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In recent high luminosity colliders, the finite crossing angle scheme becomes popular to gain the
luminosity with multibunch or long bunch operation. Success of the KEKB factory showed that the
finite crossing angle scheme has no problem achieving beam-beam parameters up to 0.05. We have
studied the beam-beam interactions with and without crossing angle toward higher luminosity. We
discuss how the crossing angle affects the beam-beam parameter and luminosity in the present KEKB
using computer simulations. The simulations showed that crab cavities, which realize the head-on
collision effectively, can be expected to double the luminosity.
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I. INTRODUCTION

High-luminosity B factories, KEKB and PEP-II, are
operated successfully at KEK and SLAC, respectively.
The collision scheme in KEKB was designed so that
the two beams collide with a finite crossing angle, 2�
11 mrad, with 2 ns repetition. A head-on collision scheme
was adopted in PEP-II with 4 ns repetition. The crossing
angle makes it easy to design the interaction region for
narrow bunch spacing. Historically, the crossing collision
scheme had been considered to be taboo due to the un-
successful experience of DORIS in DESYwhere a vertical
crossing was implemented. At KEK, many studies were
performed leading to the adoption of the horizontal cross-
ing collision scheme [1–3]. KEKB and PEP-II achieved
luminosities of 1:2� 1034 and 0:8� 1034 cm�2 s�1, re-
spectively, in the beginning of 2004. Such high luminos-
ities were not believed to be possible when the original
design work started. But following the recent success of
the high luminosity factories, the crossing angle scheme
has become popular in order to gain a higher repetition
rate.

The design luminosity at KEKB is achieved with the
repetition frequency that is a factor of 3–4 lower than its
design value. Currently, the bunch spacing, which is the
inverse of the repetition frequency, is 8–6 ns. Narrowing
the bunch spacing does not increase the luminosity, per-
haps due to the electron cloud effect in both machines.

The bunch spacing has reached its design value, 4 ns for
PEP-II, but the bunch pattern still consists of many small
gaps between the bunch trains to alleviate the electron
cloud effects. The number of bunches is much more than
that of KEKB. The influence due to the electron cloud in
PEP-II seems to be less a problem than that in KEKB.
This fact may mean that the antechamber which is used
in PEP-II is efficient in reducing the electron cloud
effects.

The bunch population is much higher than its design to
recover the smaller number of bunches in KEKB: it is
1098-4402=04=7(10)=104401(11)$22.50 
twice the design for the positron beam and is 3.7 times the
design for the electron beam. The operating tune, which
optimizes the luminosity [4], is just slightly above a half-
integer in the horizontal and is around 0.54–0.56 in the
vertical. The horizontal beam-beam parameter, calcu-
lated using the bunch population and the design beam
size, is about 0.1, while the vertical beam-beam parame-
ter, estimated from the luminosity, is 0.05. Our design
beam-beam parameter is 0.05 in both the horizontal
and the vertical plane for the design bunch populations,
which is much smaller than the present values. The
vertical beam-beam parameter, which is reduced by a
vertical beam enlargement, determines the luminosity
performance.

We continue to make efforts to obtain higher luminos-
ity. The achieved beam-beam parameter, 0.05, is not the
largest achieved value yet. For example, the beam-beam
parameter, �0:07, was reached in CESR with a similar
damping time �xy=T0. To reach luminosity much higher
than 1035 cm�2 s�1, a beam-beam parameter beyond 0.1
is necessary.

To study the effect of crossing angle, the beam-beam
simulation has to take into account the bunch length; that
is, the motion of particles should be treated in three-
dimensional space (x-y-z). Both weak-strong and
strong-strong simulations are used for the studies in this
paper, where both of the two colliding beams are repre-
sented by a number of macroparticles in strong-strong
simulations, while one (weak) beam is represented by a
number of macroparticles and another (strong) beam is
represented by a rigid charge distribution in weak-strong
simulations. Weak-strong simulations have been extended
to three-dimensional space by slicing the bunch along the
longitudinal direction using the so-called synchrobeta
map [5–7]. Most of the strong-strong simulations had
been done in two-dimensional space (x-y) [8]; i.e., the
bunch length was assumed to be zero. Though strong-
strong simulations have been extended to three-
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dimensional space, the convergence for the number of the
longitudinal slices was not good [9,10]. The convergence
has been improved dramatically by using an idea similar
to the synchrobeta map as done in the weak-strong simu-
lation [11]. This three-dimensional formalism is dis-
cussed in this paper.

The beam-beam limit for collision with or without
crossing angle is studied using this simulation method.
A luminosity optimization for the optics parameter at the
collision point has been done in KEKB [12]. Simulations
have also shown that tuning for x-y coupling and disper-
sion functions at the collision point affects the beam-
beam performance [4]. It is important to remove the
errors of coupling and dispersion for luminosity optimi-
zation. As we show later, the crossing angle is considered
as a kind of dispersion function at the collision point;
therefore, it makes the beam-beam performance worse.

