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We determine the impedance of a cylindrical metal tube (resistor) of radius a, length g, and
conductivity � attached at each end to perfect conductors of semi-infinite length. Our main interest
is in the asymptotic behavior of the impedance at high frequency �k � 1=a�. In the equilibrium regime,
ka2 � g, the impedance per unit length is accurately described by the well-known result for an infinite
length tube with conductivity �. In the transient regime, ka2 � g, where the contribution of transition
radiation arising from the discontinuity in conductivity is important, we derive an analytic expression
for the impedance and compute the short-range wakefield. The analytic results are shown to agree with
numerical evaluation of the impedance.

DOI: 10.1103/PhysRevSTAB.7.114401 PACS numbers: 41.20.Jb, 41.60.–m
I. INTRODUCTION

We consider the longitudinal impedance of a cylindri-
cal metal tube (resistor) of radius a, length g, and con-
ductivity � attached at each end to perfect conductors of
semi-infinite length (Fig. 1). Our main interest is in the
high frequency behavior, k � !=c � 1=a. There are two
regimes: (i) When the Rayleigh range ka2 corresponding
to the tube radius is short compared to the resistor length
g, the field pattern settles into an equilibrium in which the
field is continually being eaten at the resistor while it is
being replenished on axis by the deceleration of the beam
[1]. In this case, the impedance per unit length is well
approximated by that of an infinite length tube with
conductivity � [2–5]. (ii) When the Rayleigh range ka2

is short compared to g, equilibrium is not reached and the
impedance per unit length differs from that of an infinite
tube. We present an analytic description of the impedance
in this transient regime. Our discussion is complementary
to the recent work of Ivanyan and Tsakanov [6].

Our approach is based on an integral equation for the
longitudinal electric field in the resistor. In the transient
regime, the kernel of this equation can be simplified [7],
and analytic asymptotic results obtained. In the general
case, the integral equation can be solved by expanding the
a

g 

ndrical tube of radius a, having finite conductivity �

1098-4402=04=7(11)=114401(9)$22.50 
field in a Fourier series in the axial coordinate z, and
deriving an infinite set of linear algebraic equations for
the Fourier coefficients. Truncating these equations by
keeping only a limited number of Fourier components,
the equations can be solved numerically.

Let us write the impedance in the form

Z�a; g; k� �
Zs�k�g
2�a

G�a; g; k�; (1.1)

where the surface impedance Zs is defined by (mks units,
Z0 � 1="0c, and j �

�������
�1

p
)

Zs�k� � �1� j�Z0

������������
k

2�Z0

s
; �k > 0�: (1.2)

Branch cuts are chosen such that Z	�a; g; k� �
Z�a; g;�k� and Z	

s�k� � Zs��k�. In the case ka2 � g,
the impedance per unit length is well approximated by
that of an infinite cylinder with conductivity � [2–5], so

G 
 G1�ks0� �
1

1� 1
4 �j� 1��ks0�

3=2
; (1.3)

where s0 is the characteristic length discussed in [3–5],
z

in a section of length g, and infinite conductivity outside this
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FIG. 2. (a) The real (solid curve) and imaginary (dashed
curve) parts of the function GT from Eq. (1.5). (b) The real
(solid curve) and imaginary (dashed curve) parts of �1� j���������
ksg

p
GT�ksg�, which gives the frequency dependence of

Z�a; g; k� when ka2 � g.

PRST-AB 7 IMPEDANCE OF FINITE LENGTH RESISTIVE CYLINDER 114401 (2004)
s0 �
�
2a2

Z0�

�
1=3

: (1.4)

On the other hand, we have found that for ka2 � g, the
contribution to the impedance of the transition radiation
emitted due to the discontinuity in conductivity must be
included, and

G 
 GT�ksg�

� �ksg��2
�
1� e��ksg�2 �

2jksg����
�

p � je��ksg�2erfi�ksg�
�
:

(1.5)

The imaginary error function is defined by

erfi�z� � �jerf�jz� �
2����
�

p
Z z

0
dx exp�x2�; (1.6)
FIG. 3. (Color) The dashed curves representing the transient approx
curves representing the real and imaginary parts of the function G
algebraic equations when ka � g=a. Results are for a � 0:01 m a
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and we have introduced the new characteristic length
scale sg by

sg �

������������
g

2Z0�

s
: (1.7)

