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Production of enhanced beam halos via collective modes and colored noise
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We investigate how collective modes and colored noise conspire to produce a beam halo with much
larger amplitude than could be generated by either phenomenon separately. The collective modes are
lowest-order radial eigenmodes calculated self-consistently for a configuration corresponding to a
direct-current, cylindrically symmetric, warm-fluid Kapchinskij-Vladimirskij equilibrium. The col-
ored noise arises from unavoidable machine errors and influences the internal space-charge force. Its
presence quickly launches statistically rare particles to ever-growing amplitudes by continually kicking
them back into phase with the collective-mode oscillations. The halo amplitude is essentially the same
for purely radial orbits as for orbits that are initially purely azimuthal; orbital angular momentum has
no statistically significant impact. Factors that do have an impact include the amplitudes of the
collective modes and the strength and autocorrelation time of the colored noise. The underlying
dynamics ensues because the noise breaks the Kolmogorov-Arnol’d-Moser tori that otherwise would
confine the beam. These tori are fragile; even very weak noise will eventually break them, though the
time scale for their disintegration depends on the noise strength. Both collective modes and noise are
therefore centrally important to the dynamics of halo formation in real beams.
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I. INTRODUCTION

We recently demonstrated [1] that the combination of
colored noise and global oscillations in intense charged-
particle beams can create much larger halo amplitudes
than would arise in the absence of noise. This was done
using generic ‘‘particle-core’’ models as representations
of time-dependent potentials associated with nonequilib-
rium beams [2,3]; the ‘‘core’’ established a time depen-
dence in the form of a harmonic oscillation reminiscent
of the presence of a global collective mode, and test
particles orbited in response to that potential. Ever-
growing halos were found to form despite the fact that
large-amplitude orbits spend considerable time under the
influence of the external focusing forces, and the frequen-
cies associated with these forces differ from those asso-
ciated with the core oscillation, a circumstance that
impedes resonance. Thus, the noise has a key influence,
boosting statistically rare particles to ever-growing am-
plitudes by continually kicking them back into phase with
the core oscillation. The importance of this finding lies in
the accelerator’s extreme sensitivity to beam loss. For
example, in a light-ion accelerator, beam impingement
of just �1 W=m at energies exceeding �20 MeV will
cause enough radioactivation to preclude hands-on ma-
chine maintenance [4]. In high-average-current ma-
chines, this amounts to just a few particles lost per
meter, and large halos are thereby of practical concern,
even if their outermost fringe is extremely tenuous.

Our previous analysis was restricted to radial orbits
and centered on choosing the same initial conditions for
all of the orbits. Specifically, each orbit was assigned zero
initial velocity and the same initial radius. Because in a
1098-4402=04=7(10)=104202(13)$22.50 
real beam each individual particle has its own distinct
initial conditions (for example, the particles would start
at different angular coordinates), each experiences its
own manifestation of colored noise. In other words, the
noise was regarded to be spatially uncorrelated. Thus, we
sequentially computed 10 000 orbits while assigning to
each orbit its own unique, random manifestation of the
colored noise, and we cataloged the maximum ampli-
tudes of these orbits. Though this approach proved suffi-
cient to demonstrate the noise-enhanced production of
beam halo, it suffers a number of shortcomings. First, it
lacks self-consistency; with one exception, the oscillation
frequencies of the core were chosen ad hoc, the exception
relating to a space-charge-limited core. Second, because
only a single starting radius is sampled, it lacks the
statistics of a full treatment; halo particles originating
from, e.g., different radii are excluded. Third, the contri-
bution of nonradial orbits is likewise ignored.

The present paper offers a study that, by largely
circumventing these shortcomings, is more thorough
and systematic. Herein we consider self-consistent
collective oscillations in the context of a general frame-
work. Specifically, we consider a direct-current, cylindri-
cally symmetric beam and model it as a warm-fluid
Kapchinskij-Vladimirskij (KV) equilibrium configura-
tion. We then imagine the beam to be excited such that
it possesses a self-consistent spectrum of collective, sta-
ble radial modes of oscillation as previously calculated by
Lund and Davidson [5]. The associated time-dependent
space-charge force combines with the external focusing
force to determine the equation of motion of test parti-
cles. By populating the full configuration space with very
2004 The American Physical Society 104202-1
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many (typically 106) test particles, assigning each test
particle its own random manifestation of colored noise,
and then tracking their orbits, we compute the evolution
of the halo. We do this for two extremes of initial particle
velocities, the first corresponding once again to purely
radial orbits, and the second corresponding to purely
circular orbits. The halo structure depends, of course,
on (a) the beam parameters, which we combine into a
single quantity, the space-charge tune depression, (b) the
collective-mode parameters, specifically their ampli-
tudes in that their frequencies are determined self-
consistently, and (c) the noise parameters, specifically
the noise strength and autocorrelation time.

