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Sextupole correction of the longitudinal transport of relativistic beams in dispersionless
translating sections
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We examine the use of sextupole magnets to correct nonlinearities in the longitudinal phase space
transformation of a relativistic beam of charged particles in a dispersionless translating section, or dogleg.
Through heuristic analytical arguments and examples derived from recent experimental efforts, aug-
mented by simulations using the particle tracking codes PARMELA and ELEGANT, sextupole corrections are
found to be effective in optimizing the use of such structures for beam compression or for shaping the
current profile of the beam, by manipulation of the second-order longitudinal dispersion. Recent
experimental evidence of the use of sextupoles to manipulate second-order horizontal and longitudinal
dispersion of the beam is presented. The theoretical and experimental results indicate that these
manipulations can be used to create an electron bunch with a current profile having a long ramp followed
by a sharp cutoff, which is optimal for driving large-amplitude wake fields in a plasma wake field
accelerator.

DOI: 10.1103/PhysRevSTAB.8.012801 PACS numbers: 41.85.–p, 29.27.Eg, 41.75.Lx
I. INTRODUCTION

Several experiments [1–4] in the field of beam physics
have recently been proposed that require, or may benefit
from, the successful transport (with or without compres-
sion) of bunches of charged particles at large energy spread
through a dispersionless translating section, or dogleg. This
device, consisting of two consecutive bend magnets of
opposite sense separated by dispersion-matching focusing
optics, is commonly used in linear accelerator systems to
translate the beam axis transversely, and it may also be
used as a tool to compress or shape the current profile of a
relativistic electron bunch. Examples of three such beam
line structures are shown in Fig. 1.

For beams of large energy spread, this type of transport
line tends to have a longitudinal (temporal) dispersion
function with significant nonlinear contributions, i.e., con-
taining higher than first order dependences in powers of the
momentum error. The physical effect of these nonlinear
contributions is to introduce quadratic and possibly higher-
order correlations between energy and longitudinal posi-
tion within the bunch. In applications that are sensitive to
the beam’s distribution in the longitudinal phase space, it is
desirable to have the ability to manipulate these nonlinear
effects. Such manipulations can be employed to shape the
phase space distribution and thereby linearize the trans-
port. In Sec. II we present several analytical results which
help to illuminate these effects as well as their control
using sextupole correction. In the interest of clarity and
brevity, important derivations are reserved for the
Appendices.

Our main results, contained in Secs. III and IV, consist
of numerical and experimental studies pertaining to the
control of nonlinear longitudinal effects in the dogleg
sections on the linear accelerators at the UCLA-Neptune
Laboratory and the ORION beam line at SLAC, shown in
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Figs. 1(b) and 1(c). The goal of these studies is to shape the
current profile of the beam in order to optimize it for use as
a drive beam for the plasma wake field accelerator
(PWFA). Simulations of the dogleg sections on these
beam lines, presented in Sec. III, indicate that sextupole
corrections could be implemented in order to linearize their
longitudinal transport. With such transport, these doglegs
can act as bunch compressors capable of producing elec-
tron bunches that rise linearly in density from head to tail,
followed by a sharp drop. This type of longitudinal beam
profile has been predicted to produce large-amplitude wake
fields and high transformer ratios [5], making it ideal as a
PWFA drive beam. In Sec. IV, we present new experimen-
tal results of horizontal dispersion and coherent transition
radiation (CTR) bunch length measurements on the UCLA
beam line of Fig. 1(b), which demonstrate the viability of
using sextupoles to manipulate the bunch shape in a dogleg
compressor.

Two additional applications, related to the visible to
infrared SASE amplifier (VISA) Brookhaven Accelerator
Test Facility (ATF) dogleg section of Fig. 1(a), are pre-
sented in Appendices C and D. In Appendix C, we discuss
simulations of second-order nonlinear bunch compression,
which have helped to explain the improved gain of the
VISA self-amplified spontaneous emission free electron
laser (SASE-FEL) when running the beam slightly off-
energy, an effect which was observed but not fully under-
stood during the first phase of that experiment [1]. In
Appendix D, we discuss similar calculations for the cur-
rently ongoing second phase of the VISA experiment,
which indicate that these second-order effects can be mini-
mized using sextupole correction, in order to transport a
beam though the dogleg section while preserving a strong
linear momentum-time correlation (chirp). This beam,
when delivered to the VISA undulator, may create a cor-
responding frequency chirp in the FEL output radiation
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TABLE I. Various parameter values for the dogleg sections of Fig. 1.

Facility E (MeV) � (m) � (deg) �s (m) "N (�m) �	 (%) R56 (m) T566 (m) U5666 (m)

UCLA 14 0.30 45 2 5 1.7 0.05 2.54 14.3
VISA-I 71 1.15 20 15 3.7 1.02 �0:0045 �10:1 172.5
VISA-II 71 1.15 20 15 2.42 0.56 �0:016 �7:17 48.7
ORION 55 0.84 22 14 4.4 2.2 �0:014 �1:8 29.1
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pulse [2]. As a point of reference, values for various
parameters used in the discussions of Sec. II, including
the beam energy E, the bend radius �, bend angle �, total
path length �s, normalized emittance "N , rms momentum
spread �	, and the transport matrix elements R56, T566, and
U5666 (without sextupole correction) are given in Table I
for the dogleg sections on each of these beam lines. The
meanings of these matrices are explained in Sec. II.
1The zero emittance claim is false. One may launch a point
beam with finite angular spread (zero emittance) which demands
use of other terms in Eq. (2).
II. BACKGROUND AND HEURISTIC ANALYSIS

The transformation of the 6D trace space vector X �
�x; x0; y; y0; z; 	� of a beam produced by a system of mag-
netic elements can be represented to arbitrary order in a
power series expansion of the trace space coordinates. This
method was originally developed for use in the particle
tracking code TRANSPORT [6]. In component form, the
transformation from the initial to final coordinates (X0 !