The real and imaginary parts of the function GT are
plotted in Fig. 2(a) and the real and imaginary parts of
�1� j�

�������
ksg

p
GT�ksg�, which gives the frequency depen-

dence of the impedance when ka2 � g, in Fig. 2(b).
We have solved numerically the truncated linear alge-

braic equations derived in Sec. II. In Fig. 3 we plot the
actual function G (solid curve) as determined numeri-
cally and the function GT (dashed curve) as given in
Eq. (1.5). As expected, GT is a good approximation in
the transient regime ka2 � g but not in the equilibrium
regime ka2 � g. In Fig. 4 we plot the actual function G
(solid curve) and the function G1 as given in Eq. (1.3).We
see that, as expected, G1 is a good approximation in the
equilibrium regime ka2 � g but not in the transient
regime ka2 � g. (Note that although the real part of
the impedance must be positive, the ReG can have either
sign.)

As an example to illustrate the order of magnitude of
the key parameters, let us consider a copper resistor with
� � 6� 107 �
m��1, g � 1 m, and a � 0:01 m. In this
case, sg � 5 �m and s0 � 20 �m, so the impedance of
Eq. (1.5) holds for ksg � 0:05. If the material is stainless
steel with � � 1:4� 106 �
m��1, then sg � 31 �m and
s0 � 72 �m and Eq. (1.5) holds for ksg � 0:31.

This paper is organized as follows: In Sec. II we derive
the integral equation determining the longitudinal elec-
tric field in the resistor. Expanding the field in a Fourier
series in the axial coordinate z, the integral equation is
rewritten as an infinite set of linear algebraic equations
for the Fourier coefficients. Truncating these equations by
keeping only a limited number of Fourier coefficients, the
equations are solved numerically. In Sec. III we consider
the impedance in the high frequency limit, ka � 1, and
derive a simpler integral equation for the electric field in
the resistor which holds when ka2 � g. We solve this
equation analytically, thus obtaining the impedance in
the transient regime. From this approximation to the
impedance, we compute the short-range wakefield
imation GT [Eq. (1.5)] are seen to be in agreement with the solid
as determined from a numerical solution of the truncated linear
nd � � 106 �ohmm��1.
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FIG. 4. (Color) The dashed curves representing the equilibrium approximation G1 [Eq. (1.3)] are seen to be in agreement with the
solid curves representing the real and imaginary parts of the function G as determined from a numerical solution of the truncated
linear algebraic equations when ka � g=a. Results are for a � 0:01 m and � � 106 �ohmm��1.
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(Sec. IV), the energy loss factor (Sec. V), and the trans-
verse kick factor (Sec. VI). We conclude in Sec. VII with
some final remarks.
II. DERIVATION OF INTEGRAL EQUATION

Consider a cylindrical tube (Fig. 1) of radius a, with
finite conductivity � (0< z < g) and infinite conductiv-
ity outside this interval. We shall calculate the longitudi-
nal impedance Z�k� by applying the approach developed
in Ref. [7]. Assuming all time dependence is given by
exp�j!t�, the fields in the tube can be expressed as

H� �
I0e�jkz

2�r
�

jk
Z0

Z
dqe�jqz J1�Kr�

KJ0�Ka�
A�q�; (2.1)

Ez �
Z

dqe�jqz J0�Kr�
J0�Ka�

A�q�; (2.2)

where K �
����������������
k2 � q2

p
. The impedance is determined by

Z�k� �
�1

I0

Z g

0
dzEz�r � a; z�ejkz: (2.3)

When the skin depth is small compared to the tube radius
�ka2 � 1=�Z0�, and assuming thick enough pipe com-
pared to the skin depth, the boundary condition can be
well approximated by

Ez�r � a; z� �
	
�Zs�k�H��r � a; z� �0< z< g�
0 otherwise;

(2.4)

where

Zs�k� � �1� j�Z0

������������
k

2�Z0

s
: (2.5)

Using Eqs. (2.1) and (2.2) in the boundary condition of
Eq. (2.4), we find the integral equation

f�z� � �
ZsI0e�jkz

2�a
�

Zsjka
2�Z0

Z g

0
dz0Kp�z� z0�f�z0�;