In the investigation to follow, we quantify the various
parametric dependencies. Section II explains our meth-
odology in detail. Section III presents an extensive array
of results that together quantify how the beam and noise
parameters conspire to produce large halos. Included is an
interpretation of the underlying dynamics in terms of the
breaking of Kolmogorov-Arnol’d-Moser (KAM) tori [6]
due to the presence of noise. Section IV concludes by
briefly summarizing the findings and, in view of them,
identifying related phenomenology that will likely be
inherent to real beams.
II. METHODOLOGY

As our foundation, we adopt directly the formalism of
Strasburg and Davidson [7], hereafter called SD. We
consider an intense, direct-current charged-particle
beam propagating in the z direction at constant speed
through a transport channel that imposes a constant,
cylindrically symmetric, linear transverse focusing force.
The equilibrium beam is a warm-fluid Kapchinskij-
Vladimirskij equilibrium, and collective modes are
superposed upon this equilibrium. These modes corre-
spond to stable, axisymmetric flute perturbations and
derive from linearizing the respective Vlasov-Maxwell-
Poisson equations [5]. The influence of the beam’s self-
fields on particle trajectories is properly included within
the framework of the paraxial approximation.

We incorporate the beam parameters by way of the
dimensionless self-field perveance K given per the
Gaussian system of units as

K �
2�q2

�2�3mc2
; (1)

wherein � is the line density (number of particles per unit
length), q and m are the particle charge and mass, re-
spectively, � and � are the usual relativistic factors, and c
is the speed of light. The perveance then folds into the
space-charge tune depression � as

� �

�
1�

�
�c
!fRo

�
2
K
�
1=2
; (2)
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in which Ro is the radius of the equilibrium beam and !f
is the angular frequency associated with the bare ex-
ternal focusing force. This parameter lies in the range 0 �
� � 1, the lower bound corresponding to the space-
charge-limited beam, and the upper bound corresponding
to zero space charge.

SD tabulate the potentials and frequencies correspond-
ing to all of the axisymmetric flute modes. These are
collective normal modes, and as such are calculated using
linear perturbation theory [5]. The frequency of the nth
such mode is given by

!n��
2� � !f

�����������������������������������������
2�1	 �2�2n2 � 1�


q
: (3)

For their studies of particle dynamics, SD concentrate on
the two lowest-order radial modes, n � 1; 2, and we shall
do likewise. We normalize the radial coordinate in terms
of the radius Ro; however, unlike SD, we normalize time t
in terms of the angular frequency !f, i.e., t! !ft. In
effect we are setting Ro � 1 and !f � 1.

The axisymmetric flute modes are distinctly different
from breathing modes. The most elementary distinction is
that the beam boundary is static (Ro is constant) in the
case of flute modes, but it oscillates in the case of breath-
ing modes. In both cases the beam is root-mean-square
(rms) mismatched; however, for the flute modes the beam
envelope is matched whereas for the breathing modes the
envelope is mismatched. We shall therefore use the terms
‘‘envelope matched’’ and ‘‘envelope mismatched’’ to refer
to beams with axisymmetric flute modes and breathing
modes, respectively. For the warm-fluid KV beam, the
equilibrium density profile exhibits a step-function dis-
continuity at the boundary. In turn, the flute modes like-
wise include a discontinuity in the density profile at the
boundary. For example, consider the KV beam to be
excited by the n � 1 flute mode. The density profile inside
the beam is always uniform, but its magnitude oscillates.
To conserve particle number, this mode includes an os-
cillating surface charge, i.e., the density profile exhibits a
Dirac delta function at the (stationary) envelope radius
such that the integral over the beam volume is indepen-
dent of time. By contrast the lowest-order breathing mode
entails a self-similar oscillation; the envelope radius os-
cillates, and the number density likewise oscillates but is
everywhere uniform.

A. Equation of test-particle motion

To explore the dynamics of halo formation, we com-
pute orbits of test particles that move in the total potential
formed by the superposition of the external focusing
potential and the space-charge potential. The test parti-
cles contribute nothing to the total potential and do not
interact with each other. This means we treat the coarse-
grained form of the beam’s distribution function, thereby
ignoring, e.g., discreteness effects from the individual
104202-2
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point charges that comprise the beam. Using the formal-
ism herein, it may be possible to mimic discreteness
effects by modeling them as appropriately weak
Gaussian white noise [8], i.e., noise that has zero autocor-
relation time, but we refrain from doing so in favor of
concentrating on the influence of colored noise.
104202-3
The equation of test-particle motion decomposes into
two regimes, one for which the normalized radial coor-
dinate r < 1, and the other for which r � 1. If only the
n � 1; 2 normal modes are excited, then the SD equation
of test-particle motion with our normalization is
�r	 �2r�
L2

r3
� �1� �2�rf

������

1

p
cos�!1��2�t
 	

������

2

p �
1�

3

2
r2
�
cos�!2��2�t
g � 0 for r < 1;