Xf) reads

�Xf�i � Rij�X0�j � Tijk�X0�j�X0�k

�Uijkl�X0�j�X0�k�X0�l � � � � ; (1)

where Rij; Tijk; Uijkl; . . . are transport matrices (or tensors)
of increasing order, and there is an implied summation on
repeated indices. Since we are concerned with the trans-
formation of the longitudinal phase space of the beam, we
will focus upon the z or i � 5 component of Eq. (1), which
has the general form zf � z0 � �chromatic terms	 �
�geometrical terms	. For beams of small transverse emit-
tance but with a large energy spread, the chromatic terms in
the transformation will tend to dominate the final form of
the longitudinal profile. Among these, the strongest con-
tributors are the longitudinal dispersion terms, which are
dependent on the momentum; the coupling of final longi-
tudinal position to the initial transverse coordinates is
relatively quite small. Hence, we may formulate the fol-
lowing approximation, including terms up to third order in
the momentum error 	,

zf 
 z0 � R56	� T566	2 �U5666	3 � � � � : (2)

The first order coefficient R56 � �@zf=@	�	!0 repre-
sents the longitudinal dispersion function. It is proportional
to the negative of the temporal dispersion function,
sometimes denoted by ��. The remaining elements,
T566; U5666; . . . , are higher-order momentum-error contri-
butions to the longitudinal dispersion. We may consider
Eq. (2) to apply to a beam of small transverse emittances
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and large energy spread.1 It is also presumed that the beam
is sufficiently relativistic that space charge may be ne-
glected. The point at which higher-order terms in Eq. (2)
may be truncated depends upon the energy spread of the
beam. In practice it is rarely necessary to consider higher
than third-order contributions for single-pass transport.

For a dogleg structure in which the quadrupoles have
been successfully used to eliminate the linear horizontal
dispersion and its derivative with respect to path length
(�x; �0

x ! 0), the analytical forms of the first- and second-
order terms may then be expressed as follows:

R56 �
�s

�2
0

� 2���� sin��; (3)

T566 � 4�sin2��=2� cos��=2� �
X
W

ai6kTi6k: (4)

Here � is the bend radius, � is the bend angle, �s is the
total path length (including the bends), and �0 is the central
energy of the beam. The summation in the second expres-
sion is over the set W of values of i; k corresponding to the
nonzero transverse second-order chromatic terms,

W � f�i; k� : �i; k�

� �1; 1�; �1; 2�; �1; 6�; �2; 1�; �2; 2�; �2; 6�; �5; 1�; �5; 2�g;

(5)

and ai6k are the corresponding coefficients, which are
functions of � and �. For the sake of space, we will relegate
the explicit forms of these functions to Appendix A, where
Eqs. (3) and (4) are derived.

In view of Eq. (4) and by virtue of the same argument by
which the coupled transverse-chromatic terms were
ignored in Eq. (2), we expect the dominant dependence
of the second-order longitudinal dispersion term T566 to
derive from the second-order horizontal dispersion terms
T166 and T266. Sextupole magnets are the obvious candidate
for eliminating this sort of nonlinear effect, as they are
inherently second order and are routinely used for making
chromatic corrections to T166 and T266 in bending trans-
port.

Since the second-order transport matrix for a pure sextu-
pole contains only geometrical terms, coupling to T566 is
accomplished by placing the sextupoles in a region of large
horizontal dispersion. The sextupole field strength then
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couples to the x coordinate, which affects T566 via the first-
and second-order horizontal dispersion, R16and T166. If we
assume that the arrangement of quadrupoles and drifts
between the two dipole magnets is symmetric about the
midpoint of the dogleg and include two symmetrically
placed sextupole magnets whose geometrical field
strengths are � and ��, respectively, then Eq. (5) is found
to assume a linear dependence upon the sextupole field
strength of the form

T566��� � A� C�1� ���; (6)

where A and C are algebraic functions of � and �, as well
as the drift lengths and quadrupole focal lengths. These
functions and the derivation of Eq. (6) are found in
Appendix A.

If the goal is to eliminate T566 altogether, then (i) to
avoid asymptotic behavior, the value of � (the ratio of the
two sextupole field strengths) should not approach unity,
and (ii) in order to minimize � the quantity C�1� ��
should be large and therefore � should be negative. A
simple choice in agreement with these requirements is� �
�1, corresponding to sextupole fields equal in magnitude
but of opposite polarity. As a rule, the minimum number of
sextupoles needed is equal to the number of second-order
matrix elements one wishes to eliminate. Therefore � � 0
is also a possibility, although the elimination of one sextu-
pole would disrupt the optical symmetry and would require
the surviving one to have twice the field strength.
Minimization of the required sextupole fields, through
appropriate placement of the correcting magnets, is desir-
able from the standpoint of preventing the inadvertent
introduction of strong second-order geometrical effects,
as well as third-order chromatic effects.

The sextupole correction of T566 in this system often has
the added effect of minimizing the horizontal emittance
growth, due to the coupling of T566 to the second-order
horizontal dispersion discussed above. For a beam of large
energy spread and small transverse emittance, the non-
linear emittance growth is dominated by the second-order
horizontal dispersion elements T166 and T266. The final rms
emittance is then approximately (see Appendix B)

"x;f 

������������������������������������������������������������������������������
det�Mx�x;0M

T
x � �2

	dd
T � 3�4

	DDT	
q

; (7)

where d and D are the first- and second-order horizontal
dispersion vectors, respectively, �	 � h	2i1=2is the rms
momentum spread, Mx is the 2� 2 linear transport matrix
for the �x; x0� trace space plane, and �x;0 is the correspond-
ing initial matrix of second moments, i.e.,

d �

 
R16

R26

!
; D �

 
T166
T266

!
; Mx �

 
R11 R12

R21 R22

!
;

�x;0 �

 
hx20i hx0x00i

hx0x
0
0i hx020 i

!
: (8)

The first of the three terms inside the determinant in Eq. (7)
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is the contribution from the initial emittance, which would
be invariant if the transformation were governed solely by
the linear matrix Mx. Consequently, if the first order hori-
zontal dispersion and its derivative are eliminated in ac-
cordance with the discussion surrounding Eqs. (3) and (4),
then d ! 0 and the emittance growth described by Eq. (7)
is dominated by the third term in square brackets. The
coupling of longitudinal to horizontal dispersion is such
that for the sextupole configuration described above the
values of T166 and T266 tend to be reduced under the
sextupole correction of T566. Consequently, in many cases
sextupole correction of longitudinal dispersion also has a
reducing effect upon the transverse emittance.

