. Density plots in phase space (top row) and charge density (second row).
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bunch and causes the appearance of filaments in the bunch
density in phase space (see Fig. 7 at  � 3:2). This result-
ing perturbation in the bunch distribution first appearing in
the head of the bunch is then carried over to the back and
then around by the rotation in phase space from rf focusing.
Because no additional relaxation forces (such as radiation
damping) are in action, this imbalance results in a persis-
tent quadrupolelike motion that can clearly be observed in
the evolution of the rms bunch length and energy spread
(see Fig. 6). After about two synchrotron periods the bunch
distribution in phase appears to freeze as a larger momen-
tum spread and smaller bunch density move the bunch
away from the unstable condition. The quadrupole pulsa-
tion continues indefinitely. In calculations not shown here
we have followed the evolution over hundreds of synchro-
tron periods and noticed very little change over time.
VII. SUMMARY AND OUTLOOK

Coherent synchrotron radiation is currently attracting
much attention both as a mechanism for generating usable
radiation and as a source of potentially harmful instabil-
ities. In this paper we focused on the dynamical effects of
CSR and reported on our attempts to develop a simplified
but hopefully still sufficiently accurate model for studying
instabilities. We investigated the longitudinal beam dy-
namics by looking for numerical solutions of a Vlasov
equation in 1 degree of freedom with attention paid to
014202
the specific case of a compact storage ring. However,
aspects of the results we obtained are believed to apply
to more conventional storage rings as well.

The main result of our numerical investigation could be
summarized in the finding of (i) a current threshold for
instability very close to the value predicted by linear theory
for coasting beams (confirming the validity of Boussard’s
criterion to an accuracy of 6%), (ii) emergence of ‘‘micro-
bunching’’ (i.e., a charge density modulation on the beam
density profile) above threshold as a signature of the in-
stability, and (iii) rapid saturation (within two synchrotron
periods) of the instability and smoothing of the bunch
density.

In a previous paper [13] the creation and smoothing of
microbunching was related to the appearance of bursts of
coherent radiation as recently detected in several light
sources. That was for cases in which radiation damping
acts as a relaxation mechanism restoring the conditions for
instability and causing a recurrence of bursting. No such
mechanism is in place in the compact ring of interest in this
paper, where above threshold a CSR driven instability
would result in a persistent (and possibly unacceptable)
emittance degradation. It is a fact worth emphasizing that
the smoothing of the microbunching, as demonstrated by
our calculation, occurs without operation of dissipative
forces.

Our current numerical model does not account fully for
retardation effects, since at each time step we approximate
-11
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the collective force by a formula that uses only the present
value of the charge density. In Ref. [22] we developed
corrections to this picture which can be included at rela-
tively low computational cost. A first evaluation of the
corrections showed them to be of minor importance on a
limited time interval [26], but computations for longer
times remain to be done. Other investigations are on the
agenda for further work: repeating the calculations with an
alternative model of the vacuum chamber [5], evaluating
the effects of horizontal transverse spread in the beam, and
the effects of noncircular orbits.

Our solutions of the nonlinear Vlasov equation were
computed by the method of local characteristics, also
called the semi-Lagrangian or discretized Perron-
Frobenius (PF) method. The considerable value of this
method for beam dynamics has been recognized only
recently, and much work remains to be done in exploring
its various implementations and extensions to higher di-
mensional phase space. We have not evaluated alternative
techniques for the present problem, for instance the macro-
particle approach [35] or the nonlinear -f method [36]. In
a tentative judgment we prefer our method for offering
lower noise than the macroparticle technique, and for being
more appropriate than -f for dynamics far from
equilibrium.
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APPENDIX A: NUMERICAL TREATMENT OF
FOURIER TRANSFORMS

For the Vlasov integration we need a numerical approxi-
mation to the Fourier transform (18). Suppressing time
dependence and noting (21) and (14), we have

�n �
1

2�

Z �R=�z

��R=�z

e�inq�z=R*�q�dq

�
1

2�

Z ;

�;
e�inq�z=R*�q�dq: (A1)