This paper consists of the following contents. The
formalism used in our simulation is discussed in Sec. II,
which includes an explanation of the treatment of cross-
ing angle and three-dimensional beam-beam interaction.
Results obtained by the simulation are presented in
Sec. III, and conclusions are summarized in Sec. IV.
II. FORMALISM OF COLLISION WITH
CROSSING ANGLE

A. Treatment of the crossing angle

In the laboratory frame, the s axes of two beams are
chosen to be their moving directions, and the electromag-
netic field of a beam is formed on the plane perpendicular
to its s axis. When there is a crossing angle in the colli-
sion, the beam-beam force by the other beam is not in the
transverse direction of the beam that is experiencing the
force. Hence the timing, when the beam experiences the
force, depends on the positions of both beams. This
feature makes it more difficult to treat the collision
with a finite crossing angle.

It is convenient that the collision is treated by a Lorentz
boost to a head-on frame from the laboratory frame
[1,2,13]. In the head-on frame, the s axes of the two
beams coincide with opposite directions. The particles
in the two beams basically move along the s direction and
beam-beam force is perpendicular to the s axis. In the
simulation, particles in the beam are transferred to the
head-on frame, experience the collision, and are trans-
ferred back to the laboratory frame by the inverse of the
Lorentz boost. The principle axis of the beam ellipsoid
does not coincide with the s direction; that is, hxzi is not
zero for the case of horizontal crossing.

We use as dynamical variable x�s� �
�x; px; y; py; z; pz�

t, which is generally used to describe
beam motion in accelerators: px;y is the transverse
momentum normalized by the total momentum of a
reference particle (p0 � E0=c), z is the delay time (z �
104401-2
s� ct) scaled by the light speed, and pz is the energy
deviation [pz � �E� E0�=E0] from that of the reference
particle.

The Lorentz transformation from the laboratory frame
to the head-on frame (ML) is given for a half-crossing
angle � by [2]
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A star designates a dynamical variable in the head-on
frame.H	 and p	

s areH�p	� and ps�p	�, respectively. Note
that the x	 and y	 axes are defined in the same direction
for both beams, while the s	 axis is defined in opposite
directions, since the two beams travel in opposite
directions.

The linear part of the transformation is expressed by a
matrix

ML �

1 0 0 0 tan� 0
0 1= cos� 0 0 0 0
0 0 1 0 0 0
0 0 0 1= cos� 0 0
0 0 0 0 1= cos� 0
0 � tan� 0 0 0 1

0
BBBBBBBB@

1
CCCCCCCCA
: (2)

These transformations, Eqs. (1) and (2), are not sym-
plectic. In fact, the determinant of the transfer matrixML
is not 1, but cos�3�. This is due to the fact that the Lorentz
transformation is not symplectic for the accelerator coor-
dinate, because the Hamiltonian is divided by a reference
momentum. This is not a problem because the inverse
factor of cos3� is applied by the inverse transformation.

This discussion can be applied to the nonlinear trans-
formation of Eq. (1). The Jacobian matrix of the trans-
formation, �@x	=@x�ij � @x	i =@xj, satisfies�

@x	

@x

�
t
J
�
@x	

@x

�
� J= cos�; (3)

where J is the matrix of the symplectic metric. Note that
det�J= cos�� � cos�6�. Mt denotes the transpose of the
matrix M. Once again, it shows that the Lorentz trans-
formation itself is not symplectic but the whole beam-
beam map that includes the Lorentz transformation,
beam-beam map, and the inverse Lorentz transformation
is symplectic, since
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1S ordered product is the same concept as T ordered product
popularly used.
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XtJX � J; (4)

where X is the product of three Jacobian matrices:

X �

�
@x
@x	

�
L�1

�
@x	

@x	

�
beam-beam

�
@x	

@x

�
L
: (5)

The map of the beam-beam interaction, which includes
the collision along the bunch length, is represented by a
map at s	 as shown in the next subsection. The revolution
map including the crossing transformation, is expressed
by

M L�1 �Marc �ML; (6)

where Marc is the transfer map of the arc section and ML
is the map given by Eq. (1). The linear part of the
revolution map, which is the revolution matrix, is ex-
pressed by MLMarcM�1

L . For small �, the revolution ma-
trix, including the crossing transformation, is equivalent
to that with z-dependent dispersion �x � � [14] at the
interaction point, s � s	. The z-dependent dispersion is
an orbit displacement as a linear coefficient for z, i.e.,
�x � �x=z, while the ordinary dispersion is an orbit
displacement for pz, �x � �x=pz. The equilibrium
beam envelope (hx	i x

	
j i) at the collision point is deter-

mined by the optics function [14]. The effective � at the
collision point means that the beam envelope has hxzi /
�x�s� in the head-on frame. The nonlinear parts of the
transformations of Eq. (1) are a kind of kinematic term
which only weakly affect the beam for a small crossing
angle.

