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Linear coupling parametrization in the action-angle frame
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The linear coupling’s parameterization in the uncoupled action-angle frame is introduced, where the
two eigenmodes’ phases at one point and the phase advances between two points in the ring are well
defined. The general expressions of the coordinates �x; x0; y; y0� are also given. The transfer matrix P from
the action-angle frame to the laboratory frame can be obtained from the eigenvectors of the one-turn
transfer map T or from Twiss and coupling parameters defined in Edwards-Teng parameterization. Matrix
P can also be constructed from turn-by-turn beam position monitor (BPM) data. The phase ellipses and
beam sizes in different projection planes are calculated through the action-angle parameterization. The
two eigenmodes’ Twiss and coupling parameters at point s2 are described in terms of the section transfer
map T1!2 and parameters at point s1. The linear coupling’s action-angle parameterization is useful for the
analytical calculations and turn-by-turn BPM data interpretations.
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I. INTRODUCTION

The Courant-Snyder parameterization [1] of a particle’s
uncoupled one-dimensional betatron oscillation in circular
accelerators is a great success. Work continues to describe
coupled two-dimensional transverse betatron motion in an
elegant way as the one-dimensional parameterization. Here
another approach is demonstrated.

There are two main methods to parametrize two-
dimensional linearly coupled betatron motion. One is to
start from eigenvectors of the one-turn 4� 4 transfer ma-
trix T to construct the particle’s four coordinates
�x; x0; y; y0� in the laboratory frame. The coordinates in
the eigenvector frame keep constant while the eigenvectors
transfer from one point to another in the ring. Comparing to
the one-dimensional Courant-Snyder parametrization, new
sets of Twiss parameters in the two-dimensional situation
are defined accordingly. One well-known parametrization
in this direction was published by Ripken [2–4]. There,
four � and four � functions are defined. Another approach
in this direction has been reported recently by Lebedev and
Bogacz [5].

Another approach is to directly decouple the one-turn
transfer map into an uncoupled one-turn map through a
matrix similarity transformation. One successful approach
in this direction was obtained by Edwards and Teng [6,7]
and improved by others [8–11]. There, two sets of Twiss
parameters for the two eigenmodes and a coupling matrix
C are introduced. This parametrization has been widely
used in coupling measurements, where a normalized C is
used [10,12].

Ripken’s parametrization gives straightforward expres-
sions of the particle’s coordinates in the laboratory frame.
However, this parametrization is complicated. Edwards-
Teng parametrization is based on matrix manipulations.
address: yluo@bnl.gov
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The transformations between the one-turn map and its
defined Twiss and coupling parameters can be easily ob-
tained. A problem of this parametrization is its ambiguous
definitions of betatron phases and phase advances. The
relation between the one-turn transfer map’s eigenvectors
and its defined Twiss and coupling parameters is not given.

With high performance digital beam position monitor
(BPM) and modern analytical techniques [13,14], phases
and phase advances for the two eigenmodes can be mea-
sured very precisely. The merit of the phase measurement
is that it is insensitive to BPM offsets and gains. For a given
betatron oscillation, the two eigenmodes’ phases and phase
advances are all well defined. So it is natural to include
them in a linear coupling’s parametrization.

In this article we first introduce the action-angle frame,
then we demonstrate the methods to construct matrix P
both analytically and experimentally. The phase ellipses,
their areas and beam sizes are calculated through the
action-angle parametrization. P and Twiss parameters at
point s2 are obtained in terms of the section transfer matrix
T1!2 and matrix P at point s1 .
II. ACTION-ANGLE FRAME

For general two-dimensional linearly coupled motion,
single-particle motion can be written as
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where JI;II are the constant actions of the two eigenmodes
and �I;II are the eigenmode phases. One-turn phase ad-
vances for the two eigenmodes are 2	
I;II. The 4� 4
matrix P transfers the coordinates from the new frame to
the laboratory frame.
1-1  2004 The American Physical Society



YUN LUO Phys. Rev. ST Accel. Beams 7, 124001 (2004)
The transfer matrix in the new frame is the rotation
matrix R�
�I;
�II�, where 
�I;
�II are the phase
advances between two points in the ring for the two eigen-
modes, respectively. The rotation matrix is