III. SIMULATION RESULTS

The primary focus of our study is to test the concept of
creating a beam that has a relatively long (many pico-
seconds) rising current profile, followed by a short (sub-
picosecond) fall time. The dogleg section on the beam line
at the UCLA-Neptune Advanced Accelerator Laboratory,
shown in Fig. 1(b), has been designed and constructed with
this goal in mind [3]. Sextupole corrections on the dogleg
section, shown in Fig. 1(c), of the proposed low-energy
beam line for the ORION facility at Stanford Linear
Accelerator Center (SLAC) have also been considered
for the same purpose, namely, the creation of a ramped
current profile [4].

This type of profile is of considerable interest as a driver
for the PWFA, as it allows for a high transformer ratio (i.e.,
the ratio of the peak accelerating field found in the wake to
the peak decelerating field experienced by the driving
beam). We discuss below the ramped beam experiment at
UCLA-Neptune, and the ORION project at SLAC, which
we analyze with simulations using the tracking codes
ELEGANT [7] and PARMELA [8].

A. Optimal current profile for the PWFA drive beam

Because of their capacity to support large electric fields,
plasmas have been considered in recent years as a means
for acceleration of charged particles capable of producing
field gradients larger than those achievable with traditional
radio frequency linear accelerating cavities by several
orders of magnitude. Longitudinal field gradients well in
excess of 1 GeV=m can be obtained by the excitation of
large-amplitude relativistic waves in a plasma. Various
acceleration schemes have been proposed which rely
upon driving such plasma waves, using either a short
intense laser beam [laser wake field accelerator (LWFA)]
or a short relativistic electron beam PWFA [9–12]. In the
case of the PWFA, the transformer ratio (the maximum
longitudinal accelerating electric field in the wake of the
driving beam divided by the maximum decelerating field
within the beam) is a figure of merit which provides a
measure of the maximum energy gain of a test charge
injected behind the bunch.
1-3
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FIG. 1. (Color) Cartoon drawings of the dispersionless trans-
lating sections at (a) ATF-VISA, (b) UCLA-Neptune, and
(c) ORION-SLAC. Each drawing is scaled to fit the figure.
Wedges, blue lenses, and red rectangles represent dipoles, quad-
rupoles, and sextupoles, respectively. In each drawing an ap-
proximate representation of the horizontal dispersion function
�x is superimposed.
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For a driving bunch with a symmetric current profile and
finite length, the value of the transformer ratio can be
shown to always be less than two [13,14]. Various methods
have been proposed to overcome this limitation, the most
promising of which include the use of a single asymmetric
FIG. 2. (Color) Plot showing the longitudinal phase space (a) and d
(negative R56) compression, as well as a PIC simulation (c) of th
2� 1016 cm�3, with 6 nC charge.
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drive bunch [15] or a ramped bunch train [16]. In the case
of a single asymmetric drive bunch a ‘‘doorstep’’ profile
(i.e., a square pulse for the first quarter of a plasma period,
followed by a triangular ramp) approximates the optimal
asymmetric current distribution that maximizes the
transformer ratio and forces the retarding potential to be
constant within the bunch. The analytically derived trans-
former ratio of such a beam is found to be R � kpL, where
L is the length of the bunch and kp � !p=c is the inverse
plasma skin depth [5]. For such a profile R may therefore
exceed two so long as the bunch is longer than two plasma
skin depths.

An example of the longitudinal trace space distribution
of such a beam, artificially created from an idealized linear
transformation (considering only R56), characteristic of a
dogleg applied to a beam distribution at the exit of a
photoinjector electron source, as simulated by the beam
modeling code PARMELA, is shown in Fig. 2(a). In Fig. 2(b)
the corresponding current profile (in red) is superimposed
with an ideal doorstep ramped profile (in black) discussed
above. A two-dimensional particle-in-cell (PIC) simulation
of the longitudinal wake field excited by this high-charge
beam in a plasma of density 1016 cm�3, shown in Fig. 2(c),
predicts a peak field of 10 GV=m with a transformer ratio
of 11.

B. Beam shaping and compression at UCLA-Neptune
and ORION

As was discussed in the Introduction, a scheme has
been recently proposed [3] for the creation of a beam
which approximates the asymmetric ramped current
profile, using first- and second-order beam optics in a
dogleg compressor. The proposed method takes advantage
of the rf curvature in the longitudinal phase space distri-
bution of a positively chirped (i.e., back-of-crest) driving
beam. Under a pure negative R56 compression of the
ensity profile (b) of a ramped beam produced by linear dogleg
e wake field produced by such a beam in a plasma of density
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FIG. 3. (Color) Plots of the z trace space and current profile from PARMELA and ELEGANT simulations of the UCLA accelerator beam
line showing (a) the beam at the entrance of the dogleg compressor, and the same beam at the end (b) without sextupole correction and
(c) with sextupole correction.
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longitudinal phase space, such a distribution results in a
ramp-shaped current profile of a few picosecond to sub-
picosecond duration, which is ideal for use as a driving
beam for large-amplitude plasma wake fields with high
transformer ratios.

A proof-of-principle experiment is currently underway
at the UCLA-Neptune linear accelerator laboratory, using
the dogleg section shown in Fig. 1(b) as a negative R56

compressor. A PARMELA simulation of the beam at the
entrance to the compressor in Fig. 3(a) shows the charac-
teristic chirp in momentum and the rf curvature imposed by
the accelerating structure.

The longitudinal phase space distributions at the exit of
the compressor, predicted from simulations using the
matrix-based transport code ELEGANT, are shown without
and with sextupole correction in Figs. 3(b) and 3(c), re-
spectively. The S-shaped distribution in Fig. 3(b) is evi-
dence of the quadratic momentum dependence of the z
transformation produced by the second-order T566 contri-
bution in Eq. (2). When sextupole fields are utilized in
accordance with the description of Sec. II to eliminate this
contribution, the resulting distribution [Fig. 3(c)] is found
to correspond very closely to that produced by a linear R56

transformation, such as the one in Fig. 2. The resulting
current profile exhibits a sharp drop in current at the back
of the bunch, where the distribution begins to turn over on
itself, preceded by an approximately linear ramp of the sort
described in [5] as being ideal for generating large trans-
former ratios in a wake field accelerator.