Since crab cavities also create a z-dependent dispersion
�x;crab�s�, we can effectively choose an arbitrary crossing
angle by using the crab cavities to control �x;crab�s	� at the
interaction point. To make a head-on collision of the
beams with hxzi � 0, we need to set �x;crab � ��.

We use two simulation models, weak-strong and
strong-strong, to study the beam-beam interactions ac-
cording to circumstance. In the weak-strong model, the
strong beam is fixed to a Gaussian distribution in six-
dimensional phase space, while the other (weak) beam is
represented by macroparticles. We restrict ourselves to
these two methods to avoid complexity and confusion.
We have two other simulation methods, which are not
treated in this paper. They are strong-strong simulation
with a Gaussian approximation and weak-strong simula-
tion with the particle-in-cell (PIC) method [15,16]. In the
first method, both beams, which are represented by mac-
roparticles, are approximated by Gaussian distributions
turn by turn. In the second method, the strong beam,
which has a given arbitrary charge distribution, drives
macroparticles in the weak beam with a force determined
by the PIC method.

In the weak-strong model, macroparticles are trans-
ferred from the laboratory frame to the head-on one using
Eq. (1). The beam envelope of the strong beam is trans-
104401-3
ferred by the linear map,

hx	x	ti � MLhxx
tiMt

L: (7)

In the strong-strong model, both of the beams are
represented by macroparticles, which can have an arbi-
trary distribution. The beam-beam force is calculated by
the PIC method [17]. Macroparticles of both beams are
transferred by Eq. (1).

B. Formalism of three-dimensional beam-beam in-
teraction

We now consider the collision of two beams in the
head-on frame. The beam-beam force is perpendicular
to the s axis due to the Lorentz transformation to the
head-on frame. Therefore it is sufficient to take care of
the beam shapes deformed by the crossing transformation
of Eq. (1). The two beams both have gradients in the x-z
plane due to the crossing angle. It is essential to take into
account the bunch length, since the effect of the gradient
in the x-z plane should be studied. For simplicity, the
collision point is chosen as s	 � 0. The transfer map
before (s � �0) to after (s � 
0) the collision in the
head-on frame, evaluated at the interaction point s �
s	 � 0, is written as

x �
0� � S exp
�
�:

Z �

��
V�1
0 �s�HbbV0�s�ds:



x��0�;

(8)

where S means s ordered product and 
� is the interac-
tion region of the two beams.1 V0 is the transfer map in
the drift space,

V0�s� � V0�s; 0� � S exp
�
�:

Z s

0
H0ds:




�
Y
i�


exp
�
�:

p2
x;i 
 p2

y;i

2
s:


; (9)

where px�y�;
 is the momentum of positrons/electrons.
Note that :px;
:x
 � �px;
; x
� � �1 and :px;
:x� � 0,
where � � is the Poisson bracket. The drift map V0 can be
replaced by the map in the solenoid magnet as the need
arises. Hbb is a term which represents the beam-beam
interaction. The relativistic beam induces an electromag-
netic field in the transverse plane. The field can be ex-
pressed by a two-dimensional static potential. The other
beam experiences the electromagnetic field. Hbb is ex-
pressed by

Hbb � ���x
� 
�
�x��; (10)

where ���x
� is the potential induced by e� beam at the
position �x
� of each e
 in their beam.
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We have two problems when evaluating the map,
Eq. (8): that is, one is how to evaluate �, and the second
is how to integrate Eq. (8) for a given �. The potential �
is determined by the two-dimensional Poisson equation,

4?�
�x; y; z; s� �
re
 


!
�x; y; z; s�; (11)

where ! is the number density of the beam at given �z; s�.
�x; y; z; s� are coordinates of each e� in their beam, which
is tracked. The potential is solved by the PIC method.

We discuss the motion of the positron beam which
experiences the potential formed by the electron beam,
for example. The integration including an S ordered prod-
uct is discretized. It is convenient that the integration
variable (s) is replaced by z� for the beam of the field
source, and the integration is discretized for z� of the
source beam, z�;i. The integration step is chosen to be the
slice in which the potential is calculated. The relation
between si and z�;i is expressed by si � �z
 � z�;i�=2.
The integration for both electron and positron beams is
expressed by

YNsl;�
i�1

exp��:V�1
0;
�s�;i���;i�x
; s�;i�V0;
�s�;i��s:�

�
YNsl;

j�1

exp��:V�1
0;��s
;j��
;j�x�; s
;j�V0;��s
;j��s:�:

(12)

Since �
;i�x� is determined by the distribution of the
e
 beam at s�;i, then s�;i is a function of the longitudinal
position of the tracked particle in the beam, z
. Namely,
the potential has to be calculated for every tracked
particle.

