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Stray electrons can arise in positive-ion accelerators for heavy-ion fusion or other applications as a
result of ionization of ambient gas or gas released from walls due to halo-ion impact, or as a result of
secondary-electron emission. We summarize the distinguishing features of electron-cloud issues in
heavy-ion-fusion accelerators and a plan for developing a self-consistent simulation capability for
heavy-ion beams and electron clouds (also applicable to other accelerators). We also present results from
several ingredients in this capability. (1) We calculate the electron cloud produced by electron
desorption from computed beam-ion loss, which illustrates the importance of retaining ion reflection
at the walls. (2) We simulate the effect of specified electron-cloud distributions on ion beam dynamics.
We consider here electron distributions with axially varying density, centroid location, or radial shape,
and examine both random and sinusoidally varying perturbations. We find that amplitude variations are
most effective in spoiling ion beam quality, though for sinusoidal variations which match the natural
ion beam centroid oscillation or breathing-mode frequencies, the centroid and shape perturbations can
also have significant impact. We identify an instability associated with a resonance between the beam-
envelope “breathing” mode and the electron perturbation. We estimate its growth rate, which is
moderate (compared to the reciprocal of a typical pulse duration). One conclusion from this study is that
heavy-ion beams are surprisingly robust to electron clouds, compared to a priori expectations. (3) We
report first results from a long-time-step algorithm for electron dynamics, which holds promise for
efficient simultaneous solution of electron and ion dynamics.
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L. INTRODUCTION

Heavy-ion fusion (HIF) entails the acceleration of
beams of heavy ions to drive inertially confined fusion
targets. The mainline approach in the U.S. envisions the
use of induction linear accelerators to accelerate multiple
beams of ions from an energy of the order of 1 MeV and a
current of order of an ampere per beam, with a pulse
duration (time to pass a stationary observer) of 10’s of us,
to an energy of the order of few GeV, a current of order of
1 kA/beam, and a duration of ~10 ns.

Like other positive-charge-particle accelerators, an ac-
celerator for HIF is subject to contamination by stray
electrons, which can be electrostatically trapped by the
ion beam potential. This is a phenomenon that has been
documented in a range of positive-charge-particle accel-
erators dating back to the 1960’s [1]; see Refs. [2,3] and
references therein. The common concern is that the elec-
tron cloud is an uncontrolled negative charge that can
alter the ion beam dynamics, possibly leading to beam
deflection, increased beam emittance, envelope size, and
halo, and also potentially electron-ion instabilities. On
the other hand, HIF has a number of distinguishing
features that impact both the nature and the modeling of
electron clouds.
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In this paper we survey the distinguishing features of
HIF for electron clouds, discuss an outline of a self-
consistent simulation capability for ion beams in the
presence of electron clouds, based on the WARP particle
simulation code [4], and present results from two simula-
tion studies: the electron cloud produced by electron
desorption from ion beam loss, and the effect of specified
electron clouds on ion beam dynamics. In the course of
presentation of the latter study, we identify an instability
associated with ion beam loss. We also briefly present first
results from a long-time-step algorithm for electrons
which may greatly facilitate simultaneous electron and
ion simulation; this algorithm will be presented in more
detail in a separate paper.

The remainder of this paper is organized as follows:
Sec. I is a summary of the relevant distinguishing fea-
tures of heavy-ion induction accelerators, their conse-
quences for electron-cloud physics, and our plan for
self-consistent electron-cloud simulation. In Sec. III we
present results for the electron cloud obtained from a
chain of calculations that represent a number of the
ingredients in our plan. Section IV is devoted to our
studies of the effect of prescribed electron-cloud pertur-
bations on ion beam quality. Section V discusses a beam-
loss instability suggested by the results of Sec. IV, and
develops an estimate of the (self-consistent) growth rate
based on the results from the (non-self-consistent) study
of Sec. IV. Section VI revisits the electron-cloud simula-

© 2004 The American Physical Society



R. H. COHEN et al.

Phys. Rev. ST Accel. Beams 7, 124201 (2004)

tion of Sec. III, but with the long-time-step algorithm
mentioned above. Section VII is a summary and discus-
sion of our results.

It should be noted at this point that, while the simula-
tion tools and road map described in this paper were
developed with the distinguishing features of HIF accel-
erators in mind, and the applications described are HIF
motivated, the tools themselves have applicability to a
broad range of positive-charged-particle accelerators.
With the addition of photoemission, the plan discussed
in Sec. II (and being implemented in the WARP code)
would be applicable to any of the accelerator configura-
tions for which electron-cloud issues have been raised in
recent conferences [2,3].

IL. DISTINGUISHING FEATURES OF HIF
INDUCTION ACCELERATORS

Induction accelerators for heavy-ion fusion have a
number of features that distinguish them from accelera-
tors for other applications, such as high-energy physics.
We summarize here those that are relevant to electron-
cloud issues. We refer here to the mainline approach in the
U.S., which is based on induction linacs with magnetic
quadrupole focusing.

These accelerators are linear machines, with a high
line-charge density and perveance (high enough that
space charge dominates over emittance as the principal
defocusing mechanism). The pulses are rather long—
multi-us at the injector end, compressed to a fraction of
a us at the high-energy end, and then compressed to a
duration on the order of 10 ns before entering the target
chamber. As a consequence of these features, the electron
transit time across a beam pipe is small compared to the
beam transit time. Hence the electron multipactor process
common in short-pulse circular machines, where the
electron transit time resonates with the pulse repetition
time, is not an issue. On the other hand, a long-pulse
multipactor process is possible on the trailing edge of
the beam: electrons transiting the beam gain energy due
to the decreasing beam potential, possibly leading to
energies where the secondary-emission coefficient ex-
ceeds unity and therefore exponentiation of the electron
density. HIF beams are intended to have a long flattop.
Hence multipactoring, if it occurs, should be confined to
the short tail section.

Another important distinguishing feature is that there
is an economic mandate to maximally fill the beam pipe.
(It is desired that the peak semimajor axis of the elliptical
beam be 60%—-80% of the pipe radius). Hence, any un-
anticipated defocusing effects (for example, from an
electron cloud, or from magnet misalignment) will lead
to beam scrape-off, and the electrons resulting from
direct emission or from ionization of desorbed gas be-
come a concern. Indeed, electron-cloud effects may set
the limit for beam fill.

HIF induction accelerators have a relatively large frac-
tion of their length occupied by quadrupole magnets—
50% or more at the injector end. For this reason (and
because a dominant source of electrons is localized
there), electron dynamics in the quadrupoles plays a
major role.

Heavy-ion accelerators have a large neutral desorption
coefficient—typically of order 10* per lost ion [5,6].
Particularly for the long pulses at the injector end of an
accelerator, this can make ionization of desorbed neutral
gas the dominant source of electrons.