(2.6)

where f�z� � Ez�r � a; z� and the pipe kernel is
114401-3
Kp�z� z0� � �
Z

dq
J1�Ka�

KaJ0�Ka�
ejq�z�z0�

�
2�j
a

X1
s�1

e�jbsjz�z0j=a

bs
; (2.7)

with b2s � k2a2 ��2s and J0��s� � 0.
We define

f�z� � �
ZsI0e

�jkz

2�a
F�z� (2.8)

and

K̂�z� z0� �
X1
s�1

e�jbsjz�z0j=a

bs
ejk�z�z0�: (2.9)

In Eq. (2.9), the normalization of the kernel is slightly
different than that used in Ref. [7]. The integral equation
can be written in the form

F�z� � 1�
Zs�k�k
Z0

Z g

0
dz0K̂�z� z0�F�z0�; (2.10)

and the impedance is determined by

Z�k� �
Zs�k�
2�a

Z g

0
dzF�z�: (2.11)

Let us now define the dimensionless variables

p � ka; d � g=a; x � z=a; (2.12)

and

' �
Zs�k�ka

Z0
�

�1� j��ks0�3=2

2
: (2.13)

The integral equation can now be written as

F�x� � 1� '
Z d

0
dxK̂�x� x0�F�x0�: (2.14)

Introducing the Fourier expansion

F�x� �
X1

m��1

Cmej2�mx=d; (2.15)

the integral equation (2.14) reduces to an infinite set of
linear equations for the Fourier coefficients Cn,
114401-3
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X1
n��1

�+mn � 'dKmn�Cn � +m0: (2.16)

The matrix elements,

Kmn �
1

d2
Z d

0
dx

Z d

0
dx0K̂�x� x0�e�j2�mx=dej2�nx

0=d

� K�1�
mn � K�2�

mn; (2.17)

are given by

K�1�
mn �

X1
s�1

1

bs

�
1� e�j�dbs�dp�

�dbs � dp� 2�m��dbs � dp� 2�n�

�
1� e�j�dbs�dp�

�dbs � dp� 2�m��dbs � dp� 2�n�

�
;

(2.18)

K�2�
mn �

X1
s�1

�j+mn

bs

�
1

dbs � dp� 2�n

�
1

dbs � dp� 2�n

�
: (2.19)

The sum in Eq. (2.19) can be performed yielding

K�2�
mn �

jJ1�
������
,n

p
�+mn

d
������
,n

p
J0�

������
,n

p
�
; �,n > 0�; (2.20a)

K�2�
mn �

jI1�
����������
�,n

p
�+mn

d
����������
�,n

p
I0�

����������
�,n

p
�
; �,n < 0�; (2.20b)

K�2�
mn �

j+mn

2d
; �,n � 0�; (2.20c)

where ,n � 4�n
d �p� �n

d �. The impedance is determined
by the zero Fourier component C0. Writing the impedance
in the form of Eq. (1.1), we see that

G � C0: (2.21)

Keeping only a finite number of Fourier coefficients Cn
and truncating the sum over the zeros of the Bessel
function, we have solved the linear equations (2.16) for
C0 and hence determined the impedance. A similar ap-
proach has recently been applied to a related problem in
Ref. [8].
III. BEHAVIOR OF IMPEDANCE FOR ka2 � g

For p � ka � 1, consider the matrix elements K�1�
mn and

K�2�
mn in Eqs. (2.18) and (2.19). Recall that bs �

������������������
p2 ��2s

p
.

For large p, we can approximate

bs � p 

��2s
2p

: (3.1)

We see that the first term in the sums will dominate and
for p � 1,
114401-4
K�1�
mn 


X1
s�1

1

p

�
1� exp�jd�2s=2p�

�d�
2
s

2p � 2�m��d�
2
s

2p � 2�n�

�
(3.2)

and

K�2�
mn 


X1
s�1

j+mn

bs

1
d�2s
2p � 2�n

: (3.3)

Carrying out an inverse Fourier transform, we can
return to the integral equation (2.14). Using Eq. (2.17),
it is straightforward to check that the approximate matrix
elements given in Eqs. (3.2) and (3.3) correspond to the
approximate kernel, K̂a�x�, where

K̂ a�x� �
	
1
p

P
1
s�1 exp�

jx�2s
2p � �x > 0�

0 �x < 0�:
(3.4)