�r	 r�
L2

r3
�
1� �2

r
� 0 for r � 1; (4)
in which L is the dimensionless angular momentum, 
n is
the ratio of the rms electrostatic energy contained in
collective mode n to that contained in the equilibrium
beam, and !n is given by Eq. (3) after setting !f � 1.
The constants L, 
1, and 
2 may be regarded as free
parameters, the former in regard to the ‘‘geometry’’ of
the test-particle orbit, and the latter in regard to the
‘‘amplitudes’’ of the respective collective modes.
However, because it derives from linear perturbation
theory, for Eq. (4) to be valid, both 
1 and 
2 must be
small compared to unity. Note that the tune depression �
manifests itself not only in the mode frequency, but also
in the frequency characterizing the effective focusing
force acting on the test particle. Hence, any noise that
shows up in the tune depression influences both of these
frequencies.

B. Colored noise

It is at this point that we depart in an important way
from the SD treatment, for we wish to assess the extent to
which noise, in combination with the collective mode(s),
influences the particle dynamics. This is a problem of
practical importance; noise is unavoidable in real accel-
erators because they are imperfect. Machine errors, as
well as transitions, will feed space-charge fluctuations in
that the beam evolves self-consistently in response to
external influences. Examples include forces from image
charges due to irregularities in the accelerator hardware
as well as radio frequency and magnetic field errors, and
in the lab frame the errors may themselves be time
independent or fluctuating due to, e.g., jitter [9]. From
the perspective of a beam particle, the effect of all of
these machine imperfections is to impart time-dependent
noise on the particle orbit, and thus we seek now to
include this noise in the equation of test-particle motion.
Concerning our upcoming analysis, for zero noise we of
course reproduce the dynamics that SD describe. Thus,
any differences that show up with nonzero noise are
attributable solely to the presence of the noise itself.
Our main interest is to quantify how this noise influences
the process of halo formation, and do so to an extent well
beyond what we did previously.
Following the philosophy and procedure of our earlier
investigation [1], we add Gaussian colored noise that
samples an Ornstein-Uhlenbeck process [10]. We do so
in terms of a frequency fluctuation �!�t�. Because the
tune depression � incorporates the space charge, we
define this frequency fluctuation in terms of a fluctuating
tune depression in a manner consistent with Eq. (3):

�2 ! �2 	 ��2�t�;

��2�t� � !1�!�t� �
���������������������
2�1	 �2�

q
�!�t�: (5)

The frequency fluctuation �!�t� henceforth represents
the noise. Thus, everywhere it occurs in the equation of
motion, Eq. (4), the quantity �2 is replaced by �2 	
��2�t�, with ��2�t� given by the last expression in
Eq. (5) above. Note, for example, that the noise will still
manifest itself in Eq. (4) even if no collective mode is
excited.

The first two moments of �!�t� fully determine the
statistical properties of the noise:

h�!�t�i � 0; h�!�t��!�t1�i � A2 exp��jt� t1j=tc�;

(6)

in which tc denotes the autocorrelation time, i.e., the time
scale over which the signal changes appreciably. The
special case of white noise corresponds to the limit tc !
0. After generating a colored-noise signal using an algo-
rithm first presented in Ref. [11], we compute jAj $
hj�!ji which then constitutes the measure of noise
strength. Example manifestations of colored noise for
various noise strengths and autocorrelation times are
plotted in Fig. 1 of Ref. [1].

The noise should be viewed from the perspective of the
charged particle as it progresses along its trajectory. A
typical particle will respond to space-charge fluctuations
that change over a time scale comparable to, e.g., a plasma
period (which is thus a measure of the minimum auto-
correlation time). It will likewise respond to stochastic
changes in the external fields arising as the particle
transits the beam line. Such changes can correspond
to, e.g., the spacing between hardware components.
Accordingly a hierarchy of autocorrelation times com-
104202-3
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prises the actual noise a particle experiences. In a real
beam each individual particle will have its own distinct
initial conditions and thus experience a manifestation of
the noise differing from that seen by each of the other
particles. Hence, at each successive time step during an
orbit integration, a randomly generated frequency fluc-
tuation is computed in keeping with the specified statis-
tical properties of the colored noise. Then this frequency
fluctuation is converted to a fluctuation in the space-
charge tune depression per Eq. (5), and the so-modified
tune depression is inserted into the equation of motion,
Eq. (4), whereby the fluctuation influences the next time
step. How the noise quantitatively affects halo formation
depends on its strength and its autocorrelation time,
dependencies that we quantify herein.

C. Initial distribution of test-particle orbits

In keeping with the objective of retaining as much
realism as possible, we choose a beam intermediate be-
tween the space-charge-limited beam (� � 0) and the
zero-space-charge beam (� � 1). Specifically, we keep
� fixed at the value � � 0:3 for our entire investigation.