Here ; defines the boundary of the q mesh, *�q� being zero
by definition outside the interval ��;; ;
. Typically ; is
around six or seven in the bunched beam case, much
smaller than �R=�z. We take a uniform q mesh consisting
of the points

qj � j;=N � ;; j � 0; 1; . . . ; 2N ; (A2)

where a typical value of N is 200–600. Since we have to
compute the transform at every time step, it is important to
save time by employing the FFT. Some tricks are required
to get the results we need from the FFT.
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Recall that the FFT supplies the sum

1

J

XJ�1

j�0

e�2�imj=Jf�(j�; m � 0; 1; . . . ; J� 1; (A3)

which is the result of applying the trapezoidal rule to
approximate the transform of a periodic f�(�,

fm�
1

2�

Z 2�

0
e�im(f�(�d(; d(� 2�=J; (j� 2�j=J:

(A4)

Correspondingly, let us evaluate (A1) by the trapezoidal
rule, using values of * on the mesh (A2). We find

�n �
;ei�>

2�N

X2N�1

j�0

e�2�i>j=�2N �*�qj�; > �
n�z;
�R

:

(A5)

To put this sum in the standard form of an FFT, we adjust ;
(from whatever value we first assumed) to make &n an
integer, where

&n �
�R
�z;

: (A6)

Since this ratio is typically large compared to 1, the mini-
mum required adjustment of ; is small. Since > � n=&n,
the sum (A5) takes the form of an FFT at least for those n
which are integral multiples of &n. Putting n � m&n we
have

�m&n �
;��1�m

�
1

J

XJ�1

j�0

e�2�imj=J*�qj�;

m � 0; 1; . . . ;N ; J � 2N :
(A7)

The upper limit on m comes from the Nyquist rule, which
states that a mode m is meaningful only if the phase
2�mj=J changes by not more than � from one integration
point to the next (i.e., when j changes by one unit).

For parameters of interest for our example (�z �
1 cm; R � 25 cm; ; � 6) the integer part of �R=�z; is
13, and we can change ; to 6:0415 . . . to make &n � 13, or
to 6:5449 . . . to make &n � 12. It may be possible to get by
with values of n only in steps of &n, using an interpolation
technique to fill in the missing n in the sum (20). We note,
however, that a smaller &n can be achieved at the expense
of a longer FFT. This will allow a check on accuracy of the
interpolation method. Define a new FFT data vector
padded with zeros:

~* j �



*�qj�; j � 0; 1; . . . ; J� 1;
0; j � J; J� 1; . . . ; 2J� 1:

(A8)

To illustrate, suppose that the original &n is even. Then
with n � m&n=2 the trapezoidal integration (A5), respect-
ing the Nyquist rule, can be written as
-12
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�m&n=2 �
;im

�
1

2J

X2J�1

j�0

e�2�imj=�2J� ~*j;

m � 0; 1; . . . ; J; J � 2N :

(A9)

By doing an FFT of twice the length in comparison to (A7),
we cover the same range of n, but in steps half as big.

Now consider evaluation of the collective force through
(20). Our method to compute Z�n� in terms of Bessel
functions is covered in [22]. To calculate the sum in (20)
we first need a guess for the maximum required n. It seems
that n should go well beyond the point at which Z�n�=n is
maximum, since according to the doctrine of linear coast-
ing beam theory modes near the maximum are likely to
become unstable at high current. The maximum is around
n � 600 in our example. With &n � 13 and 400 mesh
points in q space (N � 200), we can reach n � N &n �
2600. At first this seemed an adequate choice, and appeal-
ing because at N � 200 one can run for hundreds of
synchrotron periods in modest computer time. We discov-
ered, however, that finer meshes (N � 400 or 600 with
the same ; � 6) gave slightly lower current thresholds for
instability. We conclude that one should experiment, trying
to see some sort of convergence of the current threshold as
the mesh is refined.

Regarding the missing n in the above scheme with &n >
1, we note Z�n� for the parallel plate model is well repre-
sented by interpolation of its values at points spaced by
fairly large values &n, say 10–20. Allowing the plotting
program to provide interpolation, one cannot distinguish
the graph using all n from the one with spaced n. If Z�n��n
had a similar property, then one could evaluate the sum of
(20) using an interpolative scheme. It is certainly not clear
that the interpolation will be as accurate as that of Z�n�
alone, but we can check the result by reducing &n through
a longer FFT.

