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This paper presents a survey of the present theoretical understanding of collective processes and
beam-plasma interactions affecting intense heavy ion beam propagation in heavy ion fusion systems. In
the acceleration and beam transport regions, the topics covered include discussion of the conditions for
quiescent beam propagation over long distances; the electrostatic Harris-type instability and the
transverse electromagnetic Weibel-type instability in strongly anisotropic, one-component non-neutral
ion beams; and the dipole-mode, electron-ion two-stream instability driven by an (unwanted)
component of background electrons. In the plasma plug and target chamber regions, collective
processes associated with the interaction of the intense ion beam with a charge-neutralizing background
plasma are described, including the electrostatic electron-ion two-stream instability, the electromag-
netic Weibel instability, and the resistive hose instability. Operating regimes are identified where the
possible deleterious effects of collective processes on beam quality are minimized.
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I. INTRODUCTION

High energy ion accelerators, transport systems, and
storage rings [1–5] are used for fundamental research in
high energy and nuclear physics and for applications such
as heavy ion fusion, spallation neutron sources, and nu-
clear waste transmutation. Charged particle beams are
subject to various collective processes that can deteriorate
the beam quality. Of particular importance at the high
beam currents and charge densities of interest for heavy
ion fusion are the effects of the intense self-fields pro-
duced by the beam space charge and current on determin-
ing detailed equilibrium, stability, and transport
properties. In general, a complete description of collective
processes in intense charged particle beams is provided
by the nonlinear Vlasov-Maxwell equations [1] for the
self-consistent evolution of the beam distribution func-
tion, fb�x;p; t�, and the electric and magnetic fields,
E�x; t� and B�x; t�. While considerable progress has
been made in analytical and numerical simulation studies
of intense beam propagation [6–77], the effects of finite
geometry and intense self-fields often make it difficult to
obtain detailed predictions of beam equilibrium, stabil-
ity, and transport properties based on the Vlasov-
Maxwell equations. Nonetheless, often with the aid of
numerical simulations, there has been considerable recent
analytical progress in applying the Vlasov-Maxwell
equations to investigate the detailed equilibrium and
stability properties of intense charged particle beams.
These investigations include a wide variety of collective
interaction processes ranging from the electrostatic
1098-4402=04=7(11)=114801(14)$22.50 
Harris instability [30–36] and electromagnetic Weibel
instability [37–42] driven by large temperature anisot-
ropy with T?b � Tkb in a one-component non-neutral ion
beam, to wall-impedance-driven collective instabilities
[43–45,49], to the dipole-mode two-stream instability
for an intense ion beam propagating through a partially
neutralizing electron background [46–60], to the resistive
hose instability [61–67], the sausage and hollowing in-
stabilities [68–70], and the multispecies Weibel and two-
stream instabilities [71–73] for an intense ion beam
propagating through a background plasma [74–77], to
the development of a nonlinear stability theorem
[20,21] in the smooth-focusing approximation.

In this paper, we present a brief survey of the present
theoretical understanding of collective processes and
beam-plasma interactions affecting intense heavy ion
beam propagation in heavy ion fusion systems. In the
acceleration and beam transport regions, the topics cov-
ered in Secs. II and III include discussion of the condi-
tions for quiescent beam propagation over long distances;
the electrostatic Harris-type instability and the transverse
electromagneticWeibel-type instability in strongly aniso-
tropic, one-component non-neutral ion beams; and the
dipole-mode, electron-ion two-stream instability driven
by an (unwanted) component of background electrons. In
the plasma plug and target chamber regions, collective
processes associated with the interaction of the intense
ion beam with a charge-neutralizing background plasma
are described in Sec. IV, including the electrostatic
electron-ion two-stream instability, the electromagnetic
2004 The American Physical Society 114801-1
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Weibel instability, and the resistive hose instability.
Operating regimes are identified where the possible del-
eterious effects of collective processes on beam quality
are minimized. Here, ‘‘plasma plug’’ [78–81] refers to a
region containing preformed plasma immediately follow-
ing the final focusing magnets. The plasma volume is
sufficiently large that the (mobile) electrons neutralize
the ion beam space charge and assist in focusing the ion
beam to a small spot size.

To briefly summarize, the present analysis assumes a
long charge bunch (bunch length ‘b � bunch radius rb)
with directed axial kinetic energy �	b � 1�mbc2 propa-
gating in the z direction through a perfectly conducting
cylindrical pipe with constant radius rw. The analysis
is carried out in the smooth-focusing approximation,
where the applied transverse focusing force is modeled
by Ffoc � �	bmb!2fx?. Here, 	b � �1� �2b�

�1=2 is the
relativistic mass factor, Vb � �bc is the directed axial
velocity of the charge bunch, mb is the particle rest mass,
!f � const is the single-particle oscillation frequency
associated with the applied focusing force, and x? �

xex � yey is the transverse displacement of a beam par-
ticle from the cylinder axis. Denoting the characteristic
number density of beam particles by n̂b and the
particle charge by eb, it is convenient to introduce the
relativistic plasma frequency !̂pb defined by !̂pb �

�4�n̂be2b=	bmb�
1=2 and the normalized (dimensionless)

beam intensity sb defined by sb � !̂2pb=2	
2
b!

2
f [1].

Furthermore, the particle dynamics in the beam frame
are assumed to be nonrelativistic.

In the following sections, we give a brief overview of
the present understanding of several collective instabil-
ities that can develop in intense charged particle beams.
While the summaries presented here are necessarily
short, the references in the associated bibliography pro-
vide considerable detailed information.

II. ANISOTROPY-DRIVEN INSTABILITIES IN
ONE-COMPONENT BEAMS

A remarkable feature of intense beam propagation is
the existence of a stability theorem based on the non-
linear Vlasov-Maxwell equations [1,20–22]. To summa-
rize, for a long, one-component coasting beam in the
smooth-focusing approximation, the stability theorem,
expressed in the beam frame (�b � 0 and 	b � 1), states
that any equilibrium distribution function f0b�H� that
satisfies

@
@H

f0b�H� 	 0 (1)

is nonlinearly stable to perturbations with arbitrary po-
larization [20,21]. Here, H � �p2r � p2� � p2z�=2mb �

mb!
2
fr
2=2� eb�

0�r� is the single-particle Hamiltonian
in the beam frame, and�0�r� is the electrostatic potential
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determined self-consistently in terms of the beam space
charge from Poisson’s equation. Therefore, from Eq. (1),
any isotropic distribution function that is a monotonic
decreasing function of energy in the beam frame is non-
linearly stable. The validity of this stability theorem has
been demonstrated in nonlinear perturbative particle
simulations [55,82] for intense beam propagation over
thousands of equivalent lattice periods.