R �
�I;
�II� �
R�
�I� 0

0 R�
�II�

� 	
; (2)

where

R �
�i� �
cos
�i sin
�i

� sin
�i cos
�i

� 	
: (3)

It is easy to prove that the two eigenmodes are uncoupled
in the new frame. The new frame is named as the action-
angle frame.
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A. Betatron phases

In Eq. (1), there is still an ambiguity in the definitions of
the eigenmode phases �I;II. Here we define �I as the
phase of eigenmode I’s contribution to the x coordinate,
and �II as the phase of eigenmode II’s contribution to the y
coordinate. Therefore, the elements p12 and p34 in P are
both zero,

P �

p11 0 p13 p14
p21 p22 p23 p24
p31 p32 p33 0
p41 p42 p43 p44

0BBB@
1CCCA: (4)

The coordinates in the laboratory frame are given by
8>>>><>>>>:
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Equation (5) is the general expression for �x; x0; y; y0�
coordinates of single-particle linear motion. It has very
clear physical meanings, and therefore is convenient for
the experimental turn-by-turn BPM data interpretations
and analytical calculations.

In the uncoupled case, all elements in the off-diagonal
blocks of matrix P are zero. The relationship of pij’s and
Twiss parameters defined in Courant-Snyder parametriza-
tion can be easily found.

B. One eigenmode excitation

To measure the betatron optics, a single eigenmode
motion is coherently excited [15,16]. If only eigenmode I
is excited, the coordinates of the bunch center are given by
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or 8>>>>><>>>>>:
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If only eigenmode II is excited, the coordinates of the
bunch center are given by

x
x0

y
y0

0BBB@
1CCCA � P

0
0���������

2JII
p

cos�II

�
���������
2JII

p
sin�II

0BBB@
1CCCA; (8)
or 8>>>><>>>>:
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C. Matrix P and section transfer matrix T1!2

The coordinates in the laboratory frame at point s2 are
obtained from those at point s1 by0BBB@
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; (10)

or through the action-angle frame0BBB@
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: (11)

So one obtains

T 1!2 � P2R�
�I;
�II�P�1
1 : (12)

If the phase advances between the two points are known,
P2 at point s2 can be obtained with the section transfer map
T1!2 and matrix P1,

P 2 � T1!2P1R�1�
�I;
�II�: (13)

The one-turn transfer map at one point is

T � PR�2	
I; 2	
II�P�1: (14)
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III. CONSTRUCTION OF MATRIX P

A. Matrix P and eigenvectors

The four eigenvectors of the one-turn transfer matrix T
at one point are v1; v
1; v2; v



2,8>>>><>>>>:

Tv1 � �1v1 � ei2	
Iv1
Tv
1 � �2v
1 � e�i2	
Iv
1
Tv2 � �3v2 � ei2	
IIv2
Tv
2 � �4v
2 � e�i2	
IIv
2

: (15)

Substituting Eq. (14),8>>>><>>>>:
R�2	
I; 2	
II��P�v1� � ei2	
I �P�v1�

R�2	
I; 2	
II��P�v
1� � e�i2	
I �P�v
1�

R�2	
I; 2	
II��P�v2� � ei2	
II �P�v2�

R�2	
I; 2	
II��P�v
2� � e�i2	
II �P�v
2�

: (16)

The eigenvectors of the one-turn transfer map are nor-
malized according to

v Ti v


i � 1: (17)

However, after the normalization, there are still phase
uncertainties. To assure that p12 and p34 are zero, the
following procedures are needed. If the phase of the first
element of v1 is �I, one multiplies v1 by ei��	=2��I�. Then
the phase of the first element of v
1 is ��I, one multiplies v
1
by ei�	=2	�I�. If the phase of the third element of v2 is �II,
one multiplies v2 by ei��	=2��II�. Then the phase of the
third element of v
2 is ��II, one multiplies v
2 by ei�	=2	�II�.