We choose an initial distribution of test particles that
spans all of the dynamically interesting regions of con-
figuration space and falls gradually to a low-density tail.
Of course there are numerous ways to do this; one is to
choose a distribution corresponding to a configuration of
thermal equilibrium (TE) [12,13]. We construct a cylin-
drically symmetric TE configuration of test charges fol-
lowing a procedure recently used to devise spherically
symmetric TE configurations [14]. The associated dimen-
sionless Poisson equation is

1

R

d
dR

�
R
d�
dR

�
� �e��1=2��2R2���R� � �n�R�; (7)

wherein R is a dimensionless radial coordinate, n�R�
denotes the number density normalized to the central
density, � is a dimensionless quantity governing the
strength of the external focusing force vis-à-vis the col-
lective space-charge force, and��R� is the dimensionless
space-charge potential. For the value of � we choose
� � �1	 10�3:5 � 10�9�=

���
2

p
. Integrating Eq. (7) nu-

merically using this specific value of � yields a TE
density profile corresponding to a tune depression � ’
0:3 [13].

Length and time are normalized differently in Eq. (7)
than in Eq. (4). In keeping with the desire to span all of
the dynamically interesting regions of configuration
space, we simply rescale the density distribution n�R�
calculated from Eq. (7) so that its rms radius ~R corre-
sponds to the full radius Ro of the warm-fluid KV distri-
bution: ~R � Ro � 1. This clearly places a sizable
population of test particles, that corresponding to much
of the density tail, outside the KV core. It also mimics,
e.g., an inference from the recent beam-halo experiment
104202-4
at the Low-Energy Demonstration Accelerator at Los
Alamos National Laboratory that the input beam for
this experiment carried a sizable tail in its distribution
[15]. For all of our investigations the initial radii of the
test particles follows this distribution. Most of our simu-
lations involve N � 106 test particles, a number sufficient
to constitute a good statistical sample. In principle, the
tenuous tail of the density profile extends to infinity, but
in practice there is a finite radius to the N-body represen-
tation of the density because N is finite.

For most of our investigations the initial test-particle
velocities are all set to zero, corresponding to purely
radial orbits, in which case we then replace r�t� by x�t�,
and r�t�< 1 or � 1 by jx�t�j< 1 or � 1, respectively, in
Eq. (4). We also, however, consider another ‘‘limiting’’
case, that for which all the orbits are initially circular.
Given a radius rc of the initially circular orbit, the re-
spective dimensionless angular momentum L, a quantity
taken to be conserved, follows from Eq. (4):

L2 �
�
�2r4c for rc < 1
r4c � �1� �2�r2c for rc � 1:

(8)

As is shown and discussed in Sec. III below, the influence
of noise on circular orbits that start with rc < 1 is essen-
tially the same as for the purely radial orbits.
Consequently, the halo population is similar for both
cases.

D. Orbit integrations

We integrate the equation of motion using a fifth-order
Runge-Kutta algorithm with variable time step [16] tak-
ing the initial time step to be 0.01 ‘‘differential-equation’’
(DE) units. We evolve each orbit for a total time 512 DE
units, which corresponds to 40–60 orbital periods de-
pending on the initial conditions for the respective orbit.
Thus, for example, the total integration time is compa-
rable to the transit time of the beam through a large
proton linear accelerator such as that associated with
the Spallation Neutron Source [17]. In the absence of
time dependence and noise, i.e., with 
1 � 
2 �
hj�!ji � 0, the algorithm conserves energy within a
fractional error 10�9 at each time step and within 10�7

over the whole integration.
Our investigation spans a broad sector of the parameter

space in that the space-charge tune depression, set at � �
0:3, is the only parameter that is never varied. We treat all
combinations of the following parametric values: mode
amplitudes 
1;2 � 0:05, 0.10, and 0.20; noise strengths
hj�!ji � 0, 0.001, 0.01, and 0.1; autocorrelation times
tc � 0:5, 1, 2, 10, 80, and 160; and test-particle sample
sizes N � 102, 103, 104, 105, and 106. Most of the plots
shown herein pertain to the specific choice tc � 80; how-
ever, excursions to lower and higher values are included
to provide a check on the sensitivity of halo formation to
the autocorrelation time of the noise. In a real machine, of
104202-4
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course, the noise will incorporate a range, or ‘‘superpo-
sition,’’ of autocorrelation times and strengths. In addi-
tion, with one exception (Fig. 8), all of the plots we show
pertain to radial orbits, i.e., cases for which all of the test
particles have L � 0 in Eq. (4).