Induction accelerators have beam pipes in the magnet
sections and not in the accelerating gaps in between; also
the varying ellipticity of the beam is maximum within
the magnets. Hence desorption is confined to the quadru-
poles. The beam space charge potential is typically large
(a few kV at the injector end) compared to the birth
energy of electrons from ionization or desorption, but
smaller than the potential across an accelerating gap.
Consequently, most electrons born from ionization of
desorbed gas are magnetically confined against motion
in the beam direction and trapped by a deep potential well
and magnetic mirror forces in the transverse plane. (The
exceptions are the very few electrons born right at the
wall or very close to the magnetic field null) These
electrons bounce transversely and slowly drift under the
combined influence of magnetic and electric drifts in the
beamwise (or counterbeamwise) direction. In the plane
transverse to the beam, the electrons tend to be concen-
trated within the beam cross section, since that is where
they are born and the beam potential is attractive for
them.

The drift time 7, ~ L,/(vg + vg), where L, is the
quadrupole length, vy is the E X B drift velocity, and
vp is the magnetic (VB and curvature) drift velocity, is
typically a fraction of the (fixed-station) pulse duration,
for characteristic parameters such as those listed in
Appendix A. Hence, before the pulse is over, electrons
can drift out of a quadrupole. Electrons in two quadrants
of the quadrupole will exit backwards (relative to the
beam propagation) into an accelerating gap, and be accel-
erated sufficiently to escape the beam potential. These
electrons will tend to get lost upon encountering the
fringe field of the next quadrupole. Electrons in the
remaining two quadrants exit forward into an accelerat-
ing gap, and then bounce longitudinally between the
quadrupole and the (decelerating) gap field, until they
have moved transversely into a quadrupole field quadrant
where the drift is back into the quadrupole. These elec-
trons then drift back through the quad and get lost after
traversing the next gap. The net result is that the lifetime
for all electrons is of the order of the time to drift through
a quadrupole. This succession of events is illustrated by
the orbit calculation shown in Fig. 1. A consequence of
these processes is that the electron density will be largely
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FIG. 1. (Color) Orbit of test electron initialized in a quadru-
pole magnet. Electron is initially magnetically and electrostati-
cally trapped, drifts into an accelerating gap, is accelerated

(backwards from beam), and escapes in fringe field of next
quadrupole.

confined to the quadrupoles, and be larger, by about a
factor of 2, in the quadrants where the drift is counter to
the beam direction. Also the electron density in a quad-
rupole will depend mainly on the sources in that
quadrupole.

For a transport section (no acceleration in the gaps), the
same confinement and drift processes described above
will lead to a random walk of electrons from magnetic
quadrupole to magnetic quadrupole. Since the time to
drift out of a quadrupole 7, is long compared to the
time to transit a gap (at the electron thermal speed), the
electron lifetime is of the order of the time to random
walk out of the quadrupole system, 7 ~ N(?Td, where N,
is the number of quadrupoles, or the pulse duration
(whichever is shorter). In the absence of sinks in the
quadrupoles, the density contrast between quadrupoles
and gaps will not be as large, and sources in one quadru-
pole impact the density in its neighbors. Since, for times
of interest, buildup from ionization of desorbed gas is not
a steady-state process (1,  ¢* for times t < 7), there is a
surviving density contrast and quadrupole-to-quadrupole
independence which requires solution of the time-
dependent axial transport problem to quantify.

For shorter pulses (for example, at the high-energy end
of the accelerator), desorbed neutral gas does not have
time to penetrate deep into the beam interior, in which
case electron desorption at the wall can become the
dominant source. We take, as the criterion for “‘shorter,”
that an average-speed neutral not have time to travel

halfway from the wall to the pipe center, ie., Ty <K
r,/2v,, where r, is the pipe radius and v, is a typical
neutral speed; for r, ~ 3 cm and ~1 eV atomic hydrogen
(as one might expect for electronic sputtering), this be-
comes Ty <K 1.5 us. Because the elliptical distortion
of the beam envelope in the quadrupole focusing system
results in scrape-off primarily at locations which are
axially well within a quadrupole magnet, but at wall
locations where magnetic field lines are nearly tangent
to the walls (see Fig. 2), the resulting electron cloud will
be concentrated mainly at the edge, as will be seen in the
calculations in the next section. The nominal lifetime for
such electrons is one transit during the beam flattop, as
they are born at the wall with some finite speed along the
field line, and so can reach the wall at the opposite end of
the field line. But secondary electron production, trapping
due to nonadiabatic pitch-angle scattering [7] or due to
interaction with fluctuations in the beam potential could
increase this lifetime (with the nonadiabatic scattering
being particularly effective for the few electrons born on
field lines that penetrate deep into the beam center).
Desorbed neutral gas is also concentrated in the same
regions for this short-pulse case, and hence electrons
produced from its ionization will have a spatial distribu-
tion resembling that from direct electron desorption; but
these electrons are born trapped in the combined electro-
static and magnetic wells of the beam and the magnet.
We conclude this section by noting that a quantitative
description of the electron cloud in an HIF accelerator
and/or its effects on the ion beam requires a self-
consistent (simultaneous) calculation of the electron and

FIG. 2. (Color) Sketch of magnetic field lines and elliptical
beam envelope in a quadrupole magnet.
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ion dynamics. Because beam scrape-off is a significant
(dominant) electron source and because of the long pulse,
electron-ion interaction affects the electron source. This
is not the case for short-pulse, small fill-factor accelera-
tors (e.g., for high-energy physics) where ionization of
background ambient gas and photoelectron production,
followed by electron multipactoring, are responsible for
electron cloud buildup; in such a case a sequential chain
of calculations may suffice: calculate the primary electron
sources; calculate buildup from multipactoring and dis-
tribution from electron dynamics; calculate the impact of
this time-evolving cloud on the ion beam.

The fully self-consistent simulation required for HIF
accelerators is challenging because of the need to deal
with electrons both in the quadrupole magnets and be-
tween quadrupoles. In the combined magnetic and
beam-potential fields, one cannot analytically integrate
electron orbits, and hence one must be able to deal with
time scales ranging from the electron-cyclotron period
(1071-107!"'5) through the ion beam transit time
(1075-10"7 s). The multiplicity of electron sources is
also a complication.

One approach to addressing this self-consistent model-
ing challenge is through a coupled set of simulation
modules, as depicted in Fig. 3. This is the approach being
taken in extending the WARP code. The preexisting WARP
code solved for the self-consistent beam-ion distribution
function and beam potential. The beam distribution func-
tion at the wall becomes input for calculations of desorbed
electrons and gas [8], and reflected ions. The gas module
must track desorbed gas and that from the ambient back-
ground, in the presence of charge exchange and ionization
events (which in turn depend on the volumetric beam
distribution). The wall electron source includes electron
desorption and secondary emission, and to this must be

added the volumetric source from ionization. The subse-
quent electron dynamics must be followed (including
sinks at bounding surfaces), and its charge density depos-
ited on the simulation grid and fed back into the ion
simulations. In order to simultaneously simulate electrons
and ions without the huge computational burden of time
stepping on the electron-cyclotron time scale, we have
developed a scheme to interpolate between full electron
dynamics and the drift approximation; this will be de-
scribed in Sec. VI and in more detail elsewhere. The
current status of the various modules is indicated by the
color coding in this figure.