While Eq. (1) is a sufficient condition for stability, a
necessary condition for instability is that the beam dis-
tribution function have some nonthermal feature such as
an inverted population in phase space [6–8], or a strong
energy anisotropy. Energy anisotropies are well known in
electrically neutral plasmas to provide the free energy to
drive the classical electrostatic Harris instability [30] and
the electromagnetic Weibel instability [37]. This anisot-
ropy can be either a temperature anisotropy or an anisot-
ropy in the relative directed kinetic energy of the plasma
components.

A. Electrostatic Harris-type instability

In electrically neutral plasmas with strongly aniso-
tropic distributions �Tkb=T?b 
 1�, collective instabil-
ities may develop if there is sufficient coupling between
the transverse and longitudinal degrees of freedom
[30,37]. Such anisotropies develop naturally in accelera-
tors [2]. Indeed, due to conservation of energy for parti-
cles with charge eb and mass mb accelerated by a voltage
V, the energy spread of particles in the beam does not
change, and (nonrelativistically) �Ebi � mb�v2bi=2 �
�Ebf ’ mbVb�vbf, where Vb � �2ebV=mb�

1=2 is the av-
erage beam velocity after acceleration across a potential
difference V. Therefore, the longitudinal velocity spread
squared, or equivalently the temperature, changes accord-
ing to Tkbf ’ T2kbi=2ebV (for a nonrelativistic beam). At
the same time, the transverse temperature may increase
due to nonlinearities in the applied and self-field forces,
nonstationary beam profiles, and beam mismatch. These
processes provide the free energy to drive collective in-
stabilities and may lead to a deterioration of beam quality.
Such instabilities may also lead to an increase of longi-
tudinal velocity spread, which will make the focusing
of the beam difficult and may impose a limit on the
minimum spot size achievable in heavy ion fusion
experiments.

Recent investigations [31–36] of the Harris-type elec-
trostatic instability [30] in intense one-component beams
have focused on analytical studies of linear stability
properties and numerical simulations of the nonlinear
development. In recent studies [31–33] we have consid-
ered electrostatic perturbations (r
 �E ’ 0 and �B ’
0) about a thermal equilibrium distribution with tempera-
ture anisotropy �T?b > Tkb� described in the beam frame
(Vb � 0 and 	b � 1) by the self-consistent axisymmetric
Vlasov equilibrium
114801-2



FIG. 1. Longitudinal threshold temperature Tth
kb normalized

to the transverse temperature T?b for the onset of the electro-
static Harris instability plotted versus normalized beam inten-
sity sb � !̂2pb=2!

2
f.

FIG. 2. Plot of average longitudinal momentum distribution
Fb�pz; t� at time t � 0 (thin line) and t � 150!�1

f (thick line),
for normalized beam intensity sb � 0:8 and Tkb=T?b � 0:02.

FIG. 3. Time history of the normalized density perturbation
�nmax=n̂b for sb � 0:8 and Tkb=T?b � 0:02 at fixed axial po-
sition z and radius r � 0:3rb for the same conditions as in
Fig. 2.
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f0b�r;p� �
n̂b

�2�mbT?b�
exp

�
�
H?

T?b

�
1

�2�mbTkb�1=2


 exp
�
�

p2z
2mbTkb

�
: (2)

Here, H? � p2?=2mb � �1=2�mb!
2
f�x

2 � y2� � eb�
0�r�

is the single-particle Hamiltonian for the transverse par-
ticle motion, p? � �p2r � p2��

1=2 is the transverse particle
momentum, r � �x2 � y2�1=2 is the radial distance from
the beam axis, !f � const is the transverse focusing
frequency, and �0�r� is determined self-consistently
from Poisson’s equation r�1�@=@r��r@�0=@r� �
�4�eb

R
d3pf0b�r;p�. Assuming three-dimensional elec-

trostatic perturbations, an infinite dimension matrix dis-
persion equation has been derived and the stability results
have been compared with numerical simulations using
the Beam Equilibrium, Stability and Transport (BEST)
nonlinear perturbative particle code [31–33]. The results
clearly show that moderately intense beams with normal-
ized intensity parameter sb � !̂2pb=2!

2
f * 0:5 are line-

arly unstable to short-wavelength perturbations with
k2zr2b * 1, provided Tkb=T?b is smaller than some thresh-
old value (Fig. 1). Here, !̂pb � �4�n̂be

2
b=mb�

1=2 is the on-
axis �r � 0� plasma frequency in the beam frame.
Moreover, the mode structure, growth rate, and condi-
tions for the onset of instability are qualitatively similar
to analytical predictions [31–33]. Both the simulations
and the analytical theory predict that the dipole mode
(azimuthal mode number m � 1) is the most unstable
mode. The main saturation mechanism for the instability
is the resonant wave-particle interactions that occur dur-
ing the formation of tails in the axial momentum distri-
bution Fb�pz; t� �

R
d2p?d

3xfb [33]. This is illustrated
in Fig. 2, and the corresponding time history of the
perturbed density �nb �

R
d3p�f is plotted versus !ft
114801-3
in Fig. 3 for the case where the initial perturbation has a
dominant initial excitation with azimuthal mode number
m � 1 and kzrw � 9 [33]. During the linear growth stage,
note from Fig. 3 that the characteristic instability growth
rate is Im! � 0:13!f. Note also from Fig. 2 that in the
nonlinear saturation stage, the total distribution function
is still far from equipartitioned, and free energy is still
available to drive an instability of the hydrodynamic type
[1], or possibly an electromagneticWeibel-type instability
[37,38].

B. Electromagnetic Weibel-type instability

In multispecies anisotropic beam-plasma systems it is
well known that the electromagnetic Weibel instability
114801-3
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[37–42] can be particularly virulent in affecting the
nonlinear dynamics of the system. Such appears not to
be the case for an intense one-component charged parti-
cle beam [38] because of the strong constraint imposed by
the finite transverse geometry and the fact that the Harris-
type instability described in Sec. II A has a much larger
growth rate in the unstable regime.

In a recent calculation [38], we have considered trans-
verse electromagnetic perturbations about the choice of
anisotropic equilibrium distribution defined in Eq. (2) in
the beam frame. Assuming axisymmetric perturbations
�@=@� � 0�, the perturbed transverse electromagnetic
fields are assumed to have polarization �ET � �E�ê�
and �BT � �Brêr � �Bzêz. A linear stability analysis
has been carried out based on the linearized Vlasov-
Maxwell equations. The analysis leads to an infinite
dimension matrix dispersion equation of the form [38]

detfDn;m�!�g � 0; (3)

which is valid for arbitrary normalized beam intensity
sb � !̂2pb=2!

2
f and temperature anisotropy Tkb=T?b.