III. INFLUENCE OF COLORED NOISE ON HALO
FORMATION

SD explored the dynamics of test-particle motion in
the absence of noise. The form of their equation of motion
differed slightly from our Eq. (4) in that they normalized
the time in terms of the space-charge-depressed focusing
frequency rather than the external focusing frequency.
Notwithstanding the different normalization, the physi-
cal content remains unchanged. SD discovered that the
time-dependent potential associated with the presence of
a collective axisymmetric flute mode, even if only
weakly excited, establishes a chaotic region of phase
space in the outer regions of the beam. They also found
that this feature is not present in the phase space of an
envelope-mismatched beam having a similar level of rms
mismatch but no collective mode (cf. Fig. 9 of Ref. [7]).
An important consequence of the chaotic sea is that orbits
entering it can stochastically explore a larger region of
phase space, thereby gaining more energy and corre-
spondingly larger orbital amplitude. SD consequently
demonstrated that the excitation of collective modes leads
to a halo significantly larger than that generated by an
envelope mismatch, and that the difference is due to
destabilization of KAM surfaces by the collective
mode. As we will now show, the presence of colored noise
substantially enhances the influence of the collective
modes.

A. Orbital dynamics

Halo formation is inextricably linked to the dynamics
of individual orbits. Consequently, a close inspection of
what happens to an individual orbit because of the noise
will be instructive. We arbitrarily select an orbit that
originates deep in the interior of the beam; the initial
conditions are x � �0:733 407 and _x � 0. We then inte-
grate the orbit for 2048 DE units to obtain good fre-
quency resolution in its power (Fourier) spectrum. The
trajectory and power spectrum of this orbit are plotted in
Fig. 1 with 
1 � 0:1, 
2 � 0, and tc � 80, and for a
sequence of successively increasing noise strengths.
With zero noise the power spectrum is sharply peaked
at a single frequency indicating that the orbit is periodic,
hence regular, and the trajectory x�t� clearly reflects this
periodicity. However, in the presence of even weak noise
the orbit clearly becomes chaotic, having a power spec-
trum that features continua. A useful measure of chaos is
the number of frequencies Kf that together contain a
given fraction f of the spectral power. This measure is
called the ‘‘complexity’’ of the orbit; a common choice is
104202-5
f � 0:9 [14]. Accordingly, a broader spectrum indicates a
higher degree of chaos. Concerning the orbit in Fig. 1, the
noise has obviously placed it in a chaotic region of the
phase space established as a consequence of the time-
dependent potential associated with the collective mode.
How this happens is clarified in Sec. III E below.

As is also apparent from Fig. 1, the degree of orbital
chaoticity as quantified via the complexity K0:9 is not
necessarily a simple, i.e., monotonic, function of the
noise strength. To reiterate, the power spectrum, hence
the complexity, derives from the history of the orbit and
thereby reflects a superposition of successive short-time
behaviors. An orbit that spends a relatively large fraction
of time at large amplitudes, over which the net force is
predominantly that of the harmonic external potential,
will tend to be ‘‘more regular’’ and have smaller K0:9. As
concerns a single, specific orbit (so no phase-space sta-
tistics are involved), what matters is not so much the
amplitude of the noise, but rather whether a sequence of
noise-induced kicks happens to make the orbit more
chaotic, and these kicks are, of course, unpredictable
a priori. Our experiments indicate that a sequence of
kicks leading to increased orbital chaoticity and/or in-
creased orbital amplitude will occur sooner for some
orbits and later for others. In simulations involving
many test particles distributed over a range of initial
conditions, features of the evolving test-particle distri-
bution are thus manifestly statistical.

B. Evolution of the halo amplitude

We now evolve initial distributions of N � 106 test
particles constructed per the prescription of Sec. II C.
As the orbit integrations progress, we record a ‘‘snapshot’’
of the test-particle positions once every eight DE time
units. This interval approximately corresponds to the
period of a typical orbit in the unperturbed SD potential,
which we call the ‘‘dynamical time’’ tD: 8 DE units ’ 1tD.
For every snapshot we record the largest radius reached by
any of the N particles; the collection of these radii
represents the evolving halo amplitude RH�t�.

Example results are plotted versus time in Fig. 2, for
which the mode amplitudes and autocorrelation time are
fixed at 
1 � 0:05 or 0:1, 
2 � 0, and tc � 80, and the
noise strength hj�!ji is varied from zero upward. As the
figure indicates, in the absence of noise the halo ampli-
tude is quasiperiodic, and its time-averaged value stays
the same, i.e., it does not grow. This is as expected [3,7]. A
particle ‘‘resonantly’’ coupled to the collective mode is
kicked to larger amplitudes. However, because its orbital
frequency changes as its amplitude changes, at suffi-
ciently large amplitude the particle decouples from the
mode and its amplitude ceases to grow. Differences be-
tween the external focusing force and the collective
space-charge force thus impose a hard upper bound on
the halo amplitude. The presence of noise, however, dras-
104202-5