III. ELECTRON-CLOUD ACCUMULATION
SIMULATIONS

As an example of our current capability, we show
calculations of the electron cloud resulting from desorp-
tion of electrons when primary and secondary (scattered)
ions strike the walls. The simulation was done for a 100
lattice-period (200 quadrupoles) transport system, with
parameters similar to compact magnetics designed for
future application in the High-Current Experiment
(HCX) [9] at Lawrence Berkeley National Laboratory.
Each magnet is identical, and represented by gridded field
data from a 3D magnet calculation. The magnets are
10.2 cm long and have a radial field gradient of
90.51 T/m at the axial midplane of the magnet. The
gaps between focusing and defocusing quadrupoles alter-
nate in length between 6.1 and 18.5 cm (“‘syncopated
doublet™ lattice), giving a total lattice period of 45 cm.
The beam is taken to be bounded by a circular-cross-
section beam pipe, with radius 2.95 cm. Simulation par-
ticles that reach the pipe wall are removed from the
computation or scattered as described below. A list of

WARP ion PIC, I/O, dul
field solve gas module
e l
foeams P, geOM. o wal penetration ambient
from walls
fb,waII IOV
wall (volumg{etrlc U
ionization)
esl’gﬁtrré)en electron " oniz. charge exch.
source
(I) A
> electron dynamics —
(full orbit; drift)
n

e

FIG. 3. (Color) Plan for self-consistent modeling of electron cloud and ion beam. Modules in red are presently operational in WARP
code; modules in magenta are implemented and being tested; modules in blue are partially implemented; modules in black are

being developed off-line.
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beam, lattice, and simulation parameters is given in
Appendix A.

This simulation was done through a sequence of cal-
culations, as follows. First, a WARP “‘slice” simulation
[following 400 000 ions in a two-dimensional transverse
slice (in x, y) of the ion beam through the lattice] was
done for a 2 MeV potassium beam. The magnets were
deliberately slightly misaligned (random transverse dis-
placements of 500 um) to exaggerate beam halo scrape-
off. Data were gathered for beam ions impacting the wall
(6282 ions). The TRIM surface Monte Carlo code [10] was
run to generate a population of 3629 scattered ions. The
scattered ions were inserted into a three-dimensional
WARP simulation and followed until their next wall im-
pact. For both the primary and secondary ion impacts, the
number of electrons desorbed was calculated using a fit to
the experimental data from Ref. [6], n,(= u?/{u®)) X
min(6/ cos¢, 130), where (u?) is the average of the
square of the velocity of the lost primary ions, u is
the speed of the lost ion under consideration, and ¢ is
the angle between the normal to the surface and the
velocity of the incident ion. A single particle with a
weight given by the above expression is then introduced
into WARP. The speed distribution is taken as uniform out
to 8 eV, and the angular distribution goes as cos(6), where
0 is the angle between the normal to the surface and the
velocity of the emitted electron. The resulting electron
population is followed in WARP (3D) for 4000 time
steps, where the time step is chosen to be 1/4 the cyclo-
tron period at the wall, enough for several electron boun-
ces. Electrons that reach the wall are considered as lost
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and removed from the calculation. The time-integrated
electron charge density is formed by incrementally de-
positing the weighted electron charge density onto the
grid.

The three-dimensional results for the electron density,
projected on to a two-dimensional plane transverse to the
beam, are shown in Fig. 4 keeping only the electrons
from the primary (beam) ion loss, and in Fig. 5 keeping
the electrons desorbed from loss of both the primary and
scattered ions. We see that, without the scattered ions,
virtually all of the electron density is located at the edge
near the 0, 90, 180, and 270 degree points. This is because
all of the scrape-off of ions occurs near the tips of the
elliptical beam envelope midway through each quadru-
pole magnet (see Fig. 2). If we add ion scattering, some
ions scatter so as to next impact the wall at field lines
which penetrate deep into the interior, as sketched in
Fig. 6. A scattered-ion angular distribution from TRIM is
shown in Fig. 7. While the distribution peaks for scatter-
ing in the plane formed by the incident ion trajectory and
the wall, there is a small but significant tail of scattering
well out of this plane. Keeping the electrons produced by
scrape-off of this tail results in the electron cloud shown
in Fig. 5. While the electron density is still peaked near
the wall at the four azimuthal angles noted above, there is
now a significant density everywhere.

We have recalculated the electron density using the
long-time-step interpolated electron mover mentioned
above and obtained almost identical results, which will
be presented, along with a brief description of the mover,
in Sec. VL.

T T T T ]—

L 0.038217
1l [ 0.019009
1l F0.0094547
1l [ 0.0047026
- [ 0.002339
L 0.0011634
L 0.00057866
0.00028782
0.00014316
7.1204x10°5
"I 3.5416x10°5
1.7615x10°
B 8.7616x10°6
4.3579x10°6
2.1676x10€

FIG. 4. (Color) x-y projection of electron cloud density retaining only electrons desorbed by primary beam-ion impact at walls.

124201-5



R. H. COHEN et al.

Phys. Rev. ST Accel. Beams 7, 124201 (2004)

0.02

-0.01

10.038476
10.019137
£0.0095187
£0.0047345
£0.0023549
£0.0011713
10.00058258
0.00028977
0.00014413
7.1686x10>
3.5656x105
1.7735x10°
8.8209x106
4.3874x10°
2.1822x10°
0

FIG. 5. (Color) x-y projection of electron cloud density retaining electrons desorbed by impact of primary beam and scattered ions

at walls.

It is interesting that there is a small local maximum
near the center of the pipe. We believe this feature is not a
statistical fluctuation, as it has occurred each time we
have run the problem (as our scattered-ion model and our

FIG. 6. (Color) Sketch of magnetic field lines and elliptical
beam envelope in a quadrupole magnet; the arrow depicts
scattering of primary beam ion.

beam scrape-off diagnostic have both evolved). It also
occurs for both our small-time-step and interpolated
electron movers. It is contrary to what one would expect
for electrons born at the wall and strictly following mag-
netic field lines which spread (defocusing the electrons)
as they approach the center. We tentatively attribute this to
nonadiabatic scattering [7], which preferentially affects
electrons that pass close to the center and can transiently
trap electrons in the magnetic well.

IV. EFFECT OF MODEL ELECTRON CLOUDS
ON ION DYNAMICS

We describe in this section a set of studies consisting of
WARP slice simulations in which we have added a speci-
fied, frozen-in-time, negative charge distribution which
represents the electron cloud. Such a model has the ob-
vious deficiencies of being non-self-consistent and ignor-
ing all electron dynamics. Nevertheless, it is useful for
providing an indicator of the sensitivity of ion beams to
the presence of electrons and hence estimates of tolerable
electron levels, and also for illuminating important
electron-ion interaction mechanisms, as will be seen.

