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Theory and simulation of nonrelativistic elliptic-beam formation with one-dimensional
Child-Langmuir flow characteristics
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A theory of nonrelativistic, laminar, elliptic-beam formation is presented. The beam is shown to have
the one-dimensional Child-Langmuir flow form. An analytic expression for the electrostatic potential
outside the beam is derived. Equipotentials corresponding to electrode surfaces are computed numerically.
The effectiveness of the electric field formed by the electrodes in focusing and preserving the elliptic, 1D
Child-Langmuir flow beam is verified via 3D ray-tracing simulations.
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I. INTRODUCTION

Electron beams of elongated elliptic cross sections have
generated great interest in vacuum electronics [1] because
of their low space-charge energy and efficient coupling to
rf structures when compared to circular beams. It is well
known that high space charge reduces conversion effi-
ciency in conventional microwave tubes employing circu-
lar beams. Presently, there are vigorous activities in the
development of sheet-beam traveling wave amplifiers
[2,3], klystrons [4], and focusing systems [5,6].

In high-intensity ion and electron accelerators, beams
often exhibit nonlaminar flows such as large-amplitude
density fluctuations [7], mismatched envelope oscillations
[8], emittance growth, chaotic particle orbits, beam inter-
ception, and difficulty in beam focusing and compression.
Many of these effects are due to beam mismatch or non-
equilibrium behavior. Elliptic beams may allow simplified
and more natural matching [9] between beam injectors and
commonly used magnetic focusing lattices, reducing the
emittance growth associated with beam mismatch.

Although elliptic beams present numerous advantages,
their inherent three-dimensional nature has made diode
design a challenging process, both analytically and nu-
merically. For the applications discussed above, desirable
beam characteristics include uniform current density, par-
allel flow, and zero magnetic flux threading the emitter—
properties consistent with one-dimensional Child-
Langmuir (C-L) [10] flow, in which the electrostatic po-
tential varies as� / z4=3, where z is the beam propagation
distance. In general, however, such flows are difficult to
produce [11]. Recent studies of 2D and 3D [12–16] ex-
tensions of the Child-Langmuir law in an infinite applied
magnetic field have shown that the beam exhibits signifi-
cant current density enhancements near the beam-vacuum
boundary. In the absence of an infinite confining magnetic
field, the beam will tend to spread in phase space, resulting
in a degradation of beam quality. As we will show in this
paper, it is possible to induce the space-charge flow in a 3D
system to take the 1D Child-Langmuir flow form by con-
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structing a 3D external electrode geometry that is consis-
tent with the 1D Child-Langmuir electric field within the
beam.

In order to enforce 1D Child-Langmuir [10] flow in a
beam interior, the diode design problem requires solving
Laplace’s equation for the exterior electric potential with
Cauchy boundary conditions on the beam-vacuum bound-
ary. General solutions of such elliptic-equation Cauchy
problems are difficult or impossible to obtain [11,17],
and standard numerical methods fail due to the exponential
growth of errors, which is characteristic of such problems.
Nonetheless, Pierce [18], in a classic result, analytically
solved the exterior problem for an infinite 2D sheet-beam
geometry (i.e., neglecting end effects). By employing the
Cauchy-Riemann conditions, Pierce could write the poten-
tial outside the beam as the real part of a complex analytic
function. He found that the function � / Re��z� ix�4=3�,
where x is the transverse distance from the beam edge,
satisfies the Child-Langmuir condition, � / z4=3, on the
beam edge (x � 0). This solution possesses an equipoten-
tial surface that corresponds to an external focusing elec-
trode—the ‘‘Pierce electrode’’—which is inclined at a
67.5� angle (3�=8 rad) to the beam.

Later, Radley [19] employed a Laplace transform tech-
nique to determine the exterior potential for a beam of
circular cross section. Nakai [20] attempted to generalize
Radley’s technique to the 3D elliptic-beam problem, but
neglected the full functional dependence of the angular
Mathieu functions, and as a result, arrived at a simple, but
incorrect expression for the exterior potential.

In this paper we present a new analytic technique, based
on a 3D generalization of [19], to determine elliptic-beam
shaping electrodes which may be used independently or in
conjunction with 3D modeling codes. A sample set of
electrodes is computed explicitly for a one microper-
veance, large aspect ratio (10:1) elliptic-beam diode. The
geometry is tested via 3D OMNITRAK [21] simulations to
show nearly ideal 1D Child-Langmuir space-charge-
limited flow with high laminarity and a constant elliptic
cross section.
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For the design of physical beam diodes, designers,
guided by analytic results, make use of ray-tracing codes
such as the 2D EGUN [22] and 3D OMNITRAK [21], or
particle-in-cell codes such as MICHELLE [23] and WARP