The rotation matrix R�2	
I; 2	
II� has four normal-
ized eigenvectors ~v1; ~v
1; ~v2; ~v



2. And it has the same eigen-

values as these of one-turn transfer matrix T.8>>>><>>>>:
R�2	
I; 2	
II�~v1 � �1~v1 � ei2	
I~v1
R�2	
I; 2	
II�~v
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2

; (18)

8>>>>>><>>>>>>:
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1��
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p �0 0 i 1�T
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Combining Eqs. (16), (18), and (19), one obtains8>>>>>><>>>>>>:

P�1v1 � 1��
2

p ��i 1 0 0�T

P�1v
1 �
1��
2

p �i 1 0 0�T

P�1v2 � 1��
2

p �0 0 � i 1�T

P�1v
2 �
1��
2

p �0 0 i 1�

: (20)

Defining four new real vectors from the eigenvectors of
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one-turn transfer matrix T,8>>>>>><>>>>>>:

e1 � i��
2

p �v1 � v
1�

e2 � 1��
2

p �v1 	 v
1�

e3 � i��
2

p �v2 � v
2�

e4 � 1��
2

p �v2 	 v
2�

; (21)

then from Eq. (20), one gets8>>>><>>>>:
P�1e1 � �1 0 0 0�T

P�1e2 � �0 1 0 0�T

P�1e3 � �0 0 1 0�T

P�1e4 � �0 0 0 1�T

; (22)

or in a compact way,

P � e; (23)

where matrix e is constructed as

e � �e1 e2 e3 e4�: (24)
B. Matrix P and Twiss, coupling parameters

In Edwards-Teng parametrization, the coupled one-turn
transfer matrix is decoupled based on matrix manipula-
tions,

T � V
A 0
0 B

� 	
V�1; (25)

where

V �
rI C

�C	 rI

� 	
: (26)

In order to easily distinguish Twiss parameter �, here we
use r in V instead of � used in other literature. Matrices A
and B are parametrized like one-dimensional Courant-
Snyder parametrization [1]. They can be further parame-
trized as UiR�2	
i�U�1

i ,

U i �

�����
�i

p
0

��i����
�i

p 1����
�i

p

 !
: (27)

Then one-turn transfer matrix T is rewritten as

T � VUR�2	
I; 2	
II�U�1V�1; (28)

where

U �
U1 0
0 U2

� 	
: (29)

Comparing Eqs. (14), one gets

P � VU; (30)

kPk � 1: (31)
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Expanding VU into Twiss and coupling parameters defined in Edwards-Teng parametrization, one obtains

P �
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� 	
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Matrix P is independent of the Edwards-Teng parame-
trization. However, since Edwards-Teng parametrization
gives the well-defined Twiss parameters and the coupling
matrix C, we would like to directly use them in the action-
angle parametrization.

Twiss and coupling parameters can be calculated from
matrix P. The two eigenmodes’ Twiss parameters and r
can be obtained by8>>><>>>:

�I �
p11
p22

�I � � p21
p22

�I �
1	�2

I
�I

�
p221	p

2
22

p11p22

; (34)

8>>><>>>:
�II �

p33
p44

�II � � p43
p44

�II �
1	�2

II
�II

�
p243	p

2
44

p33p44

; (35)

r �
��������������
p11p22

p
�

��������������
p33p44

p
: (36)

The coupling matrix C can be obtained, for example,
through P12 and U2,

C � P12U�1
2 �

P12P�1
22

r
: (37)

For matrix P, there are eight independent parameters
since 
I and 
II have been specified. There are different
ways to define these eight independent parameters.

C. Experimental construction of matrix P

To fully construct matrix P, turn-by-turn �x; x0; y; y0� data
at one point are needed. In each interaction region (IR) of
the Relativistic Heavy Ion Collider (RHIC), there are two
DX/BPMs which are close to the last separation magnet
DX and facing the interaction point (IP). There is no other
magnet between the two BPMs if one ignores detector
magnets. Turn-by-turn angles x0 and y0 at the two BPMs
can be obtained through x and y readings at these two DX/
BPMs together with their separation distance.