A fixed-charge model is in some respects equivalent to
modifying the external focusing of the beam. But this
analogy is of limited utility. We will be exploring the
effects of various spatial variations in the electron-cloud
distribution. In all cases the model electron cloud is of
finite radial extent. Thus the effects could not be repro-
duced by simply changing the currents in the focusing
magnets.
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FIG. 7. (Color) Scattered ion distribution versus angle out of plane of incident ion, for two thousand 1.8 MeV K* ions incident on

1 pm stainless steel at 89°.

As noted in Sec. II, the predominant source of elec-
trons for long pulses in HIF accelerators is most likely to
be ionization of desorbed neutral gas. If the pulse duration
is long enough that neutrals released from the walls
penetrate deep into the beam interior, then electrons
born from ionization of these neutrals will have a density
distribution that is sizable where the ion beam density is
large. Also, electrons born from ionization of ambient gas
will fall within the beam cross section. For constant
neutral density, the electron source function would just
be proportional to the ion density; the actual electron
density would not be, because of the subsequent electron
bounce motion in the combined magnetic and potential
wells. But certainly the electron density would be con-
centrated within the beam envelope. Also as noted in
Sec. 11, for electrons from desorbed neutrals, the electron
density will be large within quadrupoles compared to that
between quadrupoles if there is acceleration or another
loss mechanism in the gaps.

In light of the above considerations our base model
electron distribution is chosen to be a constant charge
density transverse to the beam direction out to the (ellip-
tical) beam envelope boundary, and axially constant
within the nominal axial extent of a quadrupole magnet,
but zero outside of these limits. The base case also has the
constant charge density the same in each quadrupole. The
beam envelope is calculated in the absence of any electron
cloud. We run ion beam simulations with this base model,
and with a number of perturbations added to this distri-
bution. These are (i) electron density varying from quad-
rupole to quadrupole (but constant within a quadrupole);
(i1) centroid of the electron cloud displaced by an amount
which is constant within a quadrupole but varies from
quadrupole to quadrupole; (iii) addition of a radially

parabolically varying (zero-volume-integrated) density
contribution,  8n, ~ const X [(x/a)*> + (y/b)> — 1/2],
where a and b are the envelope semiaxes (versus z), and
the constant, which can be positive or negative, is con-
stant within a quadrupole; this perturbation allows the
electron cloud to be peaked or hollow; and (iv) addition of
extra stretching along one transverse axis and shrinking
along the other transverse axis of the electron-cloud
envelope, by a factor that is (again) constant in a quad-
rupole but varying from quadrupole to quadrupole. We
consider two types of axial variations: (a) random from
quadrupole to quadrupole; and (b) sinusoidally varying
from quadrupole to quadrupole [except that we have not
done random perturbations of the elliptical distortion,
i.e., type (iv)]. In the case of the centroid variation, for
the random cases we let the direction of displacement also
be random; for sinusoidal cases, the centroid rotates (with
fixed fractional displacement relative to the envelope) as
one progresses from quadrupole to quadrupole.

Each of the types of perturbations represents a compo-
nent of variability we can expect in accelerators, as there
can be differing amounts and shapes of halo, ion-beam
centroid displacements, and shifts in the relative amounts
of electrons from gas ionization versus from secondary
emission. These variations result from differences in wall
conditions, magnet or beam misalignments, and natural
oscillations of the beam. The types of random variations
are representative of what might be expected from ran-
dom alignment errors, random changes in wall condi-
tions, and random errors in excitations of magnets. The
sinusoidal variations are chosen to explore electrons
from, and possible resonance with, breathing, centroid
oscillation, and quadrupole oscillation modes of the
beam. The sinusoidal cases can be viewed as an extreme
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upper limit on what might be expected from natural
variations in beam scrape-off for a properly tuned
beam; on the other hand, if a natural mode of the beam
is excited, due to some beam detuning (perhaps from the
electron cloud itself), then one might expect a resonant,
sinusoidally varying component to the electron cloud.
The sinusoidal studies should also provide an indication
of the ion beam degradation that may be expected to
accompany an electron-ion instability which has grown
to the specified level of electron perturbation (should such
an instability exist in the studied wavelength regime).

All simulations are run for a 2 MeV potassium beam
through the same 100-lattice-period quadrupole magnet
system described in the preceding section.

For this case of no acceleration, the spatial frequencies
for the various beam modes (centroid oscillations, breath-
ing mode, quadrupole oscillations) are easily derived in a
continuous-focus approximation; the frequencies for
these modes are defined and evaluated, including the
effects of the electron space charge, in Appendix B. For
the sinusoidal cases we vary the frequency in the vicinity
of the nominal resonant frequency to search for a reso-
nance with the beam mode.
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In our base case, the electron density in each quadru-
pole is constant within the beam envelope, and the con-
stant density is the same from quadrupole to quadrupole.
The magnets are tuned for a matched beam with no
electrons. We show, in Fig. 8, results (an x-y scatter plot,
beam current, emittance for various beam fractions, and
envelope versus axial position z) for the base case with an
electron density n, that is 20% of the nominal beam
density n, (nominal meaning where the envelope is cir-
cular). Even for such a large electron density, there is little
beam degradation: a small growth in the emittance, but
no observable envelope growth or beam loss. This might
have been anticipated; referring to the previously noted
rough analogy to modified external focusing, a constant
20% change in external focusing would have resulted in
some beam mismatch, but probably not enough to pro-
duce significant emittance or envelope growth.

Figures 9-11 show the results for various types of
random perturbations. For all cases, the random compo-
nent is equal in peak magnitude to the constant compo-
nent. Hence the electron density for the 20% mean case
varies from 0 to 40% of the beam density; for axis
displacements, the centroid varies from zero to the nomi-
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FIG. 8. (Color) Results for fixed 20% electron density in each magnetic quadrupole: (a) x-y scatter plot of ions near end of magnet
array; (b) beam current versus axial position; (c) emittance in x plane versus axial position for various percentages of the beam
current enclosed by nested ellipses in phase space (90% to 100% in 1% increments); (d) x and y envelope semiaxes (the rms extents

times two) versus axial position.
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FIG. 9. (Color) Results for random amplitude fluctuations, with 20% mean electron density and 100% modulation. (a)—(d) have

same significance as in Fig. 8.

nal envelope half-width; for transverse shape variations,
the maximum density variation is from zero to double the
nominal electron density. These are, obviously, extreme
variations. For all cases the shown x-y scatter plot repre-
sents a “‘typical bad slice” chosen from near the end of
the simulation. The choice of which plot to show is
arbitrary; we pick a case with a relatively large, and in
some sense interesting, halo. As is evident, the random
amplitude case is the most effective in degrading the
beam; a 20% mean electron density leads to a loss of
10% of the beam over the 100-quadrupole system.
Examination of the set of plots in Fig. 9 indicates that
the major incidents of beam loss are associated with
periods where the beam envelope is especially large and
in fact close to the wall, and also that the emittance grows
at about the same z locations. This emittance growth is
limited to the outermost class of ions, which experience
anharmonic forces outside of the boundary of the model
electron cloud. The number of ions experiencing such
anharmonic motion is biggest where the envelope has
its greatest extent. We expect that an integration of enve-
lope equations with an appropriately modified charge
density would yield similar results for the envelope
evolution.