Here, the integers n and m label the elements of the
matrix. A detailed numerical analysis [38] of the matrix
dispersion relation shows that in the limit Tkb=T?b ! 0
the maximum growth rate of the Weibel instability
asymptotes at the relatively small value

�Im!�max � 0:43!̂pb
vth?b
c

(4)

for perturbations with short axial wavelength corre-
sponding to k2zr2b � 1. Here, vth?b � �2T?b=mb�

1=2 is the
transverse thermal speed, and !̂pb � �4�n̂be2b=mb�

1=2 is
the on-axis �r � 0� plasma frequency in the beam frame.
Finally, removing the restriction Tkb=T?b � 0, a detailed
numerical analysis [38] of the matrix dispersion relation
in Eq. (3) shows that the Weibel instability in a one-
component beam is completely stabilized by longitudinal
thermal effects whenever Tkb exceeds the small threshold
value Tth

kb given approximately by

Tth
kb

T?b
� 0:1

r2b!̂
2
pb

c2
: (5)

To summarize, because !̂2pbr
2
b=c

2 
 1 for the beam
parameters of interest for heavy ion fusion, the Weibel
instability stabilizes at extremely small values of Tth

kb=T?b
[Eq. (5)]. Furthermore, in the regime where the Weibel
instability does exist, the characteristic growth rate is
much smaller than the growth rate of the Harris-type
instability described in Sec. II A.
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III. ELECTRON-ION TWO-STREAM
(ELECTRON CLOUD) INSTABILITY IN INTENSE

ION BEAMS

In many practical accelerator applications, an un-
wanted charge component is present in the beam accel-
erator or transport lines. For example, a background
population of electrons can result when energetic beam
ions strike the chamber wall or ionize background gas
atoms. When a second charge component is present, it has
been recognized for many years, both in theoretical
studies and in experimental observations [46– 48,50–
60], that the relative streaming motion of the high-
intensity beam particles through the background charge
species provides the free energy to drive the classical two-
stream instability, appropriately modified to include the
effects of dc space charge, relativistic kinematics, pres-
ence of a conducting wall, etc. For electrons interacting
with a proton beam, as in the Proton Storage Ring (PSR),
this instability is usually referred to as the electron-
proton �e-p� instability [50,51], although a similar insta-
bility also exists for other ion species, including (for
example) electron-ion interactions in electron storage
rings.

We have carried out detailed theoretical investigations
[52–60] of the two-stream instability for an intense ion
beam propagating through a partially neutralizing elec-
tron background. These investigations have been both
analytical and numerical, making use of the nonlinear
perturbative particle simulation code BEST. To illustrate
the qualitative features of the instability we first consider
perturbations about the choice of Kapchinskij-
Vladimirskij (KV) distribution functions that have flat-
top density profiles [6–8]. In the laboratory frame, the
equilibrium distribution functions are expressed as [52–
54]

f0j �r;p� �
n̂j

2�	jmj
��H?j � T̂?j�Gj�pz�: (6)

Here,
R
dpzGj�pz� � 1, H?b � �p2r � p2��=2	bmb �

	bmb!2fr
2=2� eb��0�r� � �bA0z�r�� is the transverse

Hamiltonian for the beam ions,H?e � �p2r � p2��=2me �
e�0�r� is the transverse Hamiltonian for the background
electrons, T̂?j � const �j � b; e� are positive constants,
and n̂b and n̂e are the constant values of beam density and
electron density out to the edge radius rb. The electrons
are assumed to be axially stationary �Ve ’ 0� in the
laboratory frame and are electrostatically confined in
the transverse plane by the excess ion space charge. We
denote the ion charge state by eb � �Zbe, and introduce
the fractional charge neutralization f defined by
f � n̂e=Zbn̂b.

Detailed stability properties have been calculated ana-
lytically for electrostatic perturbations about the choice
of equilibrium distribution functions in Eq. (6) [52–54].
114801-4



FIG. 4. Time history of perturbed density �nb=n̂b at a fixed
spatial location. After an initial transition period, the m � 1
dipole-mode perturbation grows exponentially.
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Without presenting algebraic details, assuming perturba-
tions of the form � �x; t� � � ̂m�r� exp�im�� ikzz�
i!t�, the dispersion relation has been derived for general
azimuthal mode numbers m � 1; 2; 3; . . . . It is found that
the strongest two-stream instability exists for the dipole
mode with m � 1. For example, in the limit of axially
cold beam ions and electrons with Gb�pz� � ��pz �
	bmb�bc� and Ge�pz� � ��pz�, the dipole-mode �m �
1� dispersion relation is given by [52–54]

��!� kzVb�
2 �!2b��!

2 �!2e� � !4c; (7)

where

!4c �
1

4
f
�
1�

r2b
r2w

�
2 	bmb

Zbme
!̂4pb;

!2b � !2f �
1

2
!̂2pb

�
f�

1

	2b

r2b
r2w

�
;

!2e �
1

2

	bmb

Zbme
!̂2pb

�
1� f

r2b
r2w

�
:

(8)

Here, f � n̂e=Zbn̂b is the fractional charge neutraliza-
tion, and !̂pb � �4�n̂bZ2be

2=	bmb�
1=2 is the relativistic

plasma frequency of the beam ions.
In the absence of background electrons (f � 0 and

!4c � 0), Eq. (7) gives stable sideband oscillations with
frequency! � kzVb �!b, where!b is defined in Eq. (8).
For f � 0 and !4c � 0, however, the ion and electron
terms on the left-hand side of Eq. (7) are coupled by the
!4c term on the right-hand side, leading to one unstable
solution with Im!> 0. Indeed, it is the lower ion side-
band �! ’ kzVb �!b� that couples unstably to the elec-
tron oscillation �! ’ !e� in Eq. (7) [52–54]. The
dispersion relation (7) and its generalization to include
axial momentum spread have been used to calculate de-
tailed growth rate properties of the two-stream instabil-
ity over a wide range of system parameters, including the
normalized beam intensity sb � !̂2pb=2	

2
b!

2
f, fractional

charge neutralization f � n̂e=Zbn̂b, and axial momentum
spread �pzb=pzb of the beam ions. To briefly summarize
the results described in Refs. [52–54], it is found that the
normalized growth rate �Im!�=!f (a) increases with
increasing beam intensity sb, (b) increases with increas-
ing fractional charge neutralization f, and (c) decreases
with increasing axial momentum spread �pzb=pzb.

Extensive numerical simulations of the two-stream
instability have also been carried out using the BEST

nonlinear perturbative particle simulation code
[55,57,59,60]. In the simulations, perturbations are about
the choice of equilibrium distribution function �j � b; e�

f0j �r;p� �
n̂j

2�	jmjT?j
exp

�
�
H?j

T?j

�
Gj�pz�: (9)

Here, n̂j is the on-axis �r � 0� density, T?j � const is the
transverse temperature, and Gj�pz� is the longitudinal
momentum distribution. For the beam ions we take
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Gb�pz� to be a drifting Maxwellian centered at pz �
	bmb�bc, and for the background electrons we take
Ge�pz� to be a Maxwellian centered at pz � 0. An im-
portant feature of Eq. (9) is that the corresponding den-
sity profiles n0j �r� �

R
d3pf0j �r;p� are generally bell-

shaped functions of r. For f � n̂e=Zbn̂b � 0, only in the
space-charge-dominated limit, where sb �
!̂2pb=2	

2
b!