For a Gaussian beam, it is easy to get� as a function of
s [7,18],

�
�x; y; z; s� �
N


4$%x%y

Z
dx0dy0 lnj�x� x0�2 
 �y

� y0�2j exp�
�

x02

2%x�s�
2 


y02

2%y�s�
2

�
:

(13)

Its derivative is expressed by the complex error function
[19]. The beam-envelope matrix is deformed due to the
beam-beam interaction at each integration step. For an
arbitrary s in an integration step, the rms beam sizes, or
more generally beam-envelope matrix, are transferred by

hx�s0�xt�s0�i � V0�s0; s�hx�s�xt�s�iVt0�s
0; s�; (14)

where V0�s
0; s� is the transfer matrix for s to s0.

In the weak-strong simulation, a strong beam is fixed in
charge distribution in every longitudinal integration step.
The beam-envelope matrix is transferred by Eq. (14)
during the collision [6,7].
104401-4
In the PIC model, the distribution is expressed by
macroparticles mapped onto a two-dimensional grid
space; therefore it is difficult to express the potential as
a function of s. The calculation of the potential in every s
for z of a tracked particle is impossible because of the
enormous computing power required. Therefore we use an
interpolation of the potential during the integration step.
The two-dimensional potential, which determines the
beam-beam force, is estimated at a collision point front
[sf � �zi;f � zj�=2] and back [sb � �zi;b � zj�=2] face of
the (ith) slice containing the particle. The potential of the
target slice ��s� is transferred to the collision point of the
particle by a linear interpolation,

�j�s� � �j�sb� 

�j�sf� ��j�sb�

sf � sb
�s� sb�; (15)

where s depends on z as s � �z� zj�=2. An energy change
proportional to @�=@z, which is caused by the interaction
depending on z, is included in the simulation,

�pz � �
�j�sf�zi;f����j�sb�zi;b��

zi;f � zi;b
: (16)

The number of slices required depends on the beam-
beam parameter. The distribution of the beam is de-
formed during the process of the collision. The disruption
parameter is mainly important in the vertical. It is an
oscillation angle of a particle in the potential of the other
beam and characterizes the deformation [18,20,21]

' �

�����������������
4$(y%z

)y

s
: (17)

The oscillation angle is divided by the integration step
along the longitudinal slice. The angle in each step should
be smaller than 1; i.e., a high beam-beam disruption
requires a large number of slices. The disruption parame-
ter is ' � 1:1–1:6 for our parameter region, (y � 0:1–0:2
and %z � )y. The simulation results converged for the
slice number of 5–10; i.e., the divided angle is 0:1–0:3 for
each slice. A larger number is better, but the calculation
time grows as the square of the slice number. Figure 1
shows the evolution of the beam-beam parameter for 5,
10, and 15 slices. The beam-beam parameter
converges completely for ten slices. There is a difference,
less than 5%, in the final beam-beam parameters be-
tween five and ten slices. In this paper, simulation
results are given for five slices. Figure 2 shows variation
of beam potential along s for Nsl � 5. The potential
is given for particles colliding with the third (center)
slice. Figures 2(a) and 2(b) depict �3�s� and ky �
@2��3�=@y2 � �py=�x. Note that collision starts from
particles with larger s. Gaps, which are seen between
steps in the pictures, arise from disruption due to inter-
action with previous slices.
104401-4



TABLE I. Basic parameters of KEKB.

HER LER

C 3016 m
E 8 GeV 3.5 GeV
)x=)y 60 cm=7 mm
"x="y 18 nm=0:18 nm
%z 7.0 mm
.x=.y 0:515=0:58=0:016–0:024
.s 0.016–0.024
�xy=T0 4000 turn 4000 turn
�c 0–2� 11 mrad

0.20

0.15

0.10

0.05

0.00

ξ

25x10320151050

turn

Nsl = 10, 15

Nsl = 5

FIG. 1. Evolution of the beam-beam parameter for Nsl � 5,
10, and 15.
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III. SIMULATION RESULTS

The effects of crossing angle on the beam-beam pa-
rameter and luminosity are studied for the machine pa-
rameters as is shown in Table I. The parameters in the
7.12

7.11

7.10

7.09

7.08

φ 
(x

10
-8

 )

-1.0 0.0 1.0
s/σz

(a)

80

60

40

20

0

k y
 (

m
-1

)

-1.0 0.0 1.0
s/σz

(b)

FIG. 2. Variation of beam potential along z for Nsl � 5. The
potential is given for particles colliding with the third (center)
slice. (a),(b) depict �3�s� and ky � @2��3�=@y2 � �py=�y.
Note that collision starts from particles with larger s.
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table are the same as those of the present KEKB except
the transparency condition was kept asN
 
 � N� � to
avoid complex behavior caused by unbalance of the
beams in the simulation. The betatron tunes are equal to
the operating point of the high energy ring (HER) of
KEKB. By the way, the operating point of the low energy
ring (LER) is slightly lower in both planes, namely,
(0:508; 0:55).