[24]. These codes can be used as part of an iterative
optimization process in order to arrive at an approximate
set of external electrodes which support the desired beam
cross section. The analytic elliptic-beam results of this
paper facilitate the numerical design of nonaxisymmetric
diodes, which are complicated by the presence of an extra
dimension in the electrode geometry optimization. In ad-
dition, the present analytic results provide a useful protocol
for benchmarking new 3D simulation tools.
II. THEORY

We consider a nonrelativistic charged-particle beam of
length d and elliptic cross section with semimajor axis a
and semiminor axis b, as shown in Fig. 1. The charged
particles are emitted from a flat elliptic plate, held at
potential � � 0, in the z � 0 plane, and collected by
another flat elliptic plate, held at potential � � �d, in
the z � d plane. The cold fluid equations describing the
beam interior are

@n=@t�r 
 �nV� � 0; (1)

@V=@t� �V 
 r�V � ��q=m�r�; (2)

r2� � �4�qn; (3)

for the region x2=a2 � y2=b2 � 1 and 0 � z � d. In
Eqs. (1)–(3), V is the flow velocity, and n is the density
of particles, each of mass m and charge q. Note that,
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FIG. 1. A beam of elliptic cross section (semimajor axis a,
semiminor axis b) is shown in Cartesian and elliptic-cylindrical
coordinates. The beam is emitted from an elliptic plate at � � 0
in the z � 0 plane and collected by an elliptic plate at� � �d in
the z � d plane. The beam fills the area enclosed by the surface
� � �0. In any z plane, lines of constant � are ellipses, and lines
of constant � are semihyperbolas.
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consistent with the nonrelativistic approximation, we ne-
glect any self-magnetic field. In the beam exterior, the
potential satisfies Laplace’s equation

r2� � 0: (4)

The 1D steady-state solution to the interior problem
defined by Eqs. (1)–(3) can be obtained by using the plate
potentials as boundary conditions for Poisson’s equation
and imposing the constraint that particles emerge from the
� � 0 emitter with zero velocity, i.e., the space-charge-
limited boundary condition. This results in the well-known
1D Child-Langmuir [10] solution for laminar, space-
charge-limited flow with V�z� � êz�2q�d=m�1=2�z=d�2=3,
n�z� � ��d=9�qd2��z=d��2=3, and ��z� � �d�z=d�4=3.
For example, an electron diode of length d � 5:2 mm
and diode voltage �d � 5 kV produces a current density
of 3 A=cm2, while a Cs� ion diode of the same length and
voltage generates a current density of 6 mA=cm2.

To determine the potential distribution in the beam ex-
terior, we solve Laplace’s equation (4) while matching the
interior and exterior electric fields on the elliptic-beam
boundary. From the C-L solution, the matching conditions
on the elliptic-beam boundary imply, for 0 � z � d,

�jbeam bound � �d�z=d�
4=3; (5)

�n̂ 
 r��jbeam bound � 0; (6)

where n̂ is a unit vector normal to the elliptic-beam bound-
ary x2=a2 � y2=b2 � 1. We aim to find exterior equipo-
tential surfaces corresponding to the emitter and collector
potentials � � 0 and � � �d, respectively. If electrodes
at the given potentials are made to lie along these surfaces,
they will enforce the conditions in Eqs. (5) and (6) on the
interval 0 � z � d.

It is useful to introduce the elliptic-cylindrical coordi-
nate system ��; �; z�, i.e.,

x� f cosh���cos���; y� f sinh��� sin���; z� z;

(7)

where 0 � � <1 is a radial coordinate, 0 � �< 2� is an
angular coordinate, and f �

�����������������
a2 � b2

p
is the distance from

the center of the ellipse to either of its foci, as illustrated in
Fig. 1. The elliptic-beam boundary is specified by the
surface � � �0 � coth

�1�a=b�. In these coordinates,
Laplace’s equation may be expressed

2

f2�cosh2�� cos2��

�
@2�

@�2
�
@2�

@�2

�
�
@2�

@z2
� 0; (8)

and the boundary conditions in Eqs. (5) and (6) are

�@�=@��j���0 � 0; (9)
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FIG. 2. The Hankel contour in the complex k plane is taken
around the �1< k< 0 branch cut.
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�@�=@��j���0 � 0; (10)

�j���0 � �d�z=d�4=3: (11)