2
f ! 1, does the ion beam density profile be-

come flattop. Here, !̂pb � �4�n̂bZ
2
be
2=	bmb�

1=2 is the
(on-axis) relativistic plasma frequency. An important
consequence of the bell-shaped density profile shape is
that the growth rate observed in the numerical simula-
tions [55,57,59,60] are typically lower than those pre-
dicted theoretically for flattop density profiles assuming
perturbations about a KV equilibrium. This is likely due
to the spread in depressed betatron frequency associated
with the nonuniform density profiles.

Detailed simulations of the electron-ion two-stream
instability have been carried out using the BEST code
[55,57,59,60] for applications ranging from proton ma-
chines, such as the PSR experiment, to heavy ion fusion.
Some illustrative results for heavy ion fusion are pre-
sented in Figs. 4–6. Here, we take singly charged cesium
ions (Zb � 1 and A � 133) with relativistic mass factor
	b � 1:02. The beam intensity is taken to be near the
space-charge-dominated limit �sb ! 1� in the absence
of electrons. The on-axis fractional charge neutraliza-
tion is taken to be f � n̂e=n̂b � 0:1, and the transverse
temperatures are Tb?=	bmbV2b � 1:1
 10�6 and
Te?=	bmbV

2
b � 2:47
 10�6. The corresponding ion

and electron density profile are bell shaped and overlap
radially. In the simulations, after small-amplitude pertur-
bations are excited at t � 0, the system is evolved self-
consistently for thousands of wave periods. Plotted in
Fig. 4 is the time history of the beam density perturbation
114801-5



FIG. 5. The x-y projection (at fixed value of z) of the per-
turbed electrostatic potential ���x; y; t� for the ion-electron
two-stream instability growing from a small initial perturba-
tion, shown at !ft � 3:25.
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at one spatial location in a simulation using the linearized
version of the BEST code. Evidently, after an initial tran-
sition period, the perturbation grows exponentially,
which is the expected behavior of an instability during
the linear growth phase. In Fig. 5, the x-y projections of
the perturbed potential �� at a fixed longitudinal posi-
tion are plotted at t � 0 and t � 3:25=!f. Clearly, ��
grows to a moderate amplitude by t � 3:25=!f, and the
m � 1 dipole mode is the dominant unstable mode, for
which the growth rate is measured to be Im! � 0:78!f.
The real eigenfrequency of the mode is Re! � 480!f,
and the normalized wavelength at maximum growth is
kzVb=!f � 480:4.
FIG. 6. The maximum linear growth rate �Im!�max of the
ion-electron two-stream instability decreases as the longitudi-
nal momentum spread of the beam ions increases.

114801-6
In Figs. 4 and 5, we have assumed initially cold beam
ions in the longitudinal direction ��pzb=pzb � 0� to max-
imize the growth rate of the instability. Here, pzb �
	bmbVb. In general, when the longitudinal momentum
spread of the beam ions is finite, Landau damping by
parallel ion kinetic effects provides a mechanism that
reduces the growth rate. Shown in Fig. 6 is a plot of the
maximum linear growth rate �Im!�max versus the nor-
malized initial axial momentum spread �pzb=pzb ob-
tained in the numerical simulations. As is evident from
Fig. 6, the growth rate decreases dramatically as
�pzb=pzb is increased. When �pzb=pzb is high enough,
about 0:58% for the case in Fig. 6, the mode is completely
stabilized by longitudinal Landau damping effects by the
beam ions. This result agrees qualitatively with theoreti-
cal predictions.
IV. INTENSE ION BEAM INTERACTION WITH
BACKGROUND PLASMA

In previous sections we have investigated anisotropy-
driven collective instabilities in one-component ion
beams (Sec. II) and the dipole-mode two-stream insta-
bility driven by the beam ions interacting with
background electrons that provide partial charge neutral-
ization (Sec. III). In this section, we discuss several
collective instabilities that can occur when an intense
ion beam �j � b� propagates through a charge-
neutralizing background plasma �j � e; i� in the plasma
plug or neutralized drift compression region, and in the
target chamber. Particular emphasis is placed on the
resistive hose instability [61–70], and the multispecies
electrostatic two-stream and electromagnetic Weibel in-
stabilities [71–73]. Here, the Weibel instability is associ-
ated with the anisotropy associated with the relative
directed kinetic energy of the beam-plasma components.
Throughout Sec. IV, it is assumed that under quasi-steady-
state conditions the background plasma provides a
charge-neutralizing background [74–77] withP
j�b;e;in

0
j �r�ej � 0. It is further assumed that the beam-

plasma interaction takes place in a region where there is
no applied focusing field �!f � 0�, and that a perfectly
conducting cylindrical wall is located at radius r � rw.

A. Resistive hose instability

The resistive hose instability [61–67] has received
considerable attention for intense electron-beam propa-
gation through the atmosphere or background plasma. In
this section, we briefly summarize recent theoretical
results [67] obtained for the case of an intense ion
beam propagating through a charge-neutralizing back-
ground plasma, including the important influence of elec-
tron collisions on reducing the growth rate of the resistive
hose instability. For simplicity, we consider dipole-
mode perturbations about an intense ion beam with
114801-6
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Kapchinskij-Vladimirskij distribution [Eq. (6)] and flat-
top density profile

n0b�r� �
�
n̂b � const; 0 	 r < rb;
0; rb < r 	 rw:

(10)

It is also assumed in the present analysis that the beam
ions are cold in the longitudinal direction with Gb�pz� �
��pz � 	bmb�bc�. While providing complete charge
neutralization, the background plasma is allowed to carry
an axial return current J0zp �

P
j�e;in̂jej�jc �

�fm�n̂beb�bc�, where fm � const is the fractional cur-
rent neutralization, and Vzj � �jc � const is the average
axial velocity of the background plasma components �j �
e; i�. The instability is electromagnetic and is caused by
the interaction between the transversely displaced beam
current Jbz and the induced transverse magnetic field
�BT � �Brêr � �B�ê�. Therefore, the main component
of perturbed current is in the z direction and the per-
turbed electric field is also in the z direction. Such a field
polarization can be represented with one component of
the vector potential Az. Therefore, the transverse electro-
magnetic field perturbations are assumed to have com-
ponents �ET � �Ezêz and �BT � �Brêr � �B�ê�,
where �ET � �c�1�@=@t��Azêz and �BT � r
 �Azêz.
Introducing the time variable . � t� z=Vb measured
from the head of the beam pulse (passing z � 0 at t �
0), the perturbed vector potential can be expressed as

�Az�x; t� � �Âz�r� exp�i����z=Vb �!.�� (11)

for dipole-mode perturbations with azimuthal mode
number m � 1. Here, � � !� kzVb is the Doppler-
shifted frequency in the beam frame. If, for example,
the beam experiences a transverse perturbation with real
frequency ! as the beam pulse enters the plasma, then it
follows from Eq. (11) that �Im��=Vb represents the spatial
growth rate of the instability along the beam pulse.
Finally, the perturbed plasma current is determined
from �Jzp � /�Ez � �i!/=c��Az, where the plasma
conductivity / is given by the simple model [67]

/ �
1

1� i!=0c

�
/p; 0 	 r < rb;
/1; rb < r 	 rw:

(12)

Here, /p and /1 are the dc plasma conductivities in the
two regions, and 0c is the electron collision frequency.
The frequency ! is typically of order the transverse
betatron frequency, which is determined by the beam
density. On the other hand, the electron collision fre-
quency 0c in Eq. (12) is determined by plasma properties.
In this context, the parameter !=0c in Eq. (12) can be
larger or smaller than unity, depending on the system
parameters.