In the weak-strong simulation, 100 macroparticles are
tracked up to 40 000 turns (10 times of the damping time;
i.e., 10� �x�y�=T0), and the luminosity was calculated by
averaging it during 20 000 through 40 000 turns. In the
strong-strong simulation, 100 000 macroparticles are
tracked up to 20 000 turns. The transverse plane is di-
vided into 128� 256 grids with unit size of 20 +m�
0:4 +m. The luminosity was calculated using the beam
particle distributions for the last turn. The bunch popu-
lation of positrons (N
) in the LER is scanned from 1�
1010 to 1:2� 1011. The beam-beam parameter was calcu-
lated using the luminosity as follows:

(y �
2re)y
N
 


L
frep

: (18)

The beam-beam parameter is equal to the vertical inco-
herent beam-beam tune shift for collision between
Gaussian beams, if the beam aspect ratio %y=%x is ap-
proximated to be 0 and reduction factors due to the
hourglass effect and crossing angle are neglected.

A. Beam-beam limit for collisions with or without
crossing angle

The beam-beam limit phenomenon, in which the
beam-beam parameter is saturated at a certain value as
the current increases, is discussed first. The simulations
were carried out for various bunch populations to obtain
the limit of the beam-beam parameter. Figure 3 shows the
beam-beam parameter ( as a function of the bunch popu-
lation for collision with and without crossing angle. For
the head-on collision, as seen in the figure, there is a
significant difference between the beam-beam limits ob-
tained by the weak-strong and the strong-strong simula-
104401-5



0.4

0.3

0.2

0.1

0.0

ξ

43210

I+
 (mA)

0 mrad

11 mrad

(a)

0.15

0.10

0.05

0.00

ξ

2.01.51.00.50.0

I+
 (mA)

(b)
0 mrad

11 mrad

FIG. 3. Beam-beam parameters for crossing angle of 0 and
11 mrad as function of bunch current. (a),(b) were obtained by
the weak-strong and strong-strong simulations, respectively.
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tions. The strong beam is assumed to be a Gaussian
distribution in the weak-strong simulation, while arbi-
trary distributions are treated in the strong-strong simu-
lation. The difference due to a non-Gaussian distribution
is essential to determine the beam-beam limit [15]; that
is, the accurate beam-beam limit is around (� 0:1–0:12.
A strong-strong simulation with Gaussian approximation
showed results similar to this weak-strong simulation
(( > 0:2). A weak-strong simulation based on the PIC
method showed results similar to this strong-strong simu-
lation (( � 0:1), if the distorted beam distribution given
by this strong-strong simulation is used as the strong
beam. The simulations, in which a Gaussian distribution
is assumed, should not be used to predict the beam-beam
limit.

With the half-crossing angle at 11 mrad, the beam-
beam parameter has similar behavior for both simula-
tions; that is, ( is saturated around 0.06. The beam-beam
limit is about half of that in the head-on collision, though
the geometrical reduction due to the crossing angle is
about 20%. A considerable luminosity loss is caused by
the dynamical effects of collision when we have a cross-
ing angle. We notice that the characteristics of the beam-
104401-6
beam limit are somewhat different from that for a head-
on collision; namely, the Gaussian approximation seems
to be able to reliably predict the beam-beam limit for a
collision with a large crossing angle as seen in Fig. 3. This
fact also suggests that the beam-beam limit for a collision
with a large crossing angle is caused by another
mechanism.

B. Crossing angle dependence

The simulations for various crossing angles were per-
formed in order to study the effect of crossing angle.
Figure 4 shows the beam-beam parameter and beam sizes
as functions of the crossing angle for the bunch popula-
tion of N
 � 8� 1010 (I
 � 1:1 mA). The beam-beam
parameters given by the weak-strong and strong-strong
simulations are depicted in Fig. 4(a). We had the same
behavior for N
 � 10� 1010. The geometrical luminos-
ity, which is also plotted in the picture, has a weak
dependence on the crossing angle. The simulated lumi-
nosity has a peak structure near zero-crossing angle. The
peak structure of the strong-strong simulation is narrower
than that of the weak-strong simulation. The behavior of
the horizontal and vertical beam sizes is depicted in
Figs. 4(b) and 4(c), respectively. The horizontal beam
size increases monotonically for crossing angle in both
simulations. The vertical beam size has different behav-
ior: the strong-strong simulation shows a large enlarge-
ment for small crossing angle of a few mrad and a gradual
decrease for increasing crossing angle. The weak-strong
simulation shows a monotonic increase with the crossing
angle. This behavior in the strong-strong simulation is
seen for high beam-beam parameter. When the current is
decreased to be N
 � 3� 1010 ((nom � 0:05), the peak
structure near zero-crossing angle was weakened.