Expressing a product solution as ���; �; z� �
���� ���Z�z� and applying separation of variables to
Eq. (8), we find

d2Z=dz2 � k2Z � 0; (12)

d2 =d�2 � ��� 1
2k
2f2 cos2�� � 0; (13)

d2�=d�2 � ��� 1
2k
2f2 cosh2��� � 0; (14)

where k and � are separation constants. Equation (12) leads
simply to exponential solutions Z � ekz. Equation (13) is
the angular Mathieu equation, but we are only interested in
those angular Mathieu functions which have a periodicity
of 2� and are even about � � 0 and � � �=2, since the
boundary conditions of Eqs. (10) and (11) possess these
same symmetries. Such solutions exist only for discrete
eigenvalues of the separation constant �, and we adopt the
convention of Morse and Feshbach [25] to denote these
angular Mathieu functions by  � Se2n�kf; �� and the
associated normalization constants Me

2n �R
2�
0 �Se2n�kf; u��2du, where n is a non-negative integer

indexing the eigenvalues �, as detailed in Ref. [25]. The
corresponding radial solutions, � � Je2n�kf; �� and � �
Ne2n�kf; ��, are radial Mathieu functions of the first and
second kind, respectively.

Any superposition of product solutions of the separated
equations must satisfy Laplace’s equation (8), and hence
we write

���; �; z� �
Z
C
dkA�k�ekzG�kf; �; ��; (15)

where

G�h; �; �� �
X1
n�0

!2n�h�Se2n�h; ���Je2n�h; ��Ne02n�h; �0�

� Ne2n�h; ��Je02n�h; �0��: (16)

We have chosen !2n�h� � �Me
2n�

�1
R
2�
0 Se2n�h; u�du, and

the primes denote differentiation with respect to �. The
corresponding expression in Nakai [20] does not have
Se2n�h; �� and omits the normalization factor !2n.

The expansion in Eq. (15) assures that � satisfies
Laplace’s equation (8), and it is readily seen that the
particular linear combination of radial Mathieu functions
in Eq. (16) satisfies the boundary condition in Eq. (9).
Moreover, using the Wronskian for the radial Mathieu
functions and the orthogonality of the angular Mathieu
functions, it can be shown that our definition of !2n assures
G�h; �; �0� � 1, and thereby the boundary condition in
Eq. (10). Equations (11) and (15) now imply
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���0; �; z� �
Z
C
A�k�ekzdk � �d�z=d�

4=3: (17)

We follow the analysis by Radley [19] and make use of the
integral representation of the gamma function "�u� [26] to
obtain

z4=3 �
1

"�� 4
3�

i

2 sin�4�3 �

Z
C
ekzk�7=3dk; (18)

where the Hankel contour C is taken around the branch cut
defined by the line �1< k< 0, as shown in Fig. 2.
Substituting Eq. (18) into Eq. (17), we find that

A�k� �
�dd�4=3

"�� 4
3�

i

2 sin�4�3 �
k�7=3; (19)

provided the same Hankel contour is used for the integra-
tion. Having determined A�k�, the expression for the ex-
terior potential in Eq. (15) is fully specified.

III. SIMULATION

The prescription of Sec. II can be used to compute the
potential outside a 1D Child-Langmuir flow beam of arbi-
trary elliptic-cylindrical geometry. However, for definite-
ness, we use the above technique to compute the potential
outside a 10:1:8.7 space-charge-limited elliptical diode of
semimajor axis a � 10b, semiminor axis b, and length
d � 8:7b. Equipotentials corresponding to � � 0 and
� � �d are shown in Figs. 3(a) and 3(b), respectively,
for several values of z. The level contours are roughly
elliptical in shape, and the� � �d surface is more steeply
inclined to the beam than the � � 0 surface, as expected
from the 2D theory [18]. The equipotentials in Fig. 3 were
computed by applying a numeric root-finding scheme to
the potential defined in Eq. (15). The Hankel contour
integral is numerically evaluated employing standard tech-
niques for the evaluation of the Mathieu functions [17,27].
It should be noted that these results differ significantly
from those obtained using the method of Nakai [20]. For
example, the z=b � 3:3 equipotential of Fig. 3(a) intersects
the x axis at x=b � 33:2 and the y axis at y=b � 9:2. The
same z=b � 3:3 equipotential, computed using Nakai’s
expression, incorrectly gives an ellipse which intersects
the axes at x=b � 15:7 and y=b � 12:1, respectively.
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FIG. 4. (Color) A 3D OMNITRAK simulation of space-charge-
limited Child-Langmuir flow using the 10:1:8.7 elliptical diode
geometry shown in Fig. 3. Particle trajectories and equipotentials
are shown in (a) the x � 0 plane and (b) the y � 0 plane.
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FIG. 3. Level curves of (a)� � 0 and (b)� � �d surfaces for
a 10:1:8.7 space-charge-limited elliptical diode of semimajor
radius 10b, semiminor radius b, and length 8:7b. The beam fills
the shaded area, which is intersected by the � � 0 surface at
z � 0 and the � � �d surface at z � 8:7b.
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We verify our theory by a cold-beam 3D space-charge-
limited emission simulation using OMNITRAK [21], a com-
mercially available ray-tracing code. Simulation results are
shown in Fig. 4 for the same geometry as in Fig. 3, using a
variable-resolution computational mesh with x spacing of
0.1 mm for 0 � x � 8 mm and 0.5 mm for 8 � x �
15 mm, y spacing of 0.05 mm for 0 � y � 1 mm,
0.1 mm for 1 � y � 5 mm, and 0.4 mm for 5 � y �
12 mm, and z spacing of 0.05 mm for 0 � z � 0:8 mm,
0.02 mm for 0:8 � z � 1:2 mm, 0.05 mm for 1:2 � z �
2 mm, 0.1 mm for 2 � z � 5:7 mm, 0.05 mm for 5:7 �
z � 7 mm, and 0.1 mm for 7 � z � 10 mm. The mesh
resolution is higher in x and y across the cross section of
the beam, and in z where the beam intersects the emitter
and collector. The 3D electrode structure was linearly
interpolated between the equipotentials in Fig. 3, each
sampled at 46 points evenly distributed in �, for 0 � � �
�=2. Nearby computational nodes are shifted to conform
to the electrode surfaces using the OMNITRAK surface flag.
Neumann boundaries were used for the symmetry planes of
the beam as well as for the outer boundaries of the simu-
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lation region, which is shown in Fig. 4 along with com-
puted equipotentials and particle trajectories projected to
the x � 0 and y � 0 planes. The entire simulation runs in
approximately 30 min on a 3 GHz personal computer.