Making use of the assumptions enumerated in the
previous paragraph, the linearized Vlasov-Maxwell
equations for �Az�x; t� and �fb�x;p; t� can be used
to calculate the perturbed axial current �Jzb �
114801-7
eb
R
d3pvz�fb carried by the beam ions, and derive a

transcendental dispersion relation that determines the
complex frequency � in terms of !, /p, /1, n̂b, etc. We
consider here the particular case where j!j/1 

c2=4�r2b, which assures that magnetic diffusion through
the weakly conducting region rb < r 	 rw is fast com-
pared with the time scale !�1. Without presenting alge-
braic details [67], this leads to the dispersion relation

!̂2pb�
2
b

�2 �!2�
� �1prb

J01�1prb�

J1�1prb�
�
r2w � r2b
r2w � r2b

; (13)

where !̂pb � �4�n̂be
2
b=	bmb�

1=2 is the relativistic plasma
frequency of the beam ions, J1�x� is the Bessel function of
the first kind of order unity, and!2� and 12p�!� are defined
by

!2� �
1

2
!̂2pb�

2
b�1� fm�; (14)

12p�!�r
2
b �

8i!.d
�1� i!=0c�

: (15)

Here, .d � �/pr2b=2c
2 is the magnetic decay time for the

perturbed current, and !� is the betatron oscillation
frequency for transverse motion of the beam particles
in the equilibrium azimuthal self-magnetic field B0��r�
associated with the net axial current. If we further as-
sume j1prbj< 1, then Eq. (13) reduces to leading order to

!̂2pb�
2
b=2

�2 �!2�
� i

!.d
1� i!=0c

� g; (16)

where g � �1� r2b=r
2
w�

�1 is a geometric factor.
Equation (16) can be used to investigate detailed stability
properties over a wide range of system parameters. As one
simple limiting case, for j!j.d ! 0, Eq. (16) reduces to

�2 �
��1� fm�g� 1�

�1� fm�g
!2�: (17)

Note that Eq. (17) yields the familiar return-current in-
stability ��2 < 0� whenever fm exceeds the critical value

fm > fc �
g� 1

g
�
r2b
r2w
: (18)

Equation (16) can also be used to investigate detailed
stability properties that depend on the conductivity /p of
the plasma channel and the electron collision frequency
0c. Typical results are illustrated in Fig. 7 for the case
where!.d � 0:075 and fm � 0. In Fig. 7, the normalized
growth rate Im�=!� is plotted versus the geometrical
factor g � �1� r2b=r

2
w�

�1 for g ranging from 1 to 2, and
several values of the parameter !=0c. Note that g � 1
corresponds to r2w=r2b ! 1, whereas g � 2 corresponds to
a nearby conducting wall with rb ’ 0:7rw. As expected,
the proximity of a conducting wall greatly reduces the
114801-7



FIG. 7. Plots of the normalized growth rate Im�=!� versus
the geometrical factor g obtained from Eq. (16) for several
values of the frequency ratio !=0c, and !.d � 0:075 and
fm � 0.
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growth rate of the resistive hose instability. Furthermore,
the normalized growth rate Im�=!� decreases for in-
creasing values of !=0c, although the normalized oscil-
lation frequency is relatively insensitive to the value of
!=0c [67]. Note also from Fig. 7 that the growth rate of
the resistive hose instability can be substantial, even when
!2.2d 
 1. For example, from Fig. 1, for g � 1 and
!=0c � 0:5, we obtain Im� � 0:125!�.

As an illustrative example characteristic of heavy ion
fusion applications, we consider a 1 kA cesium ion beam,
where the beam ions are singly charged with Zb � 1, and
the average kinetic energy is �	b � 1�mbc2 � 2:5 GeV
corresponding to �b � 0:2. Assuming that the beam
radius is rb � 1 cm, the beam density is calculated to
be nb � 3:4
 1011 cm�3. The corresponding betatron
frequency calculated from Eq. (16) is !� � 9:2

106 s�1, assuming zero return current �fm � 0�. The elec-
tron collision frequency for Coulomb collisions is given
by 0c � 2:9
 10�6ne1n!T

�3=2
e , where the typical value

of the Coulomb logarithm is about 1n! � 10. Assuming
the electron temperature is about Te � 1 eV and taking
ne � nb � 1012 cm�3, the conductivity of the back-
ground plasma for this choice of parameters is estimated
to be / � 3
 1012 s�1. Therefore, the magnetic decay
time is calculated to be .d � 5
 10�9 s. Assuming the
characteristic value of real frequency is ! ’ !� at z � 0,
we obtain !.d � 7:5
 10�2, which is much less than
unity. Substituting into Eq. (16), the instability growth
rate is Im� � �i � 0:13!� for g! 1, and the corre-
sponding real oscillation frequency is Re� � �0:22!�.
Note that the growth rate of the resistive hose instability
can be a substantial fraction of the betatron frequency of
the beam particles for this choice of system parameters.

In summary, it is important to recognize that there are
several mechanisms for reducing the growth rate of the
114801-8
resistive hose instability. Growth rate reduction mecha-
nisms include (a) increasing the characteristic value of
j!j=0c; (b) proximity of a conducting wall (increasing
values of rb=rw); and (c) decreasing the value of frac-
tional current neutralization fm. In addition, rounded
beam density profiles tend to give lower growth rates
than the flattop density profile in Eq. (10) [61].

In concluding this section, it is important to recognize
that the resistive hose instability may play an important
role for ion beam propagation through a dense plasma
channel when the electrons are relatively cold and the
resistivity is correspondingly high. On the other hand, for
charge-neutralized ballistic transport, when the plasma
density is lower and the electrons have higher tempera-
tures, the resistive hose instability is likely to play a less
important role because of the lower resistivity.