C. Diffusion due to crossing angle

We are considering the origin of the luminosity degra-
dation due to the crossing angle to be nonlinear diffusion
[16,22]. The crossing angle is regarded as a dispersion that
couples to z at the collision point contrasted with the
ordinary dispersion that couples to pz. The linear cou-
plings at the collision point in the x-z plane induce non-
linear diffusions. In the weak-strong simulation with
Gaussian approximation, luminosity degradation was
seen, though the strength was somewhat weak; therefore
some essentials of the degradation seem already included
in the weak-strong model. The diffusion caused by the
nonlinear dynamics of a single particle is treated by the
weak-strong model. Though there may be more complex
diffusion in which the two beams are strongly coupled, it
is interesting to understand how the study based on single
particle dynamics is helpful for our first step.

Synchrotron radiation also causes diffusion which de-
termines the natural emittance due to the balance of the
radiation damping when beam-beam or intrabeam effects
104401-6
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FIG. 4. Beam-beam parameters and beam sizes as a function
of crossing angle. The beam-beam parameter, horizontal and
vertical beam sizes, which are obtained by the strong-strong
and weak-strong simulations, are depicted in (a)–(c), respec-
tively.
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are negligible. The beam size is determined by the ratio of
the diffusion rate and damping rate,

%2
y � h�y2i�y=2T0; (19)

where h�y2i and T0=�y are the diffusion rate and the
damping rate, respectively, per turn in the vertical.
More sophisticated treatment is seen in Ref. [14]. The
104401-7
diffusions due to the synchrotron radiation are h�x2sri �
5:4 +m2 and h�y2sri � 6:3� 10�4 +m2. If two or more
kinds of diffusion sources exist and are independent of
each other, the total diffusion rate is the summation of
individual diffusion rates. The diffusion due to the beam-
beam interaction is caused by the nonlinear force. There
may be interferences among the diffusions if they are not
independent.

To estimate the diffusion rate caused by the beam-
beam interaction, we remove the synchrotron radiation
in the weak-strong simulations. The diffusion is observed
in the growth of the beam size or, in other words, second
order moments (hx2i and hy2i). Figures 5(a) and 5(b) show
the evolution of the square of the horizontal and vertical
beam sizes. They show a monotonic increase with respect
to evolution turns. The diffusion rate is estimated by the
growth rate per turn of the second moments (hx2i and
hy2i). The figure shows that the crossing angle induces
both horizontal and vertical diffusions, which rates are
plotted in Fig. 5(c). The crossing angle, which causes
linear x-z coupling, causes not only the horizontal diffu-
sion but also the vertical one. The horizontal diffusion is
much smaller than that due to synchrotron radiation, but
the vertical one is comparable with that due to synchro-
tron radiation. Figure 5(d) shows the vertical beam size
estimated by the total diffusion of nonlinearity and ra-
diation and the radiation damping time. The equilibrium
beam size, obtained by the weak-strong simulation with
synchrotron radiation, is also plotted in the figure. The
beam size given by the weak-strong simulation is larger
than that estimated by the diffusion rates.

It indicates that the total diffusion rate is larger than
the summation of the two rates of radiation excitation and
nonlinear diffusion. An interference between the radia-
tion and nonlinear diffusions is discussed, for example, in
Ref. [23]. Such an interference can occur for the case that
a particle trajectory in the phase space (Poincaré plot) is
stochastic. The particles come and go between large
amplitudes even in a small amplitude change due to the
radiation excitation. Clearly, the roles of the nonlinear
diffusion in the beam-beam limit should be studied fur-
ther at this point; this explanation should be considered as
a conjecture.

We try to understand the behavior of the beam-beam
limit as a function of crossing angle. The behavior of the
weak-strong simulation is understood straightforwardly;
that is, the strength of the diffusion reflects the beam size,
though some interference between the two diffusions is
seen quantitatively. A sharp luminosity drop with cross-
ing angle, which is caused by a blowup of the vertical
size, is observed in the strong-strong simulation. The
beam-beam limit for head-on collision is reported to be
caused by vertical distortion of the beam distribution
from a Gaussian at this tune operating point [15]. The
vertical enlargement was enhanced by the radiation ex-
104401-7



FIG. 5. Diffusion of horizontal and vertical beam size due to crossing angle. (a),(b) depict evolutions of horizontal and vertical
beam sizes, respectively. (c) depicts the horizontal and vertical diffusion rates. (d) depicts vertical beam sizes, which are estimated
by the diffusion rate (boxes) and are given by the weak-strong simulation with considering the synchrotron radiation (circles).