The two DX/BPMs in IR8 in the Blue ring of RHIC are
considered. The design distance from the two BPMs to the
design IP is 8.33 m. We designate the DX/BPM in the
12400
upstream of IP8 as g7-bx, and the DX/BPM in the down-
stream of IP8 as g8-bx. In the following the simulation
code SAD [17] is used to simulate the turn-by-turn BPM
data. In the simulation, only one free oscillation particle
circulates in the Blue ring.

The uncoupled tunes are 
x;0 � 28:22, 
y;0 � 29:23.
The skew quadrupole family 1’s integrated strength is set
to be 0:0005 m�1 to introduce coupling into the uncoupled
accelerator model. From a fast Fourier transform of �x	 y�
turn-by-turn data at g7-bx, the two tunes are obtained
28.2126, 29.2375, respectively.

1. Initial phases

Here the initial phases of the two eigenmodes are calcu-
lated. Using harmonic analysis,�I;0 for eigenmode I at one
point is given by

�I;0 � arctan
�
�SI
CI

	
; (38)

where �CI � PN
i�1 xi cos�2	
I�n� 1�

SI �
PN
i�1 xi sin�2	
I�n� 1�

: (39)

N is the maximum data-taking turn.
The similar procedure is followed for y turn-by-turn

BPM data to get �II;0 for eigenmode II,

�II;0 � arctan
�
�SII
CII

	
; (40)

where �CII � PN
i�1 yi cos�2	
II�n� 1�

SII �
PN
i�1 yi sin�2	
II�n� 1�

: (41)

From turn-by-turn BPM tracking data at g7-bx,
eigenmode I’s and II’s initial phases are 138:6449� and
�152:1502�, respectively. At g8-bx, eigenmode I’s and
II’s initial phases are 305:0668� and 14:0882�, respec-
tively, so the phase advances between the two BPMs are
166:4219� and 166:2384� for eigenmode I and II, respec-
tively. From an analytical calculation with the simulation
code SAD, they are 166:4212� and 166:2399�, respectively.
1-4
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2. Matrix F

Equation (1) can be rewritten as

x
x0

y
y0

0BBB@
1CCCA � F

cos�I

sin�I

cos�II

sin�II

0BBB@
1CCCA: (42)

F can be obtained from turn-by-turn �x; x0; y; y0� data. For
example,
12400
8>>>>><>>>>>:
F11 �

2
N

PN
i�1 xi cos�2	
I�n� 1� 	�I;0

F12 �
2
N

PN
i�1 xi sin�2	
I�n� 1� 	�I;0

F13 �
2
N

PN
i�1 xi cos�2	
II�n� 1� 	�II;0

F14 �
2
N

PN
i�1 xi sin�2	
II�n� 1� 	�II;0

: (43)

Similarly from x0, y, and y0 turn-by-turn data, F2j, F3j, and
F4j, j � 1; 2; 3; 4, can be obtained.

From the above tracking data at g7-bx, one obtains
F �

7:505� 10�4 �1:852� 10�16 �1:451� 10�4 5:040� 10�5

�8:898� 10�5 �1:061� 10�5 1:790� 10�5 �3:912� 10�6

4:579� 10�4 1:675� 10�4 2:390� 10�4 4:485� 10�17

�5:187� 10�5 �2:634� 10�5 �2:831� 10�5 �3:419� 10�6

0BBB@
1CCCA: (44)

3. Normalize matrix F

Matrix F includes action information. The ratio of the two actions is

k �

������
JI
JII

s
�

�������������
kF11k

kF22k

s
: (45)

According to the definition of matrix F, the signs of the elements in its second and fourth columns are inverted, and the
first two column elements are divided by k. Normalizing the new matrix’s determinant to be 1, one gets matrix P.

From simulated F in Eq. (44),

P �

6:873 1:696� 10�12 �4:385 �1:523
�0:815 0:097 0:541 0:118
4:193 �1:534 7:225 �1:356� 10�12

�0:475 0:241 �0:856 0:103

0BBB@
1CCCA: (46)

From matrix P, Twiss and coupling parameters defined in Edwards-Teng parametrization can easily be calculated.