It has been observed recently [17] that space-charge
driven transverse phase space bifurcation and accompany-
ing emittance growth are potential hazards encountered in
low-energy (12–14 MeV) compression at Neptune. To
gauge the transverse effects arising separately from non-
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linearities and space-charge forces, ELEGANT and PARMELA

simulations were employed to calculate the normalized
transverse emittance "n;x � �(��0"x of the beam. The
ELEGANT simulation, with sextupoles turned off, predicts
an emittance growth in the Neptune dogleg due to
nonlinear effects of �"n;x � 13 mmmrad over the initial
value of 5 mm mrad at the entrance. This is consistent
with the approximation of Eq. (7), which gives �"n;x �
12 mmmrad.

With sextupoles turned on, ELEGANT predicts a much
improved �"n;x � 1:7 mmmrad, due to partial cancella-
tion of the T166 and T266, as discussed in Sec. II. To gauge
the effect of space-charge velocity field forces in the dog-
leg compressor, a calculational model for sextupoles was
introduced into the PARMELA source code and simulations
were run using PARMELA’s point-to-point space-charge
routine. With the space-charge routine turned off, the
PARMELA results match the ELEGANT prediction of �"n;x �
1:7 mmmrad. With the space-charge routine turned on,
PARMELA predicts a total emittance growth of �"n;x �
11:6 mmmrad, for a 300 pC beam, indicating a significant
additional contribution due to space-charge forces. These
results lie in the intermediate range of �"n;x values mea-
sured in [17] and do not show evidence of the sort of phase
space bifurcation reported there. The predicted growth in
transverse emittance, however, imposes restrictions upon
the focusability of the beam, requiring sharper focusing
angles and higher gradient quadrupole magnets in order to,
for example, match the beam into a PWFA. To meet these
concerns, a high-gradient (100 T=m) focusing system is
being developed using permanent magnet quadrupoles for
use after the Neptune dogleg.

This beam-shaping scheme has also been proposed [4]
for future implementation on the dogleg leading from the
1-5



FIG. 4. (Color) Plots of the z trace space and current profiles from PARMELA and ELEGANT simulations of the ORION dogleg section
showing (a) the beam at the entrance, and the same beam at the end (b) without sextupole correction and (c) with sextupole correction.
In (d) symmetrically placed octupoles are inserted for third-order correction. Beam currents are in arbitrary units, but the scale is the
same on all plots.

2After a train system in Hamburg, Germany, and in honor of its
geometry.
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main transport line to the low-energy (50 MeV) experi-
mental section of the ORION beam line at the Stanford
Linear Accelerator, shown schematically in Fig. 1(c). Here
the goal is again that of providing a venue for PWFA
experiments using ramped bunches. The symmetrical
placement of a pair of quadrupole triplets at the extreme
ends of the structure is due to the spatial constraint im-
posed by a wall through which the middle section of the
beam line passes. This quadrupole configuration, when
compared with a more conventional arrangement such as
that of Fig. 1(b), is found to result in T566 values which are
larger by about 45% and therefore require stronger com-
pensating fields in the sextupoles. However, other signifi-
cant nonlinear effects (T266, T166, T561, and T562) are found
to be reduced by this geometry, offsetting the danger of
amplifying such terms by the use of stronger sextupoles.

Of more critical concern is the prediction of strong third-
order effects in ELEGANT simulation results, primarily
U5666, due in part to the large (2.2% rms, nearly 9% full)
momentum spread found in this scenario. The momentum
spread is enhanced at ORION with respect to Neptune and
ATF (all three have similar S-band photoinjectors), by use
of X-band postacceleration linacs. The large third-order
chromatic effect arising from U5666 is shown in the simu-
lation results of Fig. 4, in which a chirped beam (a) with a
2.2% rms energy spread is injected into the ORION dogleg
section producing at its exit the final distributions
(b) without sextupole correction and (c) with sextupole
correction. Qualitative comparison reveals in the corrected
distribution in Fig. 4(c) the presence of a low-energy ‘‘tail’’
which is not observed, for example, in the ramped distri-
bution of Fig. 3(c). Examination of the extra component to
the transformation exhibited by this tail reveals it to be
primarily third order and to possess a dominant component
that is cubic in the momentum error, corresponding to the
term U5666 in Eq. (2). This effect may be compensated to
01280
some degree by the insertion of symmetrically positioned
octupole magnets outside of the focusing triplets. However,
the resulting collusion of second- and third-order effects
distorts the current profile and destroys the desired hard
edged cutoff at the back of the beam. As shown in Fig. 4(d),
overcompensating with the octupoles can restore this hard
edge but results in a new low-energy tail extending in the
forward (positive z) direction. A full treatment of these
effects requires an examination of third-order effects,
which we reserve for future study.

IV. RECENT EXPERIMENTAL RESULTS

Initial investigations of the effects of sextupole correc-
tion on the dogleg beam line of Fig. 1(b), dubbed S-Bahn,2

have been conducted at the UCLA-Neptune Laboratory. A
more detailed diagram of this beam line is shown in Fig. 5.
The recent experiments include measurements of the hori-
zontal dispersion to second order in momentum error and
CTR interferometry bunch length measurements. Both
types of measurements were performed parametrically as
functions of the sextupole field strengths.

The linear horizontal dispersion function �x (or R16)
was minimized in accordance with the discussion sur-
rounding Eqs. (3) and (4) by adjusting the quadrupoles to
reduce horizontal deflection of the beam centroid at the
midpoint of the dogleg (Screen 11 in Fig. 5) with respect to
a fractional perturbation + of the field strengths of all
quadrupoles and dipoles on the dogleg section (labeled
B1, Q1, Q2, and B2). The centroid deflection �xcen under
these conditions is equivalent to that which would be
experienced by an off-momentum particle with momentum
1-6
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FIG. 5. (Color) Schematic of the linear accelerator beam line at the UCLA-Neptune Laboratory, with a blowup of the S-Bahn dogleg
section.
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error �+ , and is given to second order in powers of + by

�xcen � �R16+ � T166+2 �O�+3�:

Consequently, the first- and second-order horizontal dis-
persion terms R16 and T166 can be obtained empirically by
fitting the measured centroid deflection to a quadratic in + .
Empirical values of T166 at the location of Screen 13 in
Fig. 5 were obtained using this method, and are compared
in Table II with the ELEGANT simulation predictions for
three different configurations of the sextupole fields. The
geometrical field strength � and ratio � correspond with
the quantities in Eq. (6).