Figures 10 and 11 indicate that random offsets and
random beam shape variations are considerably less ef-
fective than random amplitude variations in degrading

beam quality, especially for the outermost ions. One
might have supposed that these sorts of perturbations
would be particularly effective in coupling to centroid
oscillations and breathing modes of the beam, but appar-
ently this is not the case.

Since the worst type of random variability is amplitude
variations, it is of interest to determine how beam deg-
radation depends on the size of this variation. Hence we
have performed a scan in this parameter. In all cases the
mean and fluctuating components are varied together
(100% modulation). We have also done selected cases
with different constant components and found little dif-
ference. In fact the constant component can be com-
pletely eliminated with little change; the variable
component is what matters. (This is consistent with the
20% constant electron-density case producing little effect
on the beam.) Figure 12 shows the results of this scan for
beam current loss. Roughly, it appears that the beam
current loss scales as about (n,/n,)? with p about 3.5—
4, but saturates at about 10% beam current loss for 15%
n,/n,. We have not explored higher fractional electron
densities. If there is a saturation, it may be related to an
observation about the 20% n,/n, case: there is rapid
envelope growth and loss of about a percent of the
beam in the first fifth of the magnet system, but thereafter
the beam anneals and the subsequent history is very
similar to the 15% case.

124201-9



R. H. COHEN et al.

Phys. Rev. ST Accel.

Beams 7, 124201 (2004)

0.02

0.00

-0.02

x-x" RMS edge emittance

0.810

T T T T T

 (b)

PR S SR RS |

)

o
=
(%))

0,010 §

X,y envelopes (m

50
Lattice Periods

MR B SR B VA 1

1

x|
T IR MY

100 0 10 20 30 40

FIG. 10. (Color) Results for random electron-cloud centroid shifts, with 20% mean electron density and shifts out to 100% of the
envelope radius. (a)—(d) have same significance as in Fig. 8.

0.02 |-

0.00

-0.02

x-x" RMS <gdge emittance
&)

o
o

8.100
8000

co00_8.095
(=)

4000 «= 8.090

Current (A x 1

2000

8.085

T T T T T T T

il TS S TS S RS E

P ) L e S s e e s S R s B S

50
Lattice Periods

FIG. 11. (Color) Results for random electron-cloud radial shape variations, with 20% mean electron density and 100% modulation
(radial density variation from as little as zero to as much as twice the mean). (a)—(d) have same significance as in Fig. 8.

124201-10



ELECTRON-CLOUD SIMULATION AND THEORY FOR ...

Phys. Rev. ST Accel. Beams 7, 124201 (2004)

10

beam current loss (percent)

! L L L L | L L PR S R T
5 10 15 20

<”e>/”b

FIG. 12. Fractional beam loss versus rms electron density
variation, which in all cases is the same as the mean electron
density and in all cases is normalized to the beam density.

Next we turn to the sinusoidally varying cases.
Figure 13 shows the fraction of beam loss versus pertur-
bation wavelength, normalized to the lattice period. This
is for sinusoidally (versus quadrupole number) varying
density, with three values (2.5%, 4%, 5% of the beam
density) for the mean electron density. We see that there is
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FIG. 13. (Color) Fractional beam loss versus perturbation wave
number for electron cloud density that varies sinusoidally with
quadrupole number. Mean electron density is 5% (solid curve),
4% (dashed curve), or 2.5% (dotted curve) of central beam
density, and modulation is 100%. Wave number is normalized to
inverse of lattice period.

a sharp maximum, close to the nominal breathing-mode
resonance, corresponding, for 5% mean density, to a
beam loss of 28%. We notice that the loss is comparable
to the 20% mean randomly varying amplitude case. From
the maxima of the three curves, one can infer that the
current loss is roughly scaling as (n,/np)?, with
p ~ 2.3-2.6.

Figure 14 shows the x-y scatter, emittance growth,
envelope growth, and beam current at the peak of the
5%-density resonance curve of Fig. 13. Note, we have
repeated this simulation (at a fixed perturbation wave-
length) for several different initial phases of the sinusoi-
dal perturbation. This was done to determine whether the
impact on the beam was the result of a coincidence of an
existing beam oscillation phase and the perturbation
phase, or the result of the electron-cloud perturbation
resonantly driving beam envelope oscillations. While
the results differ in detail, the macroscopic results—in-
cluding the net degradation of beam current, emittance,
and envelope—were similar, suggesting that the electron
cloud resonantly drives the beam envelope oscillations.
One can in fact calculate secular spatial growth from
linearized beam envelope equations with a driving sinu-
soidal perturbation in the beam perveance; the spatial
growth rate agrees to within about a factor of 2 with the
simulation results (the simulation grows more slowly). We
will discuss the envelope calculation further in the next
section. There are several effects which may contribute to
the residual discrepancy: the analytic calculation assumes
an electron density which varies sinusoidally in z,
whereas the model electron distribution in the simulations
is constant within a quadrupole magnet, and zero in the
gaps between magnets. The analytic calculation models a
fractional electron density perturbation by multiplying
the perveance by that fraction, which is not correct
once the ion envelope shape departs from its electron-
free form. And finally, in the kinetic simulation, all
characteristic frequencies are spreads about a mean, tend-
ing to decrease coherence compared with envelope
calculations.

Figures 15 and 16 show the quantities corresponding to
Figs. 13 and 14 for a radially varying electron cloud shape
(still resonant with breathing modes). In this case the
mean electron density is 10% of the ion beam density.
Again there is a sharp maximum versus perturbation
frequency. We notice that the maximum beam loss for
this case is smaller than that for amplitude variations
(even at the larger mean electron density), but is still
larger than any of the random variations studied.