FIG. 1. (Color) Plots of an example orbit having initial conditions x�0� � �0:733 407, _x � 0, in the presence of various noise
strengths with 
1 � 0:1, 
2 � 0, tc � 80. The orbit is plotted in configuration space x vs t (left panel) and in phase space _x vs x
(center panel), along with its corresponding power spectrum (right panel) wherein the complexity K0:9 is provided as a measure of
orbital chaoticity (see Sec. III A). The four rows correspond to different noise strengths: (a) hj�!ji � 0, (b) hj�!ji � 0:001,
(c) hj�!ji � 0:01, and (d) hj�!ji � 0:1.
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tically changes this scenario. Occasionally successive
kicks from the noise will happen to be ‘‘just right’’ to
keep a particle in phase with the mode for an effectively
longer time and thereby push it beyond the upper bound
(i.e., outer KAM torus) characterizing the noise-free
FIG. 2. (Color) Halo amplitude RH vs t with 
2 � 0, tc � 80,
and (a) 
1 � 0:05, (b) 
1 � 0:1. The number of test particles is
N � 106. The four curves correspond to four different noise
amplitudes. Blue curve with crosses: hj�!ji � 0; red curve
with asterisks: hj�!ji � 0:001; black curve with diamonds:
hj�!ji � 0:01; green curve with triangles: hj�!ji � 0:1.

104202-6
case. The halo amplitude RH�t� continues to grow, and
the growth appears to be almost linear with time (at
least after the first few oscillations). Over the range of
noise strengths hj�!ji we explore, both stronger noise and
larger mode amplitudes enhance halo growth. Moreover,
when the noise is strong (e.g., hj�!ji � 0:1, i.e., roughly
10% of the collective-mode frequency), pronounced halo
growth occurs in just a few ( � 5) dynamical times.

Consider the largest orbital amplitude reached by any
particle over the course of a simulation, i.e., the largest
halo amplitude, and denote this amplitude as max�RH�.
This quantity will of course vary with the number of test
particles N in the simulation. Because the number of
particles that can be incorporated into N-body simula-
tions is inherently limited by available computational
power, it is of interest to know how sensitive the halo
amplitude can be to the choice of N. To quantify this
sensitivity we adjust the test-particle population between
102 � N � 106 particles. Then we perform a number of
experiments with different noise strengths and different
values of 
1 (with 
2 � 0 and tc � 80). Results pertain-
ing to 
1 � 0:05 and 0.1 appear in Fig. 3. Because there is
a hard upper bound to the halo amplitude in the absence of
104202-6



FIG. 3. (Color) Maximum halo amplitude max�RH� reached
over a duration t � 512 DE units versus the logarithm of the
test-particle population N with 
2 � 0 and tc � 80, and with
(a) 
1 � 0:05, and (b) 
1 � 0:1. The four curves correspond to
four different noise amplitudes. Blue curve with crosses:
hj�!ji � 0; red curve with asterisks: hj�!ji � 0:001; black
curve with diamonds: hj�!ji � 0:01; green curve with tri-
angles: hj�!ji � 0:1.
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noise, max�RH� is essentially independent of N for the
case hj�!ji � 0 provided N is sensibly large. This is not
true when noise is present; the noise establishes a quasi-
logarithmic dependence of max�RH� on N, a finding that
is in keeping with our earlier results [1]. Larger values of

1 yield larger values of max�RH�, but the scaling of
max�RH� with N remains roughly the same.

Results presented thus far correspond to a single auto-
correlation time tc � 80 ’ 10tD. What happens if tc is
much shorter or much longer? Plots of maximum halo
amplitude max�RH� versus tc for a sequence of increasing
noise strengths hj�!ji, and with only the n � 1 collective
mode active, appear in Fig. 4. Data points in these plots
FIG. 4. (Color) Maximum halo amplitude max�RH� versus the
logarithm of the autocorrelation time tc computed for N � 104

test particles with 
1 � 0:05 and 
2 � 0. Blue curve with
crosses: hj�!ji � 0:002; red curve with asterisks: hj�!ji �
0:01; black curve with diamonds: hj�!ji � 0:03; green curve
with triangles: hj�!ji � 0:1.
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each correspond to a sample of N � 104 test particles;
simulations with N � 106 are found to give similar re-
sults but, of course, they involve much longer run times.
In most cases the halo extent is seen to be only weakly
dependent on autocorrelation time. The exception per-
tains to large noise strength: hj�!ji � 0:1, i.e., a 10%
fluctuation in the collective-mode frequency, generates
substantially larger halo for tc < 100. The presence of
such large noise would seem to be anomalous in a real
accelerator, and one might thus presume the halo ampli-
tude will normally be independent of hardware details
associated with the establishment of noise correlations.
However, under circumstances that lead to a turbulent
beam as might reside, for example, at and just down-
stream of the beam source and at large hardware tran-
sitions, one might indeed expect the particle orbits to
experience large noise from space charge locked in the
turbulent eddies. Such circumstances would seem nor-
mally to be transient, with the large-scale turbulence
mixing away in a few dynamical times. Nevertheless,
because it would form rapidly, a sizable halo would likely
arise as evidenced from the hj�!ji � 0:1 curves in Fig. 2.