Experimental errors in Table II correspond to a 95%
confidence level. Since the quadrupoles were set to elimi-
nate the linear dispersion, R16 in all three cases was found
to be zero to within the experimental error. Measurements
of the rms beam size on Screens 5, 10, 11, 12, 13, and 14
agree with the ELEGANT simulation results to within 20%.

Since the horizontal dispersion does not provide a diag-
nostic of the longitudinal trace space, the measurements of
Table II were performed using a beam with no momentum
chirp and a relatively small (0.5%) energy spread. To
obtain information about the effect of the sextupoles on
the longitudinal distribution of the beam, the beam was
TABLE II. Comparison of experimental and simulated
second-order horizontal dispersion values for various sextupole
field settings.

� (m2) � T166;exp (m) T166;sim (m)

0 0.00 2:56� 0:59 2.54
537 �2:13 0:22� 0:77 0.26
995 �1:55 �1:27� 0:93 �1:69

01280
then chirped in momentum by injecting it with an rf phase
offset of �28� relative to the crest of the accelerating field
in the standing wave linac cavity. The bunch length was
then measured at different sextupole settings using CTR
autocorrelation. Transition radiation emitted by the beam
at a metal foil on Screen 14 of Fig. 5, oriented at 45�

incidence, was autocorrelated using a Martin-Puplett– type
interferometer with wire grid polarizing beam splitters
[18]. The bunch length�t was extracted from the interfero-
grams using the time-domain fitting procedure of Ref. [19].
The extracted values are plotted in Fig. 6 as a function of
sextupole field strength �. The ratio of the two sextupole
fields was set to � � �1. The data show the dependence of
bunch length upon the magnitude of the sextupole correc-
tion, with an approximately twofold compression occur-
ring near the field value � � 1094 m�3.

It should be noted that, due to both the limited frequency
bandwidth of the autocorrelator apparatus and the nature of
the fitting procedure used to extract the pulse length from
the data (which assumes a Gaussian current profile), for a
beam whose temporal profile is asymmetric, the value of
�t obtained from the interferogram is more closely con-
nected with the FWHM than with the rms width of the
distribution. Consequently, we have found that obtaining a
theoretical prediction to complement the data of Fig. 6
involves a somewhat complicated computational proce-
dure, the final result of which is superimposed as a dashed
curve.

To produce this theoretical curve, first the creation and
transport of the beam in the accelerating section were
simulated using the tracking code PARMELA. This detailed
simulation employed 5000 macroparticles, whose initial
temporal profile (inherited from the laser pulse) was modu-
lated in a way consistent with observations of the energy
1-7



FIG. 6. CTR autocorrelator measurements of electron bunch
length a as a function of sextupole field strength, with super-
imposed theoretical result (dashed line) obtained from PARMELA/

ELEGANT simulation combined with an autocorrelation algo-
rithm.
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modulation of the beam, and a �28� phase offset in the
linac, producing a chirped beam. The set of output 6D trace
space coordinates obtained from PARMELAwas then used as
the input beam for an ELEGANT simulation of the dogleg
section, including a truncation of outlying particles con-
sistent with the observed 60% electron transmission effi-
ciency through the device. The longitudinal (z) coordinates
of the particles were extracted from the ELEGANT simula-
tion at the location corresponding to Screen 14, where the
CTR foil was inserted. An algorithm was used to recon-
struct from the extracted z coordinates the predicted auto-
correlation function, including appropriate filtering of the
frequency content due to diffraction, collection, and trans-
port efficiency effects.

The simulated autocorrelation function was then sub-
jected to the same fitting procedure that was used to extract
�t from the empirical interferograms, yielding values
which produce the dashed curve in Fig. 6. These simulation
FIG. 7. (Color) The longitudinal phase space plots and density pr
sextupole values � � 0, 1094, 1641, and 2735 m�3, respectively, from
compression and decompression. The corresponding simulated T566
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results suggest that the observed compression and decom-
pression results from a ‘‘folding over’’ of the longitudinal
trace space due to the quadratic T566 dependence in Eq. (2),
where particles of both high and low energy begin to
occupy the same longitudinal position within the bunch.
This scenario is illustrated by the trace space plots in Fig. 7.
The maximum compression [Fig. 7(b)] occurs at the sextu-
pole field value where this folding over begins to change
direction in z, corresponding to the point at which the
second-order term T566 changes sign. The discrepancy
between theory and data near the fourth data point in
Fig. 6 appears to be due to the sensitivity of the theoretical
autocorrelation algorithm to the sharp spikes in the tem-
poral distribution displayed in Figs. 7(c) and 7(d).

Although the temporal rms of the distribution is smaller
in 7(c) than in 7(d), the spike is more pronounced in 7(c).
That the physical data appears less sensitive to this effect
may be related to additional frequency filtering produced
by the interferometer in the short wavelength components
of the spectrum. These effects may arise from the poor high
frequency performances of the wire grid beam splitters in
the Martin-Puplett device. Of course, one cannot rule out
the possibility that the beam performance is not completely
consistent with the predictions of simulations.

These sorts of uncertainties highlight the limited utility
of CTR interferometry in this context and point to the need
for more sophisticated measurements of the longitudinal
phase space. The proposed diagnostic for performing lon-
gitudinal profile measurements in the Neptune experiment
is a 9-cell deflecting mode cavity driven at an X-band
frequency of 9.596 GHz, which is being designed in col-
laboration with the INFN Laboratori Nazionali di Frascati.
When operating in the dipole mode TM110, such a cavity
imparts to the beam a horizontal (x) momentum kick that
varies linearly with longitudinal position within the bunch.
Consequently, the longitudinal distribution of the beam is
deflected transversely and may be reconstructed from the
ofiles obtained from the ELEGANT results corresponding to the
the plot in Fig. 6, illustrating the progression of the phase space

values are �2:11, 0.02, 1.08, and 3.22 m, respectively.
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image of the beam’s cross section on a simple profile
monitor downstream of the cavity. Thus one may obtain
the beam’s longitudinal profile, with an estimated resolu-
tion of 30 �m (100 fs).

By combining the rf deflector with a magnetic dipole
deflection along the orthogonal transverse (y) axis, one
obtains a complete reconstruction of the longitudinal trace
space in both coordinate and momentum [20,21]. At the
time of this writing, design work, using the commercial rf
modeling code HFSS, has been completed, and a cold-test
prototype has been constructed and tested. Completion and
installation of a final cavity design are expected to occur in
early 2005, providing the means to explore in much greater
detail the complex dynamics contained in the results of
Figs. 6 and 7.