Figures 17 and 18 show the corresponding quantities for
when the electron-cloud centroid is varied sinusoidally at
frequencies in the vicinity of that for centroid oscillations.
Again, the electron density in the cloud is 10%. Once
again a resonance is found, with a peak beam current loss
about a third of that for the radial shape variation reso-
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FIG. 14. (Color) Results for sinusoidally varying electron density at the peak of the 5% curve in Fig. 13. (a)—(d) have same
significance as in Fig. 8.
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FIG. 15. (Color) Fractional beam loss versus perturbation wave number for electron-cloud radial shape that varies sinusoidally with

quadrupole number. Electron density has a mean of 10% of central beam density and at peak of sine varies from zero to twice the
mean. Wave number is normalized to inverse of lattice period.
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FIG. 16. (Color) Results for sinusoidally varying radial shape of electron density at the peak in Fig. 15. (a)—(d) have same
significance as in Fig. 8.
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FIG. 17. (Color) Fractional beam loss versus perturbation wave number for electron cloud offset that rotates sinusoidally with
quadrupole number. Electron density is 10% of central beam density and offset is local envelope radius. Wave number is normalized
to inverse of lattice period.
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nance, and still larger than any of the random variations  resonance is with quadrupolar distortion modes of the
at comparable electron density. ion beam. Again there is a distinct resonance, but the

Figures 19 and 20 show the corresponding quantities  effect on the ion beam, as measured by beam loss, is
for factor of 2 variations in the ellipticity, again for = the weakest of the resonant interactions considered—
electron density 10% of the beam density. Here, the  only around 4%. On the other hand, the effect on the
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FIG. 19. (Color) Fractional beam loss versus perturbation wave number for electron cloud elliptical distortion that varies sinus-

oidally with quadrupole number. Electron density is 10% of central beam density. Maximum enhancement or degradation of
ellipticity is a factor of 2. Wave number is normalized to inverse of lattice period.
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FIG. 20. (Color) Results for sinusoidally varying ellipticity of electron cloud at the peak in Fig. 19. (a)—(d) have same significance

as in Fig. 8.

emittance is significant, and it penetrates farther in from
the edge of the beam; this is in marked contrast to all of
the other perturbations, where emittance growth resulted
mostly from the outer few percent of beam particles.

We note that, for sinusoidal amplitude variations, there
was no discernible resonance when the frequency was
scanned through the range of the centroid and quadrupole
resonances. This is in marked contrast to the observations
of Figs. 13 and 14. This is expected: the transverse-plane
symmetry of the amplitude variation implies that this
perturbation cannot couple to centroid oscillations or
quadrupole-mode envelope oscillations, but can effec-
tively couple to breathing envelope modes.

V. DESORPTION INSTABILITY

The observation that sinusoidal amplitude variations
produce especially strong beam current loss suggests the
possibility of an instability associated with desorption
and subsequent ionization of gas following this resonant
beam loss. The scenario is that an electron-cloud varia-
tion that is resonant with breathing leads to enhanced
desorption and ionization, and since the axial motion of
the resultant electrons is limited by the quadrupole mag-
netic fields, the incremental electron density will have the
correct wave number to be resonant with the beam. Given
sufficient coincidence of phases, the initial perturbation

will grow, giving instability. Because of the stationarity
of the electron perturbation, constant wave number is not
required for the instability to exist; hence it could occur
in an accelerating beam.

To analyze this possibility, we examine linearized
equations for the beam envelope following Refs. [11,12].
We restrict attention here to a coasting beam. In the
smooth focusing approximation, the mean values of the
beam envelope functions X(z) and Y(z) follow the equa-
tions

20 g’
X" + 13X — - = 1
x+y Xx3 0 M
vy - 22 % g )
o Xx+y Yy} 7

where Q is the beam perveance, ¢ its emittance, and k is
the wave number for a single particle oscillating in the
lattice and is related to the strength and geometry of the
lattice quadrupoles. k is also the natural wave number of
oscillations for the beam centroid. The perveance Q is
defined as

R L. )

= 5
2meymu;

where ¢ and m are, respectively, the charge and mass of
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the beam particles, v, is the average axial beam velocity,
I is the beam current, and g, is the permittivity of
vacuum.

We linearize these equations for breathing-mode (axi-
symmetric) perturbations, X = Y = R + X, where & is the
envelope amplitude perturbation, to obtain

R 2

X"+ kyx nbﬁne’ (@]
where k;, is the wavelength for breathing oscillations
(defined in Appendix B). In deriving this equation we
have made use of the fact that the perveance is linearly
proportional to the beam current and hence to the total
charge density, so that the perveance perturbation is just
—Qif,/n,. Also, in this equation the prime (') means
differentiation with respect to the axial coordinate z for
a particular beam slice, i.e., for a fixed z — v,t.

We note at this point that one can use Eq. (4) to derive
the response of the envelope to a specified electron den-
sity perturbation, such as used in the studies in the
preceding section. We did this for a resonant sinusoidal
density perturbation; this led to an estimate of the enve-
lope growth that was about twice as big as the simulation
result shown in Fig. 14, as reported in the preceding
section.

We proceed with our instability analysis by relating 7,
to the envelope growth. Specifically, we take

e nypitgo vy = i/ Te, (5)

at
where 71 is the neutral density perturbation (averaged
over the beam), and 7, is the electron perturbation loss
time. Following the discussion in Sec. II, this time would
be of order of the time to drift through a quadrupole 7,
for the case of acceleration in the gaps, and is of order
N,%Td for the case of no acceleration, where N, is the
number of quadrupoles in half of a breathing-mode
wavelength.

The average neutral density perturbation should be
related to the neutral flux from the wall in a fashion
that builds in some delay from the neutral time of flight.
We model this by the relation as

6ﬁ0 _ flooo )

9o , 6
Py . (6)

where 7, is an average time of flight for neutrals from the
wall to the beam interior, and 7, is the neutral density
perturbation that would be present neglecting the time of
flight,

O 27T ~ 2 ox
00 5 KoLy = — Kkyn, —. @)
at Ty, Iy at

Here r,, is the wall radius, «,, is the neutral emission per
lost ion, and I',, is the perturbed beam flux to the wall. In
the last expression on the right, we have approximated I',,

by the beam density times the envelope velocity, which is
probably an upper limit (it effectively assumes that in the
absence of a perturbation the beam envelope is at the
wall).

Finally, we note the connection between z derivatives at
constant beam slice (at constant { =z — v,f) and at
constant time ¢, namely,

0
0z

1 9

t Uh at

0
R ®)

4
Combining Egs. (4)—(8), and assuming that all linear

quantities vary as exp(ikz — iwt), we obtain the disper-
sion relation

k2
(1 — ia,d)(é + iaz)[(f)z — 2+ (1 - k—gﬂ —iay =0,
9
where

1 200Kk, Ny
Rr, k

o = kv, T, a, = or
ble

s

(10)

and ® = w/kv,,.

Here, we shall assume that k is real and estimate the
maximum growth rate. A more accurate procedure would
entail a search for the maximum temporal growth rate
allowing for convective (spatial) growth as well, and may
be expected to yield a somewhat higher growth rate. But,
given the degree of approximation already made in treat-
ing only transverse averages, in the time-of-flight model,
and in the loss flux expression, the real-k approximation
should be good enough for our estimation purposes.

One can of course numerically solve Eq. (9) for the four
roots for particular values of @, a,, and a3, and find the
root with the largest Imw. But we can obtain scalings by
assuming that various constants are large or small. For
parameters similar to those of the preceding section, for
the fastest-growing root, the appropriate approximations
are a3 and a,/® small and «;® large, in which case the
maximum growth rate is at k = k;, and is obtained from
the imaginary part of w ~ (a3/2a;)"/3, or

o . _l/az\3
v = Imokv, 2<26Yl> . (11

For the parameters of the simulations of the preceding
section, we have y~! ~ 4 us, which is about the same as
the pulse duration. This value is obtained for perveance
K=0021, o;,=<100%cm™2, «k,=10% »n,=
3.71 X 10° ecm ™3, R = 1.12 cm, r,, = 2.9 cm. Note for
these parameters our ‘“‘large” and ‘“‘small” parameters
are not very large and small, @yw, ~ 2.37, (us), az ~
0.26, and a,/w, = 0.15 for 7, ~ 3 ws.