Gluckstern [7] has previously discussed this approxi-
mation to the pipe kernel valid for p � 1. He found that
for p � d, the sum over s can be approximated by an
integral to obtain

K̂ a�x� 

	 1�j
2�

����
�
px

q
�x > 0�

0 �x < 0�:
(3.5)

In this case, �ka � g=a�, the integral equation (2.14) can
be approximated by

F�x� � 1��
Z x

0
dx0

F�x0��������������
x� x0

p �0 � x � d�; (3.6)

where

� �
�1� j�Zs�k�

������
ka

p

2
����
�

p
Z0

: (3.7)

Iterating the kernel, we find the solution

F�x� � exp��-x� �
j����
�

p
������
-x

p
h�-x�; (3.8)

with

- � ���2 �
k2a
2Z0�

(3.9)

and

h�y� �
Z 1

0
du
exp��uy�������������
1� u

p �
X1
m�0

���m2m�1ym

�2m� 1�!!
: (3.10)

We can also express the function h in terms of the
imaginary error function,

h�y� �

����
�
y

s
e�yerfi�

���
y

p
�: (3.10a)

We see that h�y� � 1=y �y � 1�. The impedance
[Eq. (2.11)] is given by (ka � g=a)
114401-4
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Z�k� 

Zs�k�
2�

Z d

0
dx

�
exp��-x� � j

������
-x
�

r
h�-x�

�
: (3.11)

Let us write -d � �ksg�
2, where

sg �
�

g
2Z0�

�
1=2

: (3.12)

Performing one of the integrations in Eq. (3.11), we
find

Z�k� 

Zs�k�g
2�a

GT�ksg�; (3.13)

where

GT�u� �
Z 1

0
dxe�u2x

�
1�

2ju����
�

p
������������
1� x

p �
� u�2

�
1� e�u2 �

2ju����
�

p � je�u2erfi�u�
�

(3.14)

is plotted in Fig. 2. This approximation to the impedance
only holds for high frequencies satisfying

ka2 � g: (3.15a)

Noting that ka2
g � �ks0�3

�2ksg�2
, this inequality can be rewritten

in two equivalent but illuminating forms:

ksg � 4�sg=s0�
3 (3.15b)

and

ksg �
1

2
�ks0�

3=2: (3.15c)

The inequality (3.15b) shows that when sg < s0 the
approximate impedance of Eq. (3.13) applies over a broad
frequency range. On the other hand, when sg > s0,
Eq. (3.13) only holds for frequencies large compared to
1=sg. As we shall discuss a little later, the inequality
(3.15c) is the condition for the asymptotic behavior given
by Eq. (3.13) to dominate over that determined by Bane
and Sands [3] for an infinite tube with finite conductivity.

One can easily show that

GT�u� � 1�
4ju
3

����
�

p �u � 1� (3.16)

and

GT�u� �
1

u2
�
2j����
�

p

�
1

u
�
1

2u3
�
1

4u5
� � � �

�
�u � 1�:

(3.17)

A rough approximation for GT�u� satisfying the leading
behavior for small and large argument is the resonant
form

GT�ksg� 

1

1� jksg�
����
�

p
=2�

: (3.18)

When ksg � 1, which requires sg < s0 as is clear from
114401-5
the inequality (3.15b),

Z�k� 

Zs�k�g
2�a

�
1�

j����
�

p
4

3
�ksg�

�
: (3.19)

The first term is the usual low frequency form of the
resistive wall impedance.

When k � max�1=sg; g=a
2�,

Z�k� 

2Z0�1� j�
2�a

�������
g
�k

r
�

Z0�1� j�
�

�ks0�
�3=2: (3.20)

Note that the leading term for high frequency is propor-
tional to the square root of the resistor length and inde-
pendent of the conductivity. Of course, the frequency
range over which this asymptotic form holds depends
on the conductivity. The leading term is twice that given
by the diffraction impedance model ([1,2], and references
therein) for a cavity of length g in a beam pipe of radius a.