FIG. 6. (Color) Beam-beam parameter (y in x-y tune space.
The beam-beam parameter for the crossing angles of 0 and
11 mrad are depicted in (a) and (b), respectively. The contour
lines are drawn every 0.01, and lighter gray corresponds to
higher beam-beam parameter.
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citation for head-on collision [16,22]. One possibility to
explain the sharp structure in Fig. 4(a) is that the vertical
enlargement is enhanced by the nonlinear diffusion.

D. Tune survey

We have discussed the beam-beam parameter at our
design operating point shown in Table I. Simulations and
experiments showed that this tune operating area is the
best in the tune space; therefore our discussion has been
limited to this operating point. It is well known that the
operating tune strongly affects the beam-beam limit. We
now investigate how the operating tunes affect the beam-
beam limit. The strong-strong simulation was done in the
tune area (0:508 � .x � 0:548, 0:51 � .y � 0:63) with a
step of 0.005.

Figure 6 shows contour plots of the beam-beam pa-
rameter (y for collision with crossing angles of 0 and
11 mrad in the tune area. The contour lines are drawn
every 0.01, and lighter gray corresponds to higher beam-
beam parameter. The best operating point is around
�.x; .y� � �0:508; 0:55� for finite crossing angle, while it
is around (0.508,0.58–0.6) for zero-crossing angle. The
best beam-beam parameters were 0.15 and 0.08 for a
crossing angle of 0 and 11 mrad, respectively.

Non-Gaussian distribution was essential to determine
the beam-beam limit for collision without crossing angle.
Kurtosis, which is defined by hy4i=3hy2i2, is a measure of
how the distribution is distorted away from Gaussian.
Increase of kurtosis ky � 4 was seen in the beam-beam
limit [15], where ky � 1 for Gaussian distribution. Beam
size and kurtosis, which were given by the tune survey,
104401-8
are shown in Figs. 7 and 8 for crossing angles of 0 and
11 mrad, respectively.

The behavior of the beam-beam parameter in Fig. 6(a),
which is given for zero-crossing angle, is reflected in the
104401-8



FIG. 7. Beam size and kurtosis in x-y tune space for zero-crossing angle. The horizontal and vertical beam sizes are depicted in
(a) and (b), respectively. The horizontal and vertical kurtosis are depicted in (c) and (d), respectively. The contour lines are drawn
every 10 +m, 1 +m, and 1 for horizontal, vertical beam size, and kurtosis, respectively, and lighter gray corresponds larger beam
size and kurtosis.

FIG. 8. Beam size and kurtosis in x-y tune space for crossing angle of 11 mrad. The horizontal and vertical beam sizes are
depicted in (a) and (b), respectively. The horizontal and vertical kurtosis are depicted in (c) and (d), respectively. The contour lines
are drawn every 10 +m, 1 +m, and 1 for horizontal, vertical beam size, and kurtosis, respectively, and lighter gray corresponds
larger beam size and kurtosis.
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vertical size of Fig. 7(b). Smaller beam size is correlated
with larger vertical kurtosis, as shown in Figs. 7(b) and
7(d). The kurtosis, at the best operating point, �.x; .y� �
�0:518; 0:58–0:6�, was �kx; ky� � �1:5; 5�; i.e., the horizon-
tal distribution is close to Gaussian but the vertical dis-
tribution is strongly distorted. The horizontal size did not
have a correlation with the beam-beam parameter. The
beam size and kurtosis have a positive correlation in
horizontal: larger size is correlated to larger kurtosis as
shown in Figs. 7(a) and 7(c).

The behavior of the beam-beam parameter in Fig. 6(b),
which is given for a crossing angle of 11 mrad, is reflected
in the vertical size of Fig. 8(b) again. The horizontal
kurtosis is 1–1:5 for .x � 0:53, as shown in Fig. 8(c).
The vertical kurtosis is high, 3–4, for the operating point
with the highest beam-beam parameter as shown
in Fig. 8(d). The horizontal size is minimum at
.x � 0:52. It does not seem to contribute to the beam-
beam parameter because the vertical size seems to behave
in a way to cancel the gain due to the tunes. The kurtosis
is �kx; ky� � �1:5; 1:5–2:5� for the operating point of
(0:508–0:518; 0:58) shown in Fig. 3. In such a case,
Gaussian approximation gives similar results to those
obtained by the PIC model.