V. CONCLUSIONS

We have examined the use of sextupole magnets to
control second-order nonlinear chromatic effects and
thereby optimize the compression and shaping of a rela-
tivistic electron bunch in a dispersionless translating sec-
tion, or dogleg. For a beam of small transverse emittance,
heuristic analytical arguments and simulation results indi-
cate that the transformation of the distribution of the beam
in z is dominated by the first- and second-order transport
matrix elements R56 and T566, which represent the linear
and quadratic (in powers of momentum error) contribu-
tions to the longitudinal dispersion. Insertion of a pair of
sextupole magnets with field strengths of equal magnitude
� and opposite polarity provides a convenient method of
manipulating the second-order term T566, which is found to
be linear in �.

Simulation results using the beam transport codes
PARMELA and ELEGANT, applying this type of correction
to the Neptune and ORION beam lines, indicate that
01280
longitudinal linearization aids in shaping the longitudinal
trace space inside the dogleg compressor for creation of a
ramped asymmetric current profile. This requires that the
negative value of the R56 be large enough to adequately
compress the beam distribution. Additionally, for the ex-
ample of the ORION beam line, Fig. 1(c), third-order
effects are apparently a concern, due to the third-order
longitudinal dispersion combined with a large energy
spread. These effects are currently undergoing further
study.

Recent experiments conducted on the UCLA-Neptune
beam line provide evidence of the use of sextupole correc-
tion to manipulate both the second-order horizontal (T166)
and longitudinal (T566) dispersion elements. The longitu-
dinal dispersion studies were limited by the information
which can be extracted from the CTR interferometry
method utilized. Future planned experiments using a trans-
verse deflecting mode cavity should yield detailed, high-
resolution longitudinal phase space measurements of the
beam and provide a more complete understanding of the
longitudinal phase space manipulations made possible by
use of dogleg systems.
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APPENDIX A: DERIVATION OF EQS. (3)–(6)

First- and second-order transport matrices for different
types of magnetic elements can be found in various refer-
ences, including [6,22]. The first order matrices for a bend
B of bend angle � and radius �, a thin-lens quadrupole Q
with focal length f, and a drift D of length l are as follows:
B��; �� �

cos� � sin� 0 0 0 ��1� cos��
��sin��=� cos� 0 0 0 sin�

0 0 1 �� 0 0
0 0 0 1 0 0

� sin� ��cos�� 1� 0 0 1 ���
�2
0
� ��� � sin��

0 0 0 0 0 1

0
BBBBBBBB@

1CCCCCCCCA
; (A1)

Q�f� �

1 0 0 0 0 0
1=f 1 0 0 0 0
0 0 1 0 0 0
0 0 �1=f 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

0
BBBBBBBB@

1
CCCCCCCCA
; D�l� �

1 l 0 0 0 0
0 1 0 0 0 0
0 0 1 l 0 0
0 0 0 1 0 0
0 0 0 0 1 l=�2

0

0 0 0 0 0 1

0
BBBBBBBB@

1
CCCCCCCCA
: (A2)

Let Y represent the linear matrix for a combination of quadrupoles, sextupoles and drifts. The total first order matrix for a
dogleg can then be written R � BY ~B, where B � B��; ��, ~B � B���;���, and Y has the form
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Y �

Y11 Y12 0 0 0 0
Y21 Y22 0 0 0 0
0 0 Y33 Y34 0 0
0 0 Y43 Y44 0 0
0 0 0 0 1 Y56
0 0 0 0 0 1

0BBBBBBBB@

1CCCCCCCCA
: (A3)

The resultant horizontal dispersion function and its deriva-
tive (elements R16 and R26 of the total transport matrix)
obtained by matrix multiplication are then given by

R16 � �� � cos�� ��cos�� 1��Y11 cos�� �Y21 sin��

� sin��Y12 cos�� �Y22 sin��;

R26 � sin�� �cos�� 1���Y21 cos�� Y11 sin��

� sin��Y12 sin�� �Y22 cos��=�: (A4)

The longitudinal dispersion element may then be written in
terms of these functions as follows:

R56 � Y56 �
2��

�2
0

� �2�� R16� sin�� R26��1� cos��:

(A5)

Noting that Y56 � 2��=�2
0 � �s=�2

0, where �s is the total
path length, we see that Eq. (A5) reduces to Eq. (3) in the
case where the quadrupoles are effectively utilized to
eliminate linear horizontal dispersion (R16; R26 ! 0).

To obtain an analytical expression for the second-order
longitudinal dispersion (element T566 of the total trans-
formation) we required the assistance of the commercial
software package MATHEMATICA. Because of the cumber-
some algebraic manipulations involved, we will merely
outline the steps used to arrive at our results. Tabulations
of the various second-order matrix elements may be found
in [6,22]. For simplicity, we will represent the second-order
counterparts to the linear matrices Bij, Yij, and ~Bij by
denoting them in component form using the same symbols
but with three indices instead of two (i.e., Bijk; Yijk; ~Bijk).
For Bijk and ~Bijk we use the analytical forms written in
terms of r and � as given by [6,22]. For Yijk we use a
generic form equivalent to Eq. (A3), where we set to zero
all elements which would naturally vanish for a system
composed only of drifts, quads, and sextupoles. We then
produce the total second-order matrix T by successive
multiplication of the matrices for the individual compo-
nents, which we can write as Tijk � Bil�Y ~B	ljk �
Bilm�Y ~B	lj�Y ~B	mk, where �Y ~B	ijk � Yil ~Bljk � Yilm ~Blj ~Bmk
denotes the second-order matrix for the first two successive
elements ~B and Y and there are implied sums on the
repeated indices. This produces a set of equations for the
elements Tijk in terms of �, �, Yij, and Yijk. Using these
expressions, which are algebraically cumbersome and
which we will therefore neglect to write out explicitly,
the equation for the longitudinal dispersion element T566
may be expressed as a linear combination of the expres-
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sions for the other matrix elements as follows:

T566 � 4�sin2��=2� cos��=2� � a16R16 � a26R26

�
X
W

ai6kTi6k; (A6)

where W is the set of values in Eq. (5) and

a16 � � cos� sin�; a26 � ��1� 2 cos��sin2��=2�;

a161 � 2� cos��=2�sin3��=2�; a162 � �1
2sin

2�;

a166 � sin�; a261 � �2�2sin4��=2�;

a262 � 2� cos��=2�sin3��=2�; a266 � ��cos�� 1�;

a561 � ��sin2��=2�; a562 �
1
2 sin�: (A7)

In the limit where R16; R26 ! 0, we then find that Eq. (A6)
reduces to Eq. (4).