For a cylindrical tube having finite conductivity and
infinite length, the impedance is that discussed by Bane
and Sands [3] and

G 
 G1�ks0� �
1

1� 1
4 �j� 1��ks0�

3=2
: (3.21)

Comparing the approximation of GT�ksg� given in
Eq. (3.18) with G1�ks0� of Eq. (3.21) suggests that the
Bane and Sands approximation will be valid for ksg �
1
2 �ks0�

3=2 (i.e., g � ka2) and our new result [Eq. (3.13)]
for the high frequency impedance of a finite-length re-
sistor will hold for ksg �

1
2 �ks0�

3=2 (i.e., g � ka2).
IV. WAKEFIELD

The impedance is the Fourier transform of the wake-
field w�s�. It follows from causality that the wake van-
ishes in front of the driving particle. Therefore, we can
write

Z�k� �
Z 1

0

ds
c
e�jksw�s�

�
Z 1

0

ds
c
cos�ks�w�s� � j

Z 1

0

ds
c
sin�ks�w�s�:

(4.1)

Using the inverse cosine or sine transform, we can express
the wakefield in terms of either the real or imaginary part
of the impedance via

w�s� �
2c
�

Z 1

0
dk cos�ks�ReZ�k�

� �
2c
�

Z 1

0
dk sin�ks�ImZ�k�: (4.2)

When sg < s0, the impedance of Eq. (3.13) is a good
approximation over the wide range of frequencies given
by the inequality (3.15b), including values with k � 1=sg
as well as k � 1=sg. In this case, the wakefield is well
114401-5
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approximated by inserting the impedance of Eq. (3.13)
into Eq. (4.2). In this manner we obtain

w�s� �
cg

�2a

Z0����������������
2s3gZ0�

q WT

�
s
sg

�
; (4.3)

where

WT�3� �
Z 1

0
du cos�u3�u�3=2

�
1� e�u2 �

2u����
�

p

� e�u2erfi�u�
�

(4.4a)

� �
Z 1

0
du sin�u3�u�3=2

�
1� e�u2 �

2u����
�

p

� e�u2erfi�u�
�
: (4.4b)

We have verified that the two integrals in Eqs. (4.4a) and
(4.4b) are equal, which demonstrates that the wakefield
derived from the approximate impedance of Eqs. (3.13)
vanishes in front of the particle as required by causality.
Support for equality was obtained in two ways: (i) by
numerical integration and (ii) by showing that the
two expressions have the same asymptotic expansion for
large 3.

The function WT is plotted in Fig. 5. The behavior for
small argument is given by

WT�3� �

����
2

3

s
�

����������
2�3

p
�
2

���
2

p

3
33=2 �O�35=2�: (4.5)

The large argument behavior is described by the asymp-
totically convergent series

WT�3� �
�1���
2

p
X1
n�0

��n� 3=2�

3n�3=2��n2� 2�
: (4.6)

One can show from Eq. (4.4a) that
R
1
0 d3WT�3� � 0,

implying that the area under the curve in Fig. 5 vanishes.
When sg > s0, the impedance of Eq. (3.13) is a good

approximation only for k � 1=sg. In this case, one must
use a more accurate description of the impedance to
determine the long range part of the wake.
1 2 3 4 5 6
s sg

0.4
0.2

0.2
0.4
0.6
0.8

WT

FIG. 5. The function WT appearing in Eq. (4.3).
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V. ENERGY LOSS FACTOR

We consider a Gaussian bunch with total charge Q and
rms bunch length �s. We assume that sg < s0 and �s �

a2=g are satisfied. The longitudinal loss factor is defined
to be the energy loss of the bunch divided by the square of
the bunch charge,

-l � ��W=Q2 �
c
�

Z 1

0
dkReZ�k�e�k2�2s : (5.1)

Using the impedance of Eqs. (3.13) and (3.14) in (5.1), we
find

-l �
cZ0g��3=4�

4�2a
������������
2�Z0

p
s3=2g

Kl

�
�s

sg

�
; (5.2)

where [see Fig. 6]

Kl�u� �
2

��3=4�

Z 1

0
dxx�3=2e�x2u2

�
1� e�x2 �

2x����
�

p

� e�x2erfi�x�
�
: (5.3)

In the long bunch limit,

Kl�u� � u�3=2 �u ! 1�; (5.4)

and the loss factor per unit length goes to the well-known
expression for the infinite-length resistor [2]

-l=g � -1
l �

cZ0��3=4�

4�2a
������������
2�Z0

p
�3=2s

; �s � sg: (5.5)

The short bunch case is more interesting. Here,

Kl�u� �
2��1=4�����
�

p
��3=4�

1���
u

p 

3:34���
u

p �u ! 0� (5.6)

and the loss factor is given by

-l �
cZ0

���
g

p
��1=4�

2�5=2a
������
�s

p ; �s � sg: (5.7)

Hence, in this regime the loss factor is proportional to the
FIG. 6. The function Kl��s=sg� which determines the loss
factor.