Coherent motions were sometimes seen at the tune
survey. For higher horizontal tune, .x > 0:55, coherent
motion limits the luminosity remarkably ((� 0:01). No
clear vertical coherent motion was seen in the tune area
.y � 0:515. For low vertical tune, .y � 0:51, vertical
coherent motions in hyi and hyzi, which may be due to
the two-stream type of instability [21], were seen.

E. Crab cavity

So far, we have neglected the difference between true
head-on collision without crossing angle and crab colli-
sion with a finite crossing angle. As discussed in Sec. II,
crab cavities [24] create z dispersion �x at the collision
point due to the transfer matrix (6� 6) with a finite (2; 5)
component. The dominant linear term in the transforma-
tion [Eq. (1)] caused by crossing angle was canceled by
the z dispersion. The nonlinear term of the transformation
must be studied to confirm the validity of crab crossing.

Figure 9 shows the luminosity evolution for head-on
collision without crossing angle and crab collision with a
finite crossing angle 11 mrad. The two lines completely
agree with each other; that is, the crab collision realizes
the same performance as head-on collision without cross-
ing angle.

Crab cavities control not only the dispersion �x but also
the derivative of the dispersion � 0x � �x0=�z. The lumi-
nosity was evaluated as a function of � 0x. The reduction of
luminosity or beam-beam parameter [L�� 0x�=L�0� or
(y��

0
x�=(y�0�] was 98% and 93% for � 0x � 0:05 and 0.1,

respectively. � 0x can be reduced further due to the control
of phase advance and other optics parameters between the
104401-10
crab cavity and the collision point [25]; therefore the
effects of � 0x do not need to be take into account.
IV. CONCLUSION

We studied the beam-beam effect of collisions with or
without crossing angle using weak-strong and strong-
strong simulations.

Three-dimensional formalism, which is essential in
order to study the effect of crossing angle, was developed.
The method of synchrobeam mapping used for Gaussian
approximation is extended for the PIC model; that is, the
potential is interpolated along the longitudinal direction.
This procedure reduces the number of longitudinal slices,
with the result that computation time was reduced. The
number of longitudinal slices required reduces to 5; oth-
erwise 20–30 slices are needed to get the numerical
convergence. This improvement allows us to carry out
the strong-strong simulation for various parameters.

The beam-beam limit is caused by distortion from the
Gaussian distribution for collision without crossing angle.
The beam-beam limit was around (� 0:1 as is also
discussed in Ref. [15]. The simulations using the
Gaussian approximation were not able to reliably predict
the beam-beam limit.

For collision with finite crossing angle of 11 mrad, the
beam-beam parameter is limited to a lower value, around
�0:06 in both the weak-strong and strong-strong simula-
tions. This fact suggests that the mechanism of the beam-
beam limit is different from that for the head-on collision.

We studied the diffusion caused by the beam-beam
interaction. For zero-crossing angle, the diffusion was
very weak for the Gaussian and the distorted beam
[16]. The horizontal crossing angle induced both horizon-
tal and vertical diffusion. The vertical diffusion is com-
parable with the radiation excitation, while the horizontal
one is much smaller. The luminosity can be considered to
be degraded by the diffusion.
104401-10
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The diffusion due to the beam-beam interaction
should be studied in more detail. Many studies have
been done for a halo formation with a weak-strong model
[23,26,27]. We propose diffusion as a mechanism that
causes the beam-beam limit for collision with finite
crossing angle. It is important to understand the beam-
beam limit in hadron colliders. If the beam-beam limit in
proton colliders is determined by diffusion, it is essential
to include errors, crossing angle, and longitudinal dimen-
sion in the simulations.

The tune survey was performed for the crossing
angles of 0 and 11 mrad using the strong-strong
simulation. The tune operating point is essential for
achieving a high beam-beam parameter. Especially, the
best operating tune is different between head-on
�.x; .y� � �<0:51; 0:58–0:6� and crossing collisions
( < 0:51;�0:55).

A crab cavity generates the z dispersion �x at the
collision point. The z dispersion, which is induced by
the finite crossing angle in the one turn map, can be
canceled by the z dispersion due to the crab cavity.
Small kinematic effects which remained in the one turn
map did not affect the luminosity performance. Crab
cavities, which realize the head-on collision effectively,
can be expected to double the luminosity (( � 0:1).

PEP-II has already been operated with the head-on
collision. The beam-beam parameter is around 0.05.
Basically, PEP-II should benefit from the head-on colli-
sion scheme and be able to deliver higher luminosity.
Simulation has shown that it is limited by x-y coupling
and the vertical dispersion in the machine in the present
stage [28]. We believe that a fine-tuning of the optics
parameters at the collision point and further reduction
of the vertical dispersion in the arcs will improve the
PEP-II performance.
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