To determine the dependence of T566 on the sextupole
field strength, let us assume that the sextupoles lie just
inside the bends and are separated from each other only by
quads and drifts. Although the same final result may be
obtained without them, these assumptions will greatly
simplify our calculation. Let the two sextupoles, of
strengths � and ��, respectively, and of equal length d,
be denoted by the symbols S and ~S and the intervening
system of quads and drifts by H. We can then decompose
the first- and second-order representations of Y as Yij �
SikHkl

~Slj and Yijk � Sil�H~S	ljk � Silm�H~S	lj�H~S	mk,
where �H~S	ijk � Hil

~Sljk �Hilm
~Slj ~Smk. Multiplying the

linear matrices out explicitly and imposing the require-
ments

R16 � 0; R26 � 0; det
�
H11 H12

H21 H22


� 1; (A8)

we arrive at the following conditions upon H:

H12 � ��1�H22��d� � tan��=2	�;

H21 � �1�H22�=�d� � tan��=2	�; H11 � H22:

(A9)

Applying these conditions in the calculation of the second-
order matrix, we arrive at the following result for element
T566 expressed in powers of �:

T566 � 2sin2��=2��A0� sin�� A� � A� cos��

�
d
4
sin2

�
2

�
4jC0j

2

�
2ReC0 � d cos

�
2


sin
�
2

� 8�3 cos��1� sin��
�
�1� ���; (A10)

where for the sake of compactness we have defined the
functions
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A��H162�H522�d�H161�H262�H521

�d�H261�H511��1	��2�H261�H511�;

A0�1�H161�H262�H521�2d�H261�H511�

�cos�; C0�dcos
�
2
��1� i��sin

�
2
: (A11)

With the associations

A � 2sin2��=2��A0� sin�� A� � A� cos��;

C �
d
4
sin2

�
2

�
4 sin

�
2
jC0j

2

�
2ReC0 � d cos

�
2



� 8�3 cos��1� sin��
�
;

(A12)

we find that Eq. (A10) takes the form of Eq. (6). The linear
dependence on � is a reflection of the fact the second-order
matrix elements for a sextupole are proportional to the field
strength.
APPENDIX B: DERIVATION OF EQ. (7)

The full transformation in Eq. (1) represents the com-
plete solution to the single-particle equations of motion,
which constitute a Hamiltonian system. Therefore, to the
extent to which the second-order transformation is an
accurate description, it is Hamiltonian, and thus by
Liouville’s theorem the distribution function f remains
invariant under it. Consequently, f�Xf� � f�X0�, where
Xf and X0 are the final and initial trace space vectors,
which are related in component form to second order by

�Xf�i � Rij�X0�j � Tijk�X0�j�X0�k: (B1)

The matrix of second moments therefore transforms ac-
cording to

�jk �
Z
�Rj‘�X0�‘ � Tj‘m�X0�‘�X0�m	�Rkn�X0�n

� Tknp�X0�n�X0�p	f�X0�d
6X0; (B2)

where the Jacobian of this transformation is

Jij �
@�Xf�i

@�X0�i
� Rij �

X
k

Tijk�X0�k�1� 	jk�; (B3)

with 	jk representing the Kronecker delta. Writing
Eq. (B2) in the bracket notation, we have

�jk � Rj‘Rknh�X0�‘�X0�ni � 2TknpRj‘h�X0�‘�X0�n�X0�pi

� Tj‘mTknph�X0�‘�X0�m�X0�n�X0�pi; (B4)

where there is an implied sum on repeated indices and
h� � �i �

R
� � � f�X0� detJd6X0. Now assume the beam dis-

tribution function to be uncoupled between the three trace
space planes, to have vanishing third moments, and unit
Jacobian determinant. Then the upper left 2� 2 submatrix
of Eq. (B4) takes the form
012801
�x;f � Mx�x;0MT
x � �2

	dd
T � h	4iDDT � �geo; (B5)

where d, D, Mx , and �x;0 are the first- and second-order
horizontal dispersion vectors, the 2� 2 linear transport
matrix for the �x; x0� trace space plane, and the initial 2�
2 matrix of second moments, respectively, as defined in
Eq. (8), and �geo is the contribution from second-order
geometrical terms. For a beam of small initial emittance
and large energy spread, Eq. (B5) is dominated by the
dispersion terms, and we can set �geo � h	4iDDT .
Furthermore, if the beam distribution in the z phase plane
can be approximated by a rotated bi-Gaussian in z and 	,
then h	4i 
 3�4

	. With these approximations, insertion of
Eq. (B5) into the definition of the transverse emittance

"x;f �
���������������
det�x;f

q
immediately produces Eq. (7).
APPENDIX C: NONLINEAR
COMPRESSION—VISA-I

The VISA-I experiment [1] was a UCLA collaborative
effort conducted from 1998 to 2001 for the purpose of
studying SASE-FEL physics in the visible to near-infrared
frequency range, using the 71 MeV high-brightness beam
provided by the Brookhaven ATF beam line. The presence
on this beam line of a 15 m long dogleg section, shown in
Fig. 1(a), combined with limitations in the transverse
aperture presented a particular challenge from the perspec-
tive of beam transport. The beam line was operated in a
configuration where the first- and second-order longitudi-
nal dispersions were R56 � �0:0045 m and T566 �
�10:1 m, respectively. The longitudinal transformation
of Eq. (2) in the ATF dogleg section is dominated by the
second-order T566 contribution, and is therefore unsuitable
for linear compression under ordinary conditions of opera-
tion. The gain of the SASE-FEL was found to be maxi-
mized when the beam was injected forward of crest in the
accelerating cavity, giving it a negative momentum chirp
and a 0.5% rms energy spread. This gain increase was due
to a nonlinear compression of the beam in the dogleg
section, resulting in a higher peak current. The pseudo-
linear compression was found to be produced by running
the beam off-energy with a momentum ~p differing from
the central momentum p0 of the design trajectory. Under
this condition, the beam centroid follows the trajectory of
an off-momentum particle whose momentum dispersion is
� � �~p� p0�=p0. A particle with arbitrary momentum p
then has the momentum error ~	 � �p� ~p�=~p relative to
the central momentum of the beam and the momentum
error 	 � �p� p0�=p0 relative to the design momentum
for which the beam line is optimized. Applying the result-
ant coordinate transformation,