114401-6
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square root of the resistor length g and is independent of
conductivity which is also the case for the diffraction
model.
FIG. 7. The function Kt��s=sg� which determines the trans-
verse kick factor.
VI. TRANSVERSE KICK FACTOR

Following the analysis of Ref. [9], we have verified that
for ka � 1 and ka2 � g the transverse (m � 1) imped-
ance Zt�k� is related to the longitudinal (m � 0) imped-
ance Z�k� by the well-known relation

Zt�k� �
2

ka2
Z�k�: (6.1)

The kick factor -t is defined by relating the angular
deflection of the centroid of the bunch to its displacement
via

�y0 �
4�N re
Z0c8

-ty; (6.2)

where re �
e2

4�"0mc2 is the classical electron radius, and N

is the number of particles in a bunch. The kick factor is
expressed in terms of the transverse impedance by [10]

-t � c
Z 1

0
dk  �k�s�ReZt�k�; (6.3)

where

 �x� �
1

�
e�x2erfi�x�: (6.4)

Finding the real part of the transverse impedance by
inserting the real part of the longitudinal impedance
specified in Eqs. (3.13) and (3.14) into Eq. (6.1), and using
the result in (6.3), we find

-t �
cZ0

��������gsg
p

��1=4�

2�2a3
Kt

�
�s

sg

�
; (6.5)

with

Kt�u� �
2

��1=4�

Z 1

0
dx x�5=2e�u2x2erfi�ux�

�
1� e�x2

�
2x����
�

p � e�x2erfi�x�
�
: (6.6)

The function Kt�u�is plotted in Fig. 7.
The limiting behavior of the kick factor for long bunch

length is given by

Kt�u� � u�1=2 �u ! 1�; (6.7)

and for short bunch length by

Kt�u� �
8��3=4�

���
u

p����
�

p
��1=4�


 1:52
���
u

p
�u ! 0�: (6.8)

Hence, in the long bunch limit, the kick factor is given by
the well-known expression for the kick factor per unit
length for an infinite resistor [2,11]
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-t=g � -1
t �

cZ0��1=4�

�2��3=2a3
������������������
��Z0�s

p ; �s � sg; (6.9)

while in the short bunch limit the kick factor is given by

-t �
4��3=4�

�5=2
cZ0

���������
g�s

p

a3
; �s � sg: (6.10)
VII. CONCLUDING REMARKS

We have considered the impedance of a finite length
resistive pipe in axially symmetric geometry. The main
results of our paper can be summarized as follows. When
the Rayleigh range of a mode with wave number k and
radius a is large compared to the length of the resistor
�ka2 � g�, the behavior of the impedance can differ
significantly from that of a resistor of infinite length. A
new length scale sg [Eq. (1.7)] enters the problem. For
k � 1=sg, the longitudinal impedance is given by the low
frequency resistive wall impedance,

Z�k� 

Zs�k�g
2�a

: (7.1)

For k � 1=sg, the high frequency asymptotic behavior
[Eq. (3.20)] is twice that given by the diffraction imped-
ance model ([1,2], and references therein) for a cavity of
length g in a beam pipe of radius a,

Z�k� 
 �1� j�
2Z0
2�a

�������
g
�k

r
: (7.2)

The low frequency resistive wall impedance cannot
continue to very high frequencies because the corre-
sponding negative wakefield would result in acceleration
of the particles trailing immediately behind the leading
particle [2]. The diffraction model, on the other hand,
yields a proper retarding wakefield immediately behind
the leading particle. Therefore, it is reasonable that at
some sufficiently high frequency the diffraction-model-
like behavior becomes dominant. The value of k for which
114401-7
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the magnitudes of the two asymptotic forms given in (7.1)
and (7.2) becomes equal is (up to a constant of the order
of 1) the inverse of the characteristic length scale sg.