We expect that this estimate is overly pessimistic. The
approximation that the perturbed ion beam flux to the
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wall is the beam density times the perturbed envelope
velocity should be an upper limit, and growth would also
likely be limited by non-ideal-envelope effects (as was
noted in the comparison of the simulations with the
envelope predictions for the legislated sinusoidally vary-
ing density) and by velocity tilt (the tail of the beam
having a different velocity from the head). Hence our
conclusion is that an instability exists but is quite mild.

VL BRIDGING ELECTRON AND ION TIME
SCALES

A quantitative description of electrons in HIF accel-
erators requires following them through both strongly
magnetized and unmagnetized regions. By ‘‘strongly,”
we mean that the electron-cyclotron period and gyrora-
dius are short compared to other electron time and
length scales. Such simulation presents a challenge,
particularly if the simulation is to also follow the longer
time scales of the ion dynamics. Full-orbit electron dy-
namics is costly as one must take time steps smaller than
the electron-cyclotron period within the magnetic quad-
rupoles. Drift kinetics or gyrokinetics resolves this prob-
lem (one averages over the fast gyro motion to describe
particle motions in terms of a fast parallel flow and a
small drift across magnetic field lines), but only in the
magnets and away from the field nulls; the approxima-
tions break down near the nulls and in the gaps between
magnets.
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We have devised a scheme that entails interpolating
between full ion dynamics (as implemented via a Boris
mover [13]) and drift kinetics [14]. With the interpolation
scheme, one is allowed to take time steps that are large
compared to the electron-cyclotron period, and still ob-
tain physically correct parallel dynamics, cross-field
drift, and gyroradius (at least in the field and potential
configurations where we have checked). What is sacrificed
is the frequency of gyration, which is reduced from the
actual gyrofrequency. Hence, so long as one is not dealing
with phenomena operating on the scale of the highest
gyrofrequencies in the system, one can take time steps
without regard to the gyrofrequency, so long as the steps
resolve the phenomena of interest. This scheme will be
described in detail in a separate paper (in preparation).

Here, we show a sample application to HIFE specifically
the electron-cloud calculation of Sec. III. In this case, the
time step for the interpolation scheme is chosen to resolve
the electron bounce motion, which is comparable to the
time scale needed to resolve an electron-ion two-stream
instability [15], or to resolve ions passing through the
quadrupole fringe fields in the high-energy end of a
driver. Figure 21 shows the results of the same sequence
of calculations as in Sec. III, except that the interpolated
mover is used to push the electrons and the time step is 25
times larger (and the electron code run nearly that much
shorter). Comparing Figs. 5 and 21, we see that the
interpolated and small-time-step movers produce almost
identical results (note that the color scales are identical).
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FIG. 21. (Color) x-y projection of electron cloud density retaining electrons desorbed by impact of primary beam and scattered ions

at walls, calculated using interpolated electron mover.
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VII. SUMMARY AND DISCUSSION

Induction accelerators for heavy-ion fusion possess
attributes that significantly impact electron-cloud phys-
ics. In particular, the combination of high current, large
fill factor, long pulse length, and difficulty of wall con-
ditioning imply that the dominant electron source is
ionization of neutrals desorbed from walls in current
experiments with multi-us pulses, and in the low-energy
end of a driver. For shorter pulse experiments, and at the
high-energy end of a driver, electrons produced at or near
walls, from electron desorption or from ionization of
neutral gas near walls, will dominate. The precise balance
depends on the composition and energy distribution of the
desorbed neutrals and the pulse length. The same combi-
nation of factors listed above implies that self-consistent,
simultaneous modeling of electron and ion dynamics is
required for a quantitative assessment of electron-cloud
buildup. We have implemented and discussed here ele-
ments of such a modeling capability.

Our simulation of the dynamics of electrons from
direct electron desorption (due to impact of ions) indi-
cates the importance of including ion scattering at walls.
Whereas the primary beam ions are lost exclusively at
pipe locations where the magnetic field lines confine
electrons to a region near their birth positions, scattered
ions can reach field wall positions intercepted by field
lines that extend deep into the beam interior.

We have undertaken a series of simulations with pre-
scribed (model) electron clouds, which mock up distri-
butions that one might expect from ionization of desorbed
neutrals in long pulse accelerators (or neutrals from am-
bient gas). These simulations are useful for assessing the
tolerable level of electron density, and also provide insight
into possible instabilities, such as the one reported in
Sec. V. The results presented here indicate that electrons
are most detrimental to ion beam quality when the am-
plitude varies from quadrupole to quadrupole, and a
density variation that is resonant with beam breathing
modes is considerably more effective than a random
variation in producing beam loss and degradation of
beam quality. For our model problem with a 100 lattice-
period system, a mean 5% electron population, with a
100% resonant modulation, leads to loss of 28% of the
beam. For random variations, even a 10% mean electron
density, still with 100% modulation, leads to loss of only
about 2% of the beam; the 20% case shown in Fig. 9
results in a 10% beam loss. Random variations in
electron-cloud shape or centroid are considerably less
effective in degrading beam quality. Resonant variations
in electron-cloud shape (resonating with the breathing
mode) or in centroid position (resonating with centroid
oscillations) are detrimental to beam quality, but for the
perturbations tested not as detrimental as resonant am-
plitude variations. We note that we have considered only a
limited class of possible resonant perturbations; one

might imagine choosing frequencies and perturbation
forms that would resonate with higher-order internal
space-charge modes. However, we expect that the cou-
pling should be strongest to the lowest-order bulk modes
of the beam, i.e., the ones considered.

It is evident from examination of the x-y scatter plots,
even the few shown, that the nature of the beam degra-
dation is more complex than is captured in the line
plots of emittance, envelope, and beam current. In
particular, we see from Fig. 9(a) a beam with a nearly
circular core but a strongly elliptical (and in fact reach-
ing the wall) halo. The same beam, further along, has a
core that is elliptical but has a nearly circular halo
(Fig. 22). The elliptical distortion of the main beam
would suggest ion scrape-off only on field lines that are
nearly tangent to the wall. However, from this latter plot
we see that the halo resulting from the electron cloud can
be much more symmetric, implying scrape-off on field
lines that penetrate deep into the beam interior. This
would lead to a relatively larger role for secondary elec-
trons than one would otherwise infer. From the sequence
of the two scatter plots, we infer that, not unexpectedly,
the ions in the halo are experiencing different oscillation
frequencies from those in the core. In Fig. 14(a), a differ-
ent phenomenon is occurring, leading to halo that is
actually concentrated (at this instant) near the quadru-
pole field lines that penetrate deep into the plasma
interior.