B. Multispecies Weibel instability

The electromagnetic Weibel instability [37–42] was
shown in Sec. II B to be relatively ineffective in one-
component charged particle beams. The situation can be
quite different, however, when an intense beam propa-
gates through background plasma [39–42,72,73]. In this
case, the large energy anisotropy associated with the
directed kinetic energy of the beam particles relative to
the background plasma can provide significant free en-
ergy to drive the transverse electromagnetic Weibel in-
stability, and cause filamentation in the plane
perpendicular to beam propagation. In this section, we
summarize the results of a recent calculation [73] based
on a macroscopic cold-fluid model in which an intense ion
beam �j � b� propagates through a background plasma
�j � e; i�. The background plasma is assumed to provide
complete charge and current neutralization with

X
j�b;e;i

n0j �r�ej � 0 and
X

j�b;e;i

n0j �r�ej�jc � 0: (19)

Here, Vzj � �jc is the average axial velocity (assumed
constant) of species j �j � b; e; i�, and 	j � �1� �2j �

�1=2

is the relativistic mass factor. In Eq. (19), current neutral-
ization has been assumed since this case tends to give the
largest growth rate for the multispecies Weibel instability
[83]. That is, a finite azimuthal self-magnetic field
B0��r� � 0 tends to reduce the growth rate of the Weibel
instability [41,83]. Furthermore, the present analysis as-
sumes axisymmetric flute perturbations with @=@� � 0
and @=@z � 0, and electromagnetic field perturbations
with components �E � �Erêr � �Ezêz and �B �
�B�ê�. Note that the field perturbations assumed here
have mixed polarization with both a longitudinal compo-
nent (�Er � 0) and the transverse electromagnetic com-
ponents (�B� � 0 and �Ez � 0). Finally, similar to
Sec. IVA, it is assumed that the beam-plasma interac-
tions take place in a region where there is no applied
114801-8
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focusing field �!f � 0�, and there is a perfectly conduct-
ing cylindrical wall located at radius r � rw.

Within the context of the assumptions enumerated in
the previous paragraph, we express �Ez�r; t� � �Êz�r�

exp��i!t�, where Im!> 0 corresponds to instability
(temporal growth). Making use of a cold-fluid model
that neglects pressure perturbations, this leads to the
eigenvalue equation [73]

1

r
@
@r

�
r
�
1�

X
j�b;e;i

�2j!
2
pj�r�

!2

�

�
P

j�b;e;i
�j!

2
pj�r��

2

!2�!2 �
P

j�b;e;i
!2pj�r��

�
@
@r
�Êz

�

�

�
!2

c2
�

X
j�b;e;i

!2pj�r�

	2jc
2

�
�Êz � 0; (20)

where !pj�r� � �4�n0j �r�e
2
j=	jmj�

1=2 and
	j � �1� �2j �

�1=2.
Equation (20) is the desired eigenvalue equation for

axisymmetric, ordinary-mode electromagnetic perturba-
tions, with the terms proportional to

P
j�b;e;i�

2
j!

2
pj�r� andP

j�b;e;i�j!
2
pj�r� � 0 providing the free energy to drive

the Weibel instability. Equation (20) can be integrated
numerically to determine the eigenvalue !2 and eigen-
function �Ez�r� for a wide range of beam-plasma density
profiles n0j �r�. Analytical solutions are also tractable for
the case of flattop (step function) density profiles. As a
general remark, when

P
j�b;e;i�

2
j!

2
pj�r� � 0 andP

j�b;e;i�j!
2
pj�r� � 0, Eq. (20) supports both stable fast-

wave solutions �Im! � 0; j!=ck?j> 1� and unstable
slow-wave solutions �Im!> 0; j!=ck?j< 1�. Here,
jk?j � j@=@rj is the characteristic radial wave number
of the perturbation. Equation (20) also supports plasma
oscillation solutions with predominantly longitudinal po-
larization associated with the factor proportional to
�!2 �

P
j�b;e;i!

2
pj�r��

�1.
As an example that is analytically tractable, we con-

sider the case where the density profiles are uniform both
inside and outside the beam with

n0j �r� � n̂ij � const; j � b; e; i; (21)

for 0 	 r < rb, and

n0j �r� � n̂oj � const; j � e; i; (22)

for rb < r 	 rw. Here, the superscript ‘‘i’’ (‘‘o’’) denotes
inside (outside) the beam, and n̂ob � 0 is assumed.
Consistent with Eq. (19),

P
j�b;e;in̂

i
jej � 0 �P

j�b;e;in̂
i
j�jej and

P
j�e;in̂

o
j ej � 0 �

P
j�e;in̂

o
j�jej are

assumed. We also take �j � 0 (j � e; i) in the region
outside the beam �rb < r 	 rw�. Analysis of the eigen-
114801-9
value equation (20) is able to treat the three cases:
(a) beam-plasma-filled waveguide �rb � rw�;
(b) vacuum region outside the beam (rb < rw and n̂oj �
0, j � e; i); and (c) plasma outside the beam (rb < rw and
n̂oj � 0, j � e; i). Referring to Eq. (20), it is convenient to
introduce the constant coefficients

T2i �!� �
�
!2

c2
�

X
j�b;e;i

!̂i2
pj

	2jc
2

��
1�

1

!2
X

j�b;e;i

�2j !̂
i2
pj

�

�
P

j�b;e;i
�j!̂i2

pj�
2

!2�!2 �
P

j�b;e;i
!̂i2
pj�

�
�1

(23)

for 0 	 r < rb, and

T2o�!� � �

�
!2

c2
�

X
j�e;i

!̂02pj
c2

�
(24)

for rb < r 	 rw, where !̂i2
pj � 4�n̂ije

2
j=	jmj, j � b; e; i

and !̂o2
pj � 4�n̂oj e

2
j=mj, j � e; i. Solving Eq. (20) for

the choice of density profiles in Eqs. (21) and (22) and
enforcing �Êz�r � rw� � 0, some straightforward alge-
braic manipulation gives the transcendental dispersion
relation [73]

�
1�

1

!2
X

j�b;e;i

�2j !̂
i2
pj �

�
P

j�b;e;i
�j!̂i2

pj�
2

!2�!2 �
P

j�b;e;i
!̂i2
pj�

�
Tirb

J00�Tirb�
J0�Tirb�

� Torb
K0�Torw�I

0
0�Torb� � K0

0�Torb�I0�Torw�
K0�Torw�I0�Torb� � K0�Torb�I0�Torw�

: (25)

Here, Ti�!� and To�!� are defined in Eqs. (23) and (24),
and I00�x� � �d=dx�I0�x�, J00�x� � �d=dx�J0�x�, etc., where
I0�x� andK0�x� are modified Bessel functions, and J0�x� is
the Bessel function of the first kind of order zero.