We consider interpolative schemes for evaluation of a
general sum

S�(� �
XN &n

m�m0&n

ein(f�n� � ein&n(f�N &n�

�
XN�1

m�m0

X&n�1

k�0

ei�m&n�k�(f�m&n� k�: (A10)

The idea is to write f�m&n� k� as a low order polynomial
in k for k 2 �0;&n� 1
, the polynomial obtained by in-
terpolation of values f�m0&n� for m0 near m. Then the sum
on k can be carried out analytically, in terms of sums of
geometric series and their derivatives with respect to (. In
the case of quadratic interpolation this is the discrete
analog of Filon’s method for evaluation of Fourier trans-
forms [37]. We state the result for linear interpolation,
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f�m&n� k� � f�m&n� �
f��m� 1�&n�� f�m&n�

&n
k:

(A11)

After a fairly long calculation one finds

S �(� �
1

&n
1 � cos&n(

1 � cos(

XN�1

m�m0

f�m&n�eim&n( � B�(�;

(A12)

where the boundary term B, which will be zero in our
application, in general has the form

B�(� � ein&n(f�N &n� �
�

1

ei( � 1
�

1 � e�i&n(

2&n�1 � cos(�

�

��ein&n(f�N &n� � eim0&n(f�m0&n�
:

(A13)

We can now compute the collective force with the help
of (A12). Put f�n� � Z�n��n�t� and note that negative n
can be eliminated because f�n� � f��n��. We can assume
that f�N &n� is negligible, and since Z�0� � 0 the bound-
ary terms drop out: f�0� � f�N &n� � 0. Suppressing the
time variable, we have from (20), (A2), (A12), and (A6)
that

F�qj� � �2!0Re
XN &n

n�0

exp�inqj�z=R�f�n�

� a�j�Re
XN
m�0

��1�me�imj=N f�m&n� (A14)

� a�j�Re
X2N�1

m�0

e2�imj=2N fm; (A15)

where

a�j� � �
2!0

&n

1 � cos�qj�=;�

1 � cos�qj�z=R�
; (A15)

and

fm �



��1�mf�m&n�; m � 0; . . . ;N ;
0; m � N � 1; . . . ; 2N � 1:

(A17)

By rewriting (A14) as (A15), we get the result as an FFT of
length 2N , providing all required j � 0; 1; . . . ; 2N . The
direct Fourier transform with gaps in the n spectrum, as
given by (A7), meshes nicely with the inverse transform in
the form (A15), obtained by interpolation.
APPENDIX B: INTEGRATION METHOD FOR THE
VLASOV EQUATION

A stable method for time-domain integration of the
nonlinear Vlasov equation is based on discretizing the
-13
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Perron-Frobenius operator for the single-particle map, the
latter being approximated by freezing the coherent force
over sufficiently small time steps. Let M ! �& �z�, z �
�q; p� be the volume preserving map describing particle
trajectories (characteristics) over the time interval � ;  �
& 
. Then the PF operator M associated with M gives the
time evolution of the distribution function:

f�z;  � & � � Mf�z;  � � f�M�1�z�;  �: (B1)

This is just another way of stating that the probability of
finding a particle in a phase space volume element dz is
preserved:

f�M�z�;  � & �d�M�z�� � f�z;  �dz: (B2)

A discretization of M simply consists of choosing a finite-
dimensional approximation of f. For instance, f might be
described by its values on a grid fzig, with polynomial
interpolation to off-grid points. In that case, evaluation of
Mf�zi;  � would be done by interpolation, since M�1�zi�
is an off-grid point in general. In the literature the discre-
tized PF method is often called the semi-Lagrangian
method [38], but a more descriptive name would be the
method of local characteristics, since it is just the tradi-
tional method of characteristics extended to self-consistent
dynamics through an approximation of characteristics that
is valid only locally in time.