There are several overall conclusions to be drawn from
this study: (1) Heavy-ion beams are actually surprisingly
robust to electron clouds. A priori there was some expec-
tation that even a few tenths of a percent electrons would
be devastating. Even for resonant sinusoidally varying
electron clouds with 100% modulation, electron densities
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FIG. 22. (Color) x-y scatter plot for random electron density
perturbation; same as Fig. 9(a) but a later slice.
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in the range of several percent of the beam density are
required for substantial beam degradation of a 200-
quadrupole system. A constant (from quadrupole to quad-
rupole) electron density, such as might be caused by
ionization of the base pressure of background gas, results
in negligible beam loss and envelope growth, and only
very minor emittance growth. (2) Electron cloud density
modulation resonant with the beam breathing mode is the
most dangerous kind of perturbation (at least based on
beam loss). (3) Elliptical distortions which resonate with
beam quadrupole modes have a global effect on beam
emittance (related to the effect of a beam mismatch),
even though the beam current loss they produce is rela-
tively modest. (4) Electron-cloud impact on ion beam
propagation is a rich and complex subject, and is not
well characterized by the evolution of a few low-order
beam moments.

The strong effect of density perturbations resonant
with breathing-mode oscillations suggests the possibility
of a desorption-driven instability. A simple estimate of
the growth rate based on linearized envelope equations
suggests a moderate growth rate, comparable to the beam
pulse duration for HCX-like parameters. Effects not in-
cluded in the analysis, such as beam velocity tilt and non-
ideal-envelope phenomena (e.g., halo particles having
different resonant frequencies than those in the core),
should further limit growth.

Finally, we briefly described a scheme for efficiently
simulating electrons which move over a wide range of
magnetic-field strengths, by interpolating between a
drift-kinetic and full-orbit particle push. We also
present a sample electron-cloud calculation from this
scheme, which agrees well with one obtained from a
full electron dynamics calculation with a 25 times smaller
time step. This scheme enhances the prospects for ion
beam simulation with self-consistent electron and ion
dynamics.
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APPENDIX A: BEAM, LATTICE, AND
SIMULATION PARAMETERS

For concreteness, a particular beam was chosen as the
basis of the simulations. The simulated beam is represen-
tative of the beam in the HCX apparatus at LBNL. The
key parameters describing the beam, the accelerator sys-
tem, and the simulation are given in Table L

TABLE I. Beam, lattice, and simulation parameters.

Parameter Value

Mass 38.9637 amu (potassium)
Charge +1

Initial current 810 mA

Initial emittance (unnormalized) 100 mm mrad
Initial perveance 1.1565 X 1073
Energy 2 MeV

Initial dimensions ag = by = 1.17344 cm
Initial divergences aj, = —by = —34.616 mrad
Initial distribution Semi-Gaussian
Undepressed phase advance 80°

Depressed phase advance 19.8°

Lattice period 45 cm

Number of lattice periods 100

Quadrupole lattice occupancy 0.453
Quadrupole syncopation factor 0.248
Field gradient 90.51 T/m
Pipe radius 2.948 cm
Number of simulation grid cells 256 X 256
Number of macroparticles 400000

APPENDIX B: WAVE NUMBERS OF THE
NATURAL MODES OF OSCILLATIONS

We summarize here the wave numbers of the natural
modes of oscillations for charged particle beams in a
FODO lattice. These are slow variations of the beam
envelope superposed on the alternating elliptical distor-
tion of the beam envelope that occurs every lattice period
due to the action of the alternating-polarity quadrupole
magnets.

The natural modes are breathing (where the principal
axes of the beam envelope cross section oscillate in
phase), quadrupole oscillations (where the principal
axes oscillate 180° out of phase), and centroid oscilla-
tions. The oscillation frequencies can be derived from
analysis of the smooth-focus envelope equations (1) and
(2) following Refs. [11,12]. We account for the presence of
electrons through their partial neutralization of the beam
space charge, which is in turn modeled by reducing the
perveance Q (defined in Sec. V) by the (assumed con-
stant) factor 1 — f, where f = n,/n;. We give here the
results for the normal mode wavelengths. They are

ky = 1J2k$? + 2k*2, (B1)
for the breathing mode, and
ki = 4[kg? + 3k, (B2)
for the quadrupole mode, with
k= e+ 512 (B3)
R
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TABLE II. Scaled wave number for the two fundamental
modes of a beam in a periodic lattice for four neutralization
factors.

f (%) 0 2.5 5 10
kpS 0.324 0.331 0.338 0.351
qu 0.242 0.252 0.261 0.278
and

. o —f)
ke = 1/ké T (B4)
Here k is the wave number of single particle oscillations
in the lattice, and is also the frequency of centroid oscil-
lations; it is related to the undepressed phase advance per
lattice period o by oy = kyS, where S is the lattice
period; oy is an input parameter in our simulations. In

the above expressions the mean radius R satisfies the
equation

[S)

IR — =0, (B5)

=l =
Ik

where ¢ is the emittance.

For the cases simulated in this paper, we have K ~
1.1565 X 1073, & ~ 10 * mrad, S = 0.45 m, oy = koS =
80°, where o is the undepressed phase advance. Solving
(B5) gives an average radius of R ~ 1.13 cm. Scaled wave
numbers for the two fundamental modes are given in
Table II for four values of the neutralization factor. This
indicates that the wave number of both modes should
increase with higher electron density. We observe this
trend in our scans of frequency for the sinusoidal pertur-
bations. For the case of amplitude modulations, which
excites the breathing mode, the peak of beam loss was
around k;,S ~ 0.333 for an average f = 2.5% and around
k,S ~ 0.34 for an average f = 5%. For the case of shape
modulation, which also triggers the breathing mode, the
peak of beam loss was around kS ~ 0.342 for an average
f = 10%. For the case of ‘“squeeze-stretch”” modulation,
which triggers the quadrupole mode, the peak of beam
loss was around k,S ~ 0.254 for an average f = 10%.

In all cases, the observed wave numbers were signifi-
cantly above the one computed for no electron density, as
predicted. The observed values are remarkably close to
the predictions in the case of amplitude modulation,
which might be partially coincidental since the theory
was in the smooth limit while the simulation involves
beams departing significantly from this limit. For the
case of centroid displacement of the electron density,
which triggers oscillations of the beam centroid, the
peak of beam loss has been observed around kyS ~
0.207 for an average f = 10%, below the value of kS ~
0.222 for f = 0, in apparent contradiction with the for-
mula (B3) which predicts larger values of k, for larger

values of f. However, the assumption of a focusing effect
of the electron density on the beam which led to the
multiplication of the perveance by the factor (1 — f)
does not hold in this case. An offset electron density
precessing around the axis has an overall defocusing
effect on the beam since it will pull the beam off axis,
in effect reducing the wave number of the natural mode of
oscillation.
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