The dispersion relation (25) has been solved numeri-
cally [73] for the complex oscillation frequency ! for
a wide range of system parameters corresponding to
(a) plasma-filled waveguide �rb � rw�; (b) plasma outside
the beam-plasma channel (n̂oj � 0, j � e; i; and rb < rw);
and (c) no plasma outside the beam-plasma channel (n̂oj �
0, j � e; i, and rb < rw). As an illustrative example, we
consider here the case where rb < rw and there is no
plasma outside the beam-plasma channel, i.e., n̂oj � 0

and T2o�!� � �!2=c2 in Eqs. (24) and (25). Inside the
beam-plasma channel �0 	 r < rb�, it is important to
recognize the relative size of the various beam-plasma
species contributing to the instability drive termsP
j�b;e;i�

2
j !̂

i2
pj and

P
j�b;e;i�j!̂

i2
pj in the definition of

T2i �!� in Eq. (23). Assuming a positively charged ion
beam �j � b� propagating through background plasma
electrons and ions �j � e; i�, the charge states are denoted
by eb � �Zbe, ee � �e, and ei � �Zie, and the plasma
electrons are assumed to carry the neutralizing current
114801-9



FIG. 8. Plots of (a) Weibel instability growth rate �Im!�="W versus mode number n, and (b) eigenfunction �Êz�r� versus r=rw for
n � 5 obtained from Eqs. (20) and (25). System parameters are rb � rw=3, �b � 0:2, �i

prb=c � 1=3, and �0
p � 0.
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��e � 0�, whereas the plasma ions are taken to be sta-
tionary ��i � 0�. The conditions for charge neutraliza-
tion,

P
j�b;e;in̂

i
jej � 0, and current neutralization,P

j�b;e;in̂
i
jej�j � 0, then give

n̂ ie � Zbn̂ib � Zin̂ii; �e �
�bZbn̂

i
b

Zbn̂
i
b � Zin̂

i
i
: (26)

Except for the case of a very tenuous beam �Zbn̂
i
b 


Zin̂
i
i�, note from Eq. (26) that �e can be a substantial

fraction of �b.
In the analysis of the dispersion relation (25), it is

useful to define

�i2
p �

X
j�b;e;i

!̂i2
pj; �o2

p �
X
j�e;i

!̂o2
pj;

h�2i �

P
j�b;e;i

�2j !̂
i2
pj

P
j�b;e;i

!̂i2
pj

; h�i �

P
j�b;e;i

�j!̂
i2
pj

P
j�b;e;i

!̂i2
pj

;
(27)

where !̂i2
pj � 4�n̂ije

2
j=	jmj, 	j � �1� �2j �

�1=2 and
!̂o2
pj � 4�n̂oj e

2
j=mj. Note from Eq. (27) thatP

j�b;e;i!̂
i2
pj=	

2
j � �i2

p � h�2i�i2
p . For the case where

there is a vacuum region outside the beam-plasma chan-
nel, i.e., rb < rw and n̂oj � 0, j � e; i, then T2o�!� �
�!2=c2 and �o2

p � 0 follow from Eqs. (24) and (27),
and the full transcendental dispersion relation (25) must
be solved numerically. Both stable (fast wave and plasma
FIG. 9. Plots of (a) Weibel instability growth rate �Im!�="W versu
n � 5 obtained from Eqs. (20) and (25). System parameters are rb
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oscillation) and unstable (Weibel-like) solutions are
found. Careful examination of Eq. (25) for short-
wavelength radial perturbations shows that the growth
rate Im! of the unstable Weibel solution scales like "W
where

"2W � �h�2i � h�i2��i2
p

�
��2e!̂

i2
pe � �2b!̂

i2
pb�!̂

i2
pi � ��b � �e�

2!̂i2
pe!̂

i2
pbP

j�b;e;i
!̂i2
pj

(28)

for�i � 0. For !̂i2
pb; !̂

i2
pi 
 !̂i2

pe, it follows that Eq. (28) is
given to good approximation by

"2W ’ �2e!̂i2
pi � ��b � �e�2!̂i2

pb: (29)

Note from Eq. (29) that "W involves the plasma frequen-
cies of both the beam ions and the plasma ions. Focusing
here on the unstable Weibel solutions for brevity, we
consider the case of a cesium ion beam with Zb � 1
and �b � 0:2 propagating through a neutralizing back-
ground argon plasma with Zi � 1, n̂ii � �1=2�n̂ie � n̂ib,
and �e � 0:1 [see Eq. (26)]. Typical numerical solutions
to Eq. (25) are illustrated in Figs. 8 and 9 for the choice of
system parameters rw � 3rb,�o

p � 0, and�i
prb=c � 1=3

(Fig. 8), and �i
prb=c � 3 (Fig. 9). Figures 8 and 9 show

plots of the normalized growth rate �Im!�="W versus
radial mode number n and plots of the eigenfunction
�Êz�r� versus r=rw for radial mode number n � 5. For
s mode number n, and (b) eigenfunction �Êz�r� versus r=rw for
� rw=3, �b � 0:2, �i

prb=c � 3, and �o
p � 0.
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the choice of parameters in Figs. 8 and 9, note that
�Im!�max ’ "W for sufficiently large n. As noted earlier,
if current neutralization is incomplete or absent, it is
expected that there will be a corresponding reduction in
the Weibel instability growth rate [83] and perhaps com-
plete stabilization in some parameter regimes. This is
because of the stabilizing influence that the azimuthal
self-magnetic field B0��r� � 0 has in constraining the
transverse dynamics of the beam-plasma system.

C. Multispecies two-stream instability

The collisionless beam-plasma configuration consid-
ered in Sec. IV B is also subject to the electrostatic two-
stream instability. In this case the field perturbations have
electrostatic polarization with r
 �E ’ 0 and �B ’ 0,
and the relative streaming of the beam ions through the
background plasma components provides the free energy
to drive the classical two-stream instability. In this sec-
tion, we make similar assumptions to those made at the
beginning of Sec. IV B, including equilibrium charge
neutralization and current neutralization [Eq. (19)], ab-
sence of an applied focusing field �!f � 0�, and the
presence of a perfectly conducting cylindrical wall lo-
cated at radius r � rw. Expressing the longitudinal elec-
tric field perturbation as �E � �r��, we assume
axisymmetric perturbations with @=@� � 0. Perturbed
quantities are expressed as ���r; z; t� � ^���r�

exp�i�kzz�!t��, where kz is the axial wave number,
and Im!> 0 corresponds to instability (temporal
growth). Without presenting algebraic details [73,84],
the linearized cold-fluid-Poisson equations lead to the
eigenvalue equation

1

r
@
@r

�
r
�
1�

X
j�b;e;i

!2pj�r�=	
2
j

�!� kzVzj�2

�
@
@r

^��
�

� k2z

�
1�

X
j�b;e;i

!2pj�r�=	
2
j

�!� kzVzj�2

�
^�� � 0: (30)

Here, !pj�r� � �4�n0j �r�e
2
j=	jmj�

1=2 is the relativistic
plasma frequency, Vzj � �jc � const is the average axial
velocity of component j (j � b; e; i), and 	j �

�1� �2j �
�1=2 is the relativistic mass factor.