C. Evolution of the test-particle distribution

1. Halo density

Not just the amplitude of the halo is of interest, but also
its density profile. A convenient and meaningful repre-
sentation of the test-particle distribution is obtained by
calculating the percentage of particles lying outside a
radius R; let us call this P�r > R� while noting P�r >
R� ! 100% as R! 0. Plots of log10�P�r > R�
 versus R
computed at t � 512 appear in Fig. 5. Here again, the
mode amplitudes and autocorrelation time are fixed at

1 � 0:05 or 0.1, 
2 � 0, and tc � 80, and the noise
strength hj�!ji is varied over a considerable range. As a
FIG. 5. (Color) Percentage P�r > R� vs R of test particles (N �
106) lying outside radius R at the end of the simulation (t �
512) for various noise strengths with (a) 
1 � 0:05 and
(b) 
1 � 0:1. Fixed parameters are tc � 80 and 
2 � 0. Blue
curve with crosses: hj�!ji � 0; red curve with asterisks:
hj�!ji � 0:001; black curve with diamonds: hj�!ji � 0:01;
green curve with triangles: hj�!ji � 0:1.
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general trend the distribution spreads to larger radii, i.e.,
the halo amplitude grows, as the noise strength increases.

One might anticipate that the n � 2mode would couple
to a statistically small set of particles in a manner that
measurably increases the halo extent beyond that corre-
sponding to the n � 1 mode acting alone. As seen from
Fig. 6, adding the n � 2 mode does modify the distribu-
tion, though its effect appears to be modest.

2. Mixing and halo formation

To visualize how orbits mix, we integrate collections of
1600 test particle initial conditions clumped into tightly
localized regions of phase space. The integrations are
done both without and with noise; the evolution of these
collections is depicted in Fig. 7. Rows (a)–(c) pertain to
the absence of any collective mode, i.e., 
1 � 
2 � 0. In
the absence of noise [row (a)] all mixing is due to a
frequency spread across the initial clumps arising from
the nonlinear net force. Separation of the initially local-
ized particle trajectories then proceeds as a power law in
time; this is regular phase mixing, i.e., linear Landau
damping. Noise [rows (b) and (c)] influences the effective
focusing force acting on the test particles, but this influ-
ence generates no significant spreading to large orbital
amplitudes. Turning on the n � 1 collective mode
changes the situation completely. With 
1 � 0:05, but in
the absence of noise [row (d)], the clumps still spread only
to a restricted region of phase space; however, the same is
clearly not true when noise is included [rows (e) and (f)].
Noise causes a far more efficient mixing. Even moder-
ately weak noise, e.g., hj�!ji � 0:01, thoroughly and
exponentially mixes particles, regardless of their starting
points, into all regions of the phase space accessed by the
beam. Their exponential separation into global regions of
phase space is the principal signature of chaotic mixing
FIG. 6. (Color) Plots of P�r > R� vs R in the presence of both
the n � 1 and n � 2 modes (N � 106) at the end of the
simulation (t � 512) for fixed tc � 80, various values of
mode amplitudes 
1;2, with noise strength (a) hj�!ji � 0:001
and (b) hj�!ji � 0:01. Blue curve with crosses: 
1 � 0:05,

2 � 0:1; red curve with asterisks: 
1 � 0:1, 
2 � 0:05; black
curve with diamonds: 
1 � 0:05, 
2 � 0; green curve with
triangles: 
1 � 0:1, 
2 � 0.
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[14]. Increasing 
1 further accentuates this chaotic mix-
ing and causes the orbits to fill an even larger phase-space
area.

3. Circular versus radial orbits

Thus far all simulations have pertained to radial test-
particle orbits. Might the results be substantially different
for orbits with nonzero angular momentum? To answer
this question, we now consider the other extreme, that for
which all test particles are on circular trajectories at t �
0; the corresponding values of angular momentum L are
assigned according to Eq. (8). We then solve Eq. (4)
without and with noise in the space-charge tune depres-
sion. This, however, means that we refrain from adding
noise to the azimuthal motion. To do otherwise would
vitiate using angular momentum as an integral of the
motion and thereby lengthen the computations, all for
the ‘‘benefit’’ of incorporating no fundamentally new or
important additional phenomenology.