Several different ways to approximate M for small & 
have been proposed, as well as different ways to represent
f. In the seminal work of Cheng and Knorr [39], the local
map M was composed of three steps in a ‘‘leap frog’’
scheme: a drift in q for time step & =2, an increment in
p for time step & accounting for both the linear motion
and the coherent force, and another drift for & =2. The PF
operator for each step was discretized separately, by means
of splines or Fourier series. Two of the present authors [19]
took M to be a rotation in phase space followed by a kick in
p from the coherent force, both for step & . They used
locally quadratic interpolation on a grid to represent f,
doing a single two-dimensional interpolation per time step.

In the present work we apply a method of Yabe et al.
[40], which uses the Cheng-Knorr representation of M but
a different representation of f based on the idea of cubic
Hermite interpolation. In the Hermite scheme a function is
represented locally as a cubic polynomial determined by
the values of the function and its derivative on two adjacent
mesh points. This gives an error that is O�h4� for mesh step
h, provided that the function has a continuous fourth
derivative [41]. Yabe’s scheme works with easily computed
approximations to the partial derivatives along phase space
axes, and requires storage of the approximated derivatives
as well as function values. Since some of the derivatives are
approximated crudely, one does not expect the full accu-
racy of Hermite interpolation. The scheme appears to work
better than the method of [19] for a given mesh step, but it
requires much more storage and computation time per time
014202
step. We have not yet made a careful comparison of overall
efficiencies accounting for both storage and time.

The Cheng-Knorr representation of the PF operator for
Eq. (13) may be stated as follows :

f��q; p;  � � f�q� p& =2; p;  �; (B3)

f���q; p;  � � f��q; p� �q� IcF�q; f
���& ;  �; (B4)

f�q; p;  � & � � f���q� p& =2; p;  �: (B5)

In the Yabe scheme the function f is represented by its
values on a Cartesian grid, fij� � � f�qi; pj;  �, with ap-
proximated Hermite interpolation for off-grid points. The
true cubic Hermite interpolation of function values
g�x�; g�x�� which fits given values of derivatives
g0�x�; g0�x��, where x� � x� h, is

g�x�9� � g�x�� g0�x�9� c29
2 � c39

3;

c2 ��
1

h
�2g0�x��g0�x����

3

h2 �g�x��g�x���;

c3 �
1

h2 �g
0�x�� g0�x����

2

h3 �g�x��g�x���: (B6)

Given fij; @qfij; @pfij we wish to determine
f�ij; @qf

�
ij; @pf

�
ij through (B3). First, f�ij is determined by

Hermite interpolation of f with respect to its first argu-
ment, then @qf

�
ij is given by the derivative of that interpo-

lation evaluated at grid point �i; j�. The other derivative
@pf�ij is approximated more roughly, as follows. For small
& we have

@qf�q; p;  � �
f�q; p;  � � f�q� p& =2; p;  �

p& =2

�
f��q� p& =2;  � � f��q; p;  �

p& =2

� @qf
��q; p;  �; (B7)

hence

1

2
�@qf�q; p;  � � @qf

��q; p;  ��

�
f�q; p;  � � f��q; p;  �

p& =2
: (B8)

Multiplying (B8) by p& =2 and differentiating with re-
spect to p, we find

@pf
��q; p;  � � @pf�q; p;  �

� �& =4�@p�p@q�f� f���q; p;  ��: (B9)

Finally, we approximate @p in the last term of (B9) by
central divided differences on the grid with cell size &p in
the p direction. This gives the desired algorithmic value
-14
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@pf
�
ij � @pfij �

& 
4

1

2&p
�pj�1�@qfi;j�1 � @qf

�
i;j�1�

� pj�1�@qfi;j�1 � @qf�i;j�1�
: (B10)

One can now treat (B4) and (B5) in a similar way, finally
finding fij� � & �; @qfij� � & �; @pfij� � & �, which
are starting values for the next time step. One could have
used f rather than �f� f��=2 in the last term of (B9), but
the latter is alleged to enhance stability of the algorithm. A
noteworthy feature of this scheme is that the quality of the
interpolation in phase space depends on smallness of & ,
because of (B7), whereas there is no such dependence in
the methods of [19,39].
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