4. Construct P from eigenvectors

Here the procedure of P construction from the eigenvectors is tested. According to Eq. (14) and the measured
eigentunes, the one-turn transfer map at g7-bx is obtained,

T �

8:403 69:305 0:194 1:039
�0:988 �8:028 �0:015 �0:055
�0:198 �2:212 8:339 69:348
0:031 0:323 �0:987 �8:091

0BBB@
1CCCA: (47)

After finding the eigenvectors of matrix T and normalizing them according to the above given procedure to construct
matrix P from eigenvectors, P at g7-bx is reconstructed,

P �

7:037 4:309� 10�16 �4:285 �1:488
�0:834 0:099 0:529 0:116
4:293 �1:571 7:060 4:322� 10�16

�0:486 0:247 �0:836 0:101

0BBB@
1CCCA; (48)
which is very close to the simulated one in Eq. (46).

IV. PHASE ELLIPSES AND � MATRIX

A. Projections of eigenmode I

If only eigenmode I is considered, according to Eq. (6),
the projections in x� x0, y� y0, x� y planes are
�
x
x0

	
I
� P11

�������
2JI

p
cos�I

�
�������
2JI

p
sin�I

� 	
; (49)

�
y
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I
� P21

�������
2JI

p
cos�I

�
�������
2JI

p
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� 	
; (50)�

x
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I
�

�
p11 0
p31 p32

	 �������
2JI

p
cos�I

�
�������
2JI

p
sin�I

� 	
: (51)
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Normally these projections trace out different ellipses
under the coupled situation. For example, the projection in
the x� x0 plane from eigenmode I is given by

�p22x�
2 	 ��p21x	 p11x

0�2 � 2JIr
4; (52)

or in Twiss parameters,

�Ix
2 	 2�Ixx

0 	 �2
I x

02 � 2JIr
2: (53)

These phase ellipses’ areas are8>><>>:
�I;x�x0 � 2	JI � r

2

�I;y�y0 � 2	JI � �1� r2�

�I;x�y � 2	JI � rjc12j

: (54)

The phase area of eigenmode I is conserved,

�I � �I;x�x0 	 �I;y�y0 � 2	JI: (55)

The phase area partition ratio for eigenmode I is defined as

�I �
�I;y�y0

�I;x�x0
�

1� r2

r2
: (56)
B. Projections of eigenmode II

Similarly, eigenmode II has projections in y� y0, x�
x0, x� y planes,�

y
y0

	
II
� P22

���������
2JII

p
cos�II

�
���������
2JII

p
sin�II

� 	
; (57)

�
x
x0

	
II
� P12

���������
2JII

p
cos�II

�
���������
2JII

p
sin�II

� 	
; (58)

�
x
y

	
II
�

�
p13 p14
p33 0

	 ���������
2JII

p
cos�II

�
���������
2JII

p
sin�II

� 	
: (59)

These phase ellipses’ areas are8>><>>:
�II;y�y0 � 2	JII � r

2

�II;x�x0 � 2	JII � �1� r
2�

�II;x�y � 2	JII � rjc12j

: (60)

The phase projection area of eigenmode II is also con-
served,

�II � �II;y�y0 	 �II;x�x0 � 2	JII: (61)

The phase area partition ratio for eigenmode II is defined as

�II �
�II;x�x0

�II;y�y0
�

1� r2

r2
; (62)

then

�I � �II: (63)
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C. � matrix and tilt angle

The beam size matrix � can be calculated through
action-angle parametrization. It is defined as [18,19]

� �

hx2i hxx0i hxyi hxy0i
hx0xi hx02i hx0yi hx0y0i
hyxi hyx0i hy2i hyy0i
hy0xi hy0x0i hy0yi hy02i

0BBB@
1CCCA: (64)

The beam sizes in the x� y plane are measurable. Using
Eq. (5), it is easy to obtain8>><>>:

hx2i � p211hJIi 	 p
2
13hJIIi 	 p

2
14hJIIi

hy2i � p231hJIi 	 p
2
32hJIi 	 p33hJIIi

hxyi � p11p31hJIi 	 p13p33hJIIi

: (65)

Normally the projection of the beam in the x� y plane is
not an ellipse. However, here we still define the coupling
tilt angle for the projection as

tan� �
2hxyi

hxi2 � hyi2
; (66)

which is valid for hxi2 � hyi2 � 0.