Since this paper primarily deals with the behavior of
the high frequency impedance, a few remarks on the high
frequency limitations of our treatment are in order. First
of all, as is true for any impedance, the finite length
resistive wall impedance considered here will fall off
exponentially at wave numbers that exceed kc8 � 8=a.
Also, the normal skin effect expression for the surface
impedance Eq. (1.2) breaks down at high frequencies due
to either anomalous skin effect [12] or relaxation effects
[3]. This typically occurs at very high frequencies and is
ignored in this paper.

While our theory is formally applicable when sg < s0,
significant corrections to the usual long-bunch infinite-
length resistor consideration only appear at frequencies
k� s�1g and higher. In order for these frequencies to
significantly overlap with the single bunch spectrum,
one has to have k� 1=�s, where �s is rms bunch length.
Since sg is typically very small, our theory is relevant for
very short bunches �s � sg.

We have considered an idealized geometry as well as
assuming outer pipes of infinite conductivity. In a typical
accelerator environment, a step change in conductivity
associated with devices such as collimators, minigap
undulators, etc., is often accompanied by a cross-section
change. While the changes in conductivity and cross
section act on a beam together, our idealized treatment
gives some insight and permits order of magnitude esti-
mates for the effect of the resistive part alone when the
element is short enough, g � a2=�s.

On the other hand, high resistance elements without a
change in the vacuum chamber cross section do some-
times occur in accelerators. One example is a short stain-
less steel insert in a low resistivity vacuum chamber,
which is used for high speed magnet correctors [low
conductivity allows fast ( � 100 Hz) magnetic fields to
penetrate the chamber]. We believe that our treatment
very closely applies to this situation, and in fact, if
bunches are short enough, the effect on the beam could
be very different from what results from existing theories.
Another commonly used element is a short piece of
ceramic typically used to accommodate fast kickers.
While the surface impedance of ceramic is different
from what has been considered in this paper, we believe
this problem is tractable with a similar formalism.

Consider a 25 cm long stainless steel insert in a 1 cm
radius low resistivity chamber. From the example given in
the Introduction, sg � 15 �m and s0 � 72 �m so our
theory applies well. For 8 �m rms long bunch, i.e., �s �

0:5sg, Eqs. (6.5) and (6.6) give the kick factor of about
29 V=�pCm�. Let us compare this kick factor to the
predictions one would get based on the infinite-length
resistor impedance of Eqs. (1.1) and (1.3). Of course, since
114401-8
a2 � g�s the infinite-length impedance should not be
applied to this particular case. In a manner similar to the
derivation of Eq. (6.5) and (6.6), we can calculate the kick
factor directly from the infinite-length impedance. This
results in a kick factor of 7:5 V=�pCm�, i.e., an under-
estimate of almost a factor of 4. Hence, for short bunches
the effect of finite length can be pronounced.

Finally, we note that while an accurate measurement of
the effect of the resistive wake of a finite element on a
beam is a nontrivial matter, it was recently successfully
measured at SLAC using the SLC beam at 1.2 GeV [13]. A
transverse kick to the beam after passing through a
tapered graphite collimator was measured and the geo-
metric effects were accounted for by repeating the mea-
surements on an identical copper collimator. Because of a
relatively long bunch (�s � 650 �m� sg; s0) our theory
does not directly apply (or predict anything of impor-
tance) to this case (even when ignoring the flat geometry
and the effect of tapers). For this case the kick factor can
be calculated from the analog of Eq. (6.9) for a parallel-
plate geometry, as it was in fact done in [13].

However, we predict that if this experiment is repeated
with a much shorter bunch, for example �s � 20 �m
which is equal to the LCLS bunch length [14], the finite
length aspect of the resistive wall impedance will be very
pronounced. In fact, for such a short bunch, one does not
need to go to graphite, and the transverse kick from a
25 cm long stainless steel insert in a 1 cm radius round
chamber should be measurable. To convincingly observe
the characteristic behavior in the finite-length regime,
one could, for example, measure the kick to the bunch at
several insert lengths. Lengthening the insert by a factor
of 4 (from 25 cm to 1 m) should result in a total kick
increase of only a factor of 3, which should be easily
distinguished from the linear dependence predicted by
the theory for an infinite-length resistor.
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