	!
~p
p0

~	��; (C1)

to Eq. (2), the longitudinal transport relative to the dis-
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FIG. 8. (Color) ELEGANT simulations of the longitudinal trace space (upper plots) of the beam at ATF for VISA-I and corresponding
current profiles (lower plots). The initial beam (a) shows a negative chirp, which undergoes a chicanelike compression (b). This
compression is turned off (c) by the inclusion of sextupole correction.
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placed momentum error ~	 is found to be given by

zf � z0 � ~Q5 � ~R56
~	� ~T566

~	2; (C2)

where the transformation elements with respect to the new
central momentum of the beam are (truncating third- and
higher-order contributions)

~Q5 � R56�� T566�
2; ~R56 �

~p
p0

�R56 � 2T566��;

~T566 �

�
~p
p0


2
T566: (C3)

We may term the definitions given in Eq. (C3) the
‘‘effective’’ offset and momentum dispersion of the
beam. They represent the values of Q5, R56, and T566 that
would be needed to obtain a similar transformation of the
beam’s longitudinal distribution if the beam were run on-
energy. Using Eq. (C3) we find that operating the ATF
beam line with a fractional energy offset of � � �0:76%
produces a transformation that is dominated by an effective
~R56 of �0:18 m, which is opposite in sign, and an order of
magnitude larger in amplitude from R56. Since ~R56 is
positive, the longitudinal compression which it produces
is similar to that of a magnetic chicane and is therefore
suitable for compressing a beam (as in the case of VISA-I)
which has a negative (forward-of-crest) momentum chirp
in z and 	. Although this scheme mimics the linear com-
pression of a magnetic chicane, it is a primarily nonlinear
effect, since the expression for the effective ~R56 in Eq. (C3)
is modified from its nominal value by the presence of the
second-order T566.

Sextupole correction would provide a convenient
mechanism for changing the degree of compression pro-
012801
duced by this method, through its ability to manipulate the
value of T566, as discussed in Sec. III. This tunability is
illustrated in Fig. 8, which shows ELEGANT simulations of
longitudinal (z-	) phase space distributions of a 71 MeV
beam on the VISA beam line. In Fig. 8(a) the phase space
at the entrance of the dispersive section shows a beam with
a strong momentum chirp. After being transported through
the dispersive section with sextupole fields set to zero
[Fig. 8(b)] the beam has been compressed by a factor of
4. With the sextupole fields in the simulation set to a field
strength sufficient to force T566 to vanish [Fig. 8(c)], the
nonlinear compression is turned off and the final phase
space resembles the initial distribution. The beam current
is shown alongside each trace space plot.

The widening of the distribution in (c) as compared with
(a) in Fig. 8 is due to the presence of nonlinear horizontal-
to-longitudinal coupling terms, such as T561, T562, and T512,
which we have neglected in Eq. (2). The resulting spread in
z therefore measures the degree of breakdown in the as-
sumption of vanishing emittance. As this effect adversely
affects the gain of the FEL radiation, minimization of the
initial emittance is also a critical concern. In a related note,
it should be emphasized that use of this nonlinear com-
pression scheme requires running of the dogleg with non-
zero dispersion, thus producing a larger effective emittance
after transport.

APPENDIX D: LINEARIZED BEAM
TRANSPORT—VISA-II

Part (c) of Fig. 9 illustrates the case where the elimina-
tion of T566, combined with a small R56, results in the
approximate transformation zf 
 z0 whereby the beam is
transported through the beam line with minimal perturba-
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FIG. 9. (Color) ELEGANT simulation of the longitudinal trace space of the chirped beam at ATF for VISA-II, (a) before the dogleg
section, and (b) after the dogleg section, including effects of collimators, which allow approximately 2% relative momentum spread to
be transmitted.
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tion of the longitudinal trace space distribution. This is
useful in cases where it is critical to preserve the current
profile of the beam. However, in the example of Fig. 8(c),
the beam is run off-energy. In practice, this would result in
dispersion mismatch and an offset of the beam centroid,
which is generally undesirable. Consequently, a better
course of action for this type of transport is to run on-
energy in a configuration with a relatively small natural R56

and with sextupole cancellation of the T566.
The second stage of the VISA experiment [2] is a case in

point, as included among its stated goals is the study of the
time-frequency correlation of SASE-FEL radiation pro-
duced by injection of a positively chirped (back-of-crest)
beam with a 2% rms energy spread into an undulator
magnet. In this case, successful unperturbed transport of
the approximately linear momentum chirp through the
15 m dogleg section on the ATF beam line requires control
of the horizontal dispersion. This is accomplished through
effective use of symmetrically placed quadrupoles, and the
implementation of sextupole corrector magnets in regions
of large dispersion. The results of this optimization can be
seen in Fig. 9, which shows an ELEGANT simulation of the
longitudinal trace space distribution 9(a) before and 9(b)
after the dogleg section of the ATF beam line.

Here, the beam is run back of crest, giving it a negative
momentum chirp and a 3% full momentum spread. This
momentum spread, which is larger than that which can be
transmitted through a collimating region of the beam line
after the initial bend, was chosen to give a certain value of
the chirp (dp=dz). This chirp leads to both compression in
transport and the desired correlation between FEL radia-
tion wavelength and longitudinal position in the pulse.
Approximately 2% momentum spread may pass the colli-
012801
mators, however, corresponding to nearly a 40% loss in
beam charge.

The components of the beam which are lost are ones
which would yield low gain, and also are afflicted with
undesirable nonlinear z-	 correlations, as can be seen in
Fig. 9(a). With the use of sextupoles, the nearly linear chirp
in the transmitted component of the beam is successfully
preserved, and enhanced in amplitude, during transit
through the beam line. Note that there is a significant
longitudinal decompression due to the dogleg’s negative
R56, which in this configuration has a value of �1:6 cm.
The peak current is enhanced by a factor of approximately
3 by this effect, as is the amplitude of the linear chirp after
negotiation of the dogleg.
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