The beam produced by the simulation is essentially
parallel, laminar, uniform density Child-Langmuir flow.
Beam laminarity is often characterized by the rms beam
emittances "x � �hx2ihx02i � hxx0i2�1=2 and "y � �hy2i�
hy02i � hyy0i2�1=2, where the averages of transverse particle
position �x; y� and divergence �x0; y0� � �dx=dz; dy=dz� are
taken over a slice of the beam at z � d. For a uniform
density elliptic beam, these emittances can be related to
effective beam temperatures [28] by the relations "x �
a�kTeff;x=8q�d�

1=2 and "y � b�kTeff;y=8q�d�
1=2. If we

use the parameters of our earlier examples, a 10:1:8.7
elliptical electron or ion diode with �d � 5:0 kV, d �
5:2 mm, a � 6:0 mm, and b � 0:6 mm, the cold-beam
OMNITRAK simulation shown in Fig. 4 predicts the effective
beam temperatures Teff;x � 6:7� 10�4 eV and Teff;y �
8:1� 10�3 eV. For a realistic beam, of course, the lower
limit of the effective beam temperature (and emittance)
will be given by the physical temperature of the emitter,
approximately 0.1 eV for a typical thermionic electron or
ion diode. Since the simulated temperatures are negligibly
small compared to this value, we can infer that the emit-
tance of an elliptical diode constructed using the above
prescription will approach the theoretical limits imposed
by finite emitter temperature.
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For most cases of interest with highly elliptic beams, the
focusing electrode slopes are nearly straight lines, except
for a small region near the beam edge. Thus, in practice,
very usable electrodes for the 10:1:8.7 beam can be de-
signed even when omitting several intermediate equipo-
tentials in the interpolation. For example, for the 10:1:8.7
beam discussed above, we may interpolate directly be-
tween the z=b � 0, z=b � 0:83, and z=b � 8:3 equipoten-
tials of Fig. 3(a) without measurably affecting the
simulated emittance. For a somewhat rounder 6:1:6.6 as-
pect ratio example, we find the emittance increases by
approximately 15% when we omit intermediate equipoten-
tials, which is similar to the results for cylindrical beams.

Our ongoing studies include extending the theory to the
relativistic regime. In addition, engineering considerations
generally require a thermally insulating gap between the
emitter edge and the� � 0 electrode, which will introduce
a perturbation to the beam. Nonetheless, for small gaps, we
do not expect a significant modification of the bulk flow.
Preliminary simulation studies of the effect of collector
hole lensing are encouraging. Although the introduction of
a hole through which the beam is extracted alters the
nearby field lines, the field perturbation is nearly linear.
As a result, the beam divergence is well correlated with
position such that emittance growth is modest (factor of 2
or less), which is still negligible.

IV. CONCLUSION

To summarize, a theory of nonrelativistic, laminar,
elliptic-beam formation was presented. The beam was
shown to have the one-dimensional Child-Langmuir flow
form. An analytic expression for the electrostatic potential
outside the beam was derived. Equipotentials correspond-
ing to electrode surfaces were computed numerically. The
effectiveness of the electric field formed by the electrodes
in focusing and preserving the elliptic, 1D Child-Langmuir
flow beam was verified via 3D ray-tracing simulations.
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