V. PROPAGATION OF MATRIX P

From Eq. (13), matrix P2 at point s2 can be obtained,8>>>>>><>>>>>>:

eP11 � �T11P11 	 T12P21�R�1�
�I�eP21 � �T21P11 	 T22P21�R�1�
�I�eP12 � �T11P12 	 T12P22�R�1�
�II�eP22 � �T21P12 	 T22P22�R�1�
�II�

: (67)

In the following the quantities and matrices at point s2
except P2 have overhead tildes to distinguish these at point
s1. Tij’s are block matrix elements of the section transfer
matrix T1!2.

A. Phase advances

When only eigenmode I is considered, from Eq. (10),ep11 cos��I 	 
�I�ep21 cos��I 	 
�I� � ep22 sin��I 	 
�I�ep31 cos��I 	 
�I� � ep32 sin��I 	 
�I�ep41 cos��I 	 
�I� � ep42 sin��I 	 
�I�

0BBB@
1CCCA

� T1!2

p11 cos�I

p21 cos�I � p22 sin�I

p31 cos�I � p32 sin�I

p41 cos�I � p42 sin�I

0BBB@
1CCCA: (68)

Defining

G � T1!2P1; (69)

from the first row of Eq. (68), the phase advance between
two points for eigenmode I is obtained,
1-6
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�I � arctan
G12

G11
; (70)

and

ep11 � ����������������������
G2

11 	G
2
12

q
: (71)

Similarly for eigenmode II, one gets


�II � arctan
G34

G33
; (72)

ep33 � ����������������������
G2

33 	G
2
34

q
: (73)
B. ePij at point s2
Knowing the eigenmode phase advances, matrix P2 at

point s2 can be rewritten as

eP11 �
1ep11
�
G11 G12

G21 G22

	�
G11 �G12

G12 G11

	
; (74)

eP21 �
1ep11
�
G31 G32

G41 G42

	�
G11 �G12

G12 G11

	
; (75)

eP12 �
1ep33
�
G13 G14

G23 G24

	�
G33 �G34

G34 G33

	
; (76)

eP22 �
1ep33
�
G33 G34

G43 G44

	�
G33 �G34

G34 G33

	
: (77)

It is easy to check that ep12 � 0, ep34 � 0.

C. Twiss and coupling parameters at point s2
Twiss parameters at point s2 can be obtained from

matrix P2, 8<: e�I � G2
11	G

2
12

G11G22�G12G21e�I � � G11G21	G12G22

G11G22�G12G21

; (78)

8<: e�II � G2
33	G

2
34

G33G44�G34G43e�II � � G33G43	G34G44

G33G44�G34G43

: (79)

The coupling parameter ~r at s2 is given by

~r �
���������������ep11 ep22

q
�

�������������������������������������
G11G22 �G12G21

p
; (80)

or

~r �
���������������ep33 ep44

q
�

�������������������������������������
G33G44 �G34G43

p
: (81)
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From Eqs. (38) and (67), one gets

~r ~C � T11T�1
21 	 T12T�1

22 	 T11�rC�T�1
22

	 T12�rC�1�T�1
21 : (82)

Under the uncoupled situation, it is easy to prove8<:
�I � arctan p22t12
p11t11	p21t12


�II � arctan p44t34
p33t33	p43t34

; (83)

or in Twiss parameters at s1,8<:
�I � arctan t12
�1t11��1t12


�II � arctan t34
�2t33��2t34

: (84)

In uncoupled sections, from Eq. (67), one gets

keP11k � kP11k: (85)

Since ~r2 � keP11k and r2 � kP11k, so r keeps constant in
the uncoupled section. And the propagation of coupling
matrix Eq. (82) reduces to

~C � T11CT�1
22 : (86)
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