The electrostatic eigenvalue equation (30) can be
solved numerically for the eigenfunction ^���r� and the
complex eigenfrequency ! for a wide range of beam-
plasma density profiles n0j �r� �j � b; e; i�. For present
purposes, we specialize again to the choice of flattop
density profiles defined in Eqs. (21) and (22). In this
case, the eigenfunction ^���r� can be determined analyti-
cally in the beam-plasma channel �0 	 r < rb�, and in the
region outside the beam �rb < r 	 rw�. Employing the
appropriate boundary conditions at r � rb, and enforcing
^���r � rw� � 0, some straightforward algebraic ma-
114801-11
nipulation leads to the electrostatic dispersion relation
[73]

D�kz; !� � 1� g0
X

j�b;e;i

!̂i2
pj=	

2
j

�!� kzVzj�
2

� �1� g0�
X
j�e;i

!̂o2
pj

!2
� 0: (31)

Here, g0 is the geometric factor defined by

g0 � kzrbI00�kzrb�I0�kzrb�
�
K0�kzrb�
I0�kzrb�

�
K0�kzrw�
I0�kzrw�

�
(32)

for rb � rw. Moreover, !̂i
pj � �4�n̂ije

2
j=	jmj�

1=2 �j �
b; e; i� is the jth component plasma frequency inside the
beam-plasma channel �0 	 r < rb�, and !̂o

pj �

�4�n̂oj e
2
j=mj�

1=2 �j � e; i� is the jth component plasma
frequency outside the beam-plasma channel �rb < r 	
rw�. Similar to Sec. IV B, it is assumed that �e � 0 �
�i in the region outside the channel, and that the plasma
ions are stationary ��i � 0� inside the channel. In this
case, the conditions for charge neutralization and current
neutralization in the beam-plasma channel reduce to
Eq. (26). Finally, it should be noted from Eq. (32) that
the geometric factor g0 exhibits a strong dependence on
axial wave number kz, with

g0 ’
1

2
k2zr2b‘n

�
rw
rb

�
; for k2zr2w 
 1;

g0 ’
1

2
; for k2zr2b � 1:

(33)

Because of the geometric factors g0 and 1� g0 in
Eq. (31), the detailed properties of the two-stream insta-
bility calculated from Eq. (31) differ substantially from
the infinite beam-plasma results. However, several inter-
esting features of Eq. (31) are qualitatively evident. First,
in the absence of plasma outside the beam-plasma chan-
nel �!̂o2

pj � 0�, the channel electrons undergo unstable
two-stream interactions with both the beam ions and
the channel plasma ions. Second, when there is plasma
outside the beam-plasma channel �!̂o2

pj � 0�, the channel
electrons can undergo a strong unstable two-stream in-
teraction with the plasma electrons outside the channel.
Illustrative unstable solutions to the dispersion relation
(31) are shown in Figs. 10 and 11 for the case where there
is no plasma outside the beam-plasma channel, i.e., n̂oe �
0 � n̂oi for rb < r 	 rw. Here, we assume a cesium ion
beam with �b � 0:2 and Zb � 1 propagating through
background argon plasma with Zi � 1 and �i � 0.
Assuming n̂ib � n̂ie=2 � n̂ii, the current neutralization
condition in Eq. (26) gives �e � 0:1. In the absence of
plasma outside the beam-plasma channel, the dispersion
relation (31) has two unstable branches corresponding to
the interaction of the plasma electrons with the beam
114801-11



FIG. 10. Plots of (a) �Im!�=!̂i
pe and (b) �Re!�=!̂i

pe versus kzrb calculated from the two-stream dispersion relation (31) for rb �
rw=3, �b � 0:2, �e � 0:1, and !̂i

perb=c � 3 in the absence of plasma outside the beam-plasma channel.
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ions, and the interaction of the plasma electrons with the
plasma ions. The unstable branches in Figs. 10 and 11
correspond to the interaction of the plasma electrons with
the plasma ions. Figures 10 and 11 show plots of the
normalized growth �Im!�=!̂i

pe and real oscillation fre-
quency �Re!�=!̂i

pe versus kzrb for the two cases corre-
sponding to !̂i

perb=c � 3 and rb=rw � 1=3 (Fig. 10), and
!̂i
perb=c � 1=3 and rb=rw � 1=3 (Fig. 11). Note from

Figs. 10 and 11 that the two-stream growth rate is strongly
peaked as a function of kzrb. For the choice of system
parameters in Fig. 10, the value of kz � kzm at maximum
growth rate satisfies k2zmr2b � 1. In this case, g0�kzm� ’
1=2 in Eq. (31), and the maximum growth rate �Im!�max
and value of kzm in Fig. 10 are given to excellent approxi-
mation by the analytical estimates

�Im!�max ’
�
3

8

�
1=2

� !̂i2
pi

2!̂i2
pe

�
1=3
!̂i
pe;

jkzmjrb ’
1

�2�1=2
!̂i
perb
c

1

j�i � �ej
;

(34)

where �i � 0 is assumed. Equation (34) pertains to the
unstable plasma electron-plasma ion two-stream solution
to Eq. (31). For the unstable plasma electron-beam ion
solution to Eq. (31), the estimates are similar to those in
Eq. (34) with !̂i

pi replaced by !̂i
pb, and �i � �e replaced

by �b � �e.
FIG. 11. Plots of (a) �Im!�=!̂i
pe and (b) �Re!�=!̂i

pe versus kzrb c
rw=3, �b � 0:2, �e � 0:1, and !̂i

perb=c � 1=3 in the absence of p

114801-12
In summary, for a cold ion beam propagating through a
cold background plasma, the two-stream instability can
be an important collective interaction mechanism. Since
the phase velocity of the most unstable modes is close to
the beam velocity �bc and the plasma ion velocity �ic,
modest axial velocity spreads in the beam ions and
plasma ions can lead to a growth rate reduction. An
important nonlinear consequence of the two-stream in-
stability is the rapid nonlinear heating of the plasma
electrons on a time scale .heat � a few times �Im!��1max.
This heating can be due to the breaking of the plasma
waves.
V. CONCLUSIONS

This paper presented a survey of the present theoretical
understanding of collective processes and beam-plasma
interactions affecting intense heavy ion beam propaga-
tion in heavy ion fusion systems. In the acceleration and
beam transport regions, the topics covered included
(a) discussion of the conditions for quiescent beam propa-
gation over long distances; (b) the electrostatic Harris-
type instability and the transverse electromagnetic
Weibel-type instability in strongly anisotropic, one-
component non-neutral ion beams (Sec. II); and (c) the
dipole-mode, electron-ion two-stream instability driven
by an (unwanted) component of background electrons
(Sec. III). In the plasma plug and target chamber regions,
collective processes associated with the interaction of the
alculated from the two-stream dispersion relation (31) for rb �
lasma outside the beam-plasma channel.

114801-12



PRST-AB 7 RONALD C. DAVIDSON et al. 114801 (2004)
intense ion beam with a charge-neutralizing background
plasma were described, including the electrostatic
electron-ion two-stream instability, the multispecies
electromagnetic Weibel instability, and the resistive hose
instability (Sec. IV). Growth rate reduction mechanisms
have also been identified.
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