In Fig. 8 results for the halo amplitude RH�t� [panel (a)]
and halo distribution P�r > R� [panel (b)] are juxtaposed
against those pertaining to purely radial orbits. Although
the curves are not identical, neither are they systemati-
cally different. We attribute the differences to statistical
fluctuations caused by the random noise included in the
simulations. This finding is interesting in that particles on
circular orbits with rc�0� � 1 essentially lie outside the
influence of the time-dependent potential arising from
the collective modes, whereas particles on radial orbits do
not. That halo profiles corresponding to radial versus
azimuthal orbits are similar therefore suggests that par-
ticles initially in the core, for which r�0�< 1, are the ones
that dominate the process of halo formation independent
of their initial conditions in velocity space. By reproduc-
ing RH�t� with the initial radii truncated at r�0� �
rc�0� � 1, we verified that this suggestion is indeed true.

D. Collective modes versus envelope mismatch

The preceding results have illustrated how collective
modes, orbital chaoticity, and noise in an envelope-
matched beam collaborate to drive an ever-growing
halo. Consider, by contrast, a beam that is envelope mis-
matched, i.e., one that exhibits the lowest-order breathing
mode [18,19]. The corresponding equation of test-particle
motion is similar to that governing a beam with a single
excited collective mode, except now the ‘‘core radius’’
R � R�t�, i.e., the radius defining the ‘‘inside’’ of the
beam, is a function of time. Specifically, the dimension-
less equation governing the core radius is

�R	 R�
�2

R3
�
1� �2

R
� 0; (9)

which then folds into the dimensionless single-particle
equation of motion
104202-8



FIG. 7. (Color) Evolution of four collections of 1600 test-particle orbits. The collections start (with zero initial particle velocity) at
x � 0:31� 0:002, x � 0:70� 0:002, x � 1:1� 0:002, and x � 1:41� 0:002 with tc � 80, 
2 � 0, and (a) 
1 � 0, hj�!ji � 0,
(b) 
1 � 0, hj�!ji � 0:001, (c) 
1 � 0, hj�!ji � 0:01, (d) 
1 � 0:05, hj�!ji � 0, (e) 
1 � 0:05, hj�!ji � 0:001, and (f) 
1 � 0:05,
hj�!ji � 0:01. (g) Phase mixing in an envelope-mismatched beam; the mismatch M � 1:1118 compares to a mode amplitude

1 � 0:05, and hj�!ji � 0:01.
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�r	 r�
1� �2

R2
r � 0 for r < R�t�;

�r	 r�
1� �2

r
� 0 for r � R�t�:

(10)

We define the envelope-mismatch parameter M � R�t �
0�=Ro, with Ro � 1 denoting the radius of the matched
104202-9
beam. Results presented for envelope-mismatched beams
derive from integrating orbits in the coupled equations (9)
and (10).

To obtain a rough correspondence between the
amplitude 
1 of the n � 1 collective mode in the
envelope-matched beam and the envelope-mismatch
parameter M, we imagine M to be small. We then set
104202-9



FIG. 8. (Color) Halo distributions (N � 106) for radial orbits
(dotted curves) and initially circular orbits (solid curves).
(a) Halo amplitude RH�t� vs t with 
1 � 0:05, 
2 � 0, and tc �
80. (b) Percentage P�r > R� of test particles lying outside
radius R at the end of the simulation (t � 512). Blue curves:
hj�!ji � 0; red curves: hj�!ji � 0:001; black curves: hj�!ji �
0:01. Green curves: hj�!ji � 0:1.
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R! 1	 �M� 1� cos�!1��2�t
, and in turn put R�2�t� !
1� 2�M� 1� cos�!1��

2�t
 in Eq. (10). By comparing the
end result with Eq. (4) (with L set to zero) and otherwise
neglecting the different definitions of core radii, we then
infer 
1 $ 4�M� 1�2.

Now, taking the core radius to be r � R�t� as pertains
to an envelope mismatch rather than r � 1 as pertains to
collective modes in an envelope-matched beam has a
profound effect on the mixing, hence the halo dynamics.
Figure 7 [row (g)] illustrates the mixing in an envelope-
mismatched beam. Here the mismatch isM � 1:1118, for
which the counterpart collective-mode amplitude is 
1 �
0:05. Accordingly, the parameters of Fig. 7(g) are analo-
gous to those of Fig. 7(f). What is striking is how com-
paratively constrained the phase mixing and halo growth
turn out to be in the envelope-mismatched beam. The
underlying dynamics are clearly different. How so?

The answer lies in the Poincaré surfaces of section
(PSS); as SD point out [7], these are distinctly different
for the two cases. The PSS for the envelope-mismatched
beam exhibits robust, densely packed KAM tori in the
region of phase space exterior to the beam. This is true
even if the mismatch is large. These tori inhibit the
particles from gaining significant energy and reaching
large amplitudes. The n � 1 collective mode in the
envelope-matched beam, by contrast, weakens the tori
in the vicinity of the beam edge r � 1. As a consequence,
particles are then freer to move; they can stochastically
and rapidly explore a large region of phase space. SD
point out that the orbital amplitudes of those particles
can rapidly increase as the amplitude of the collective
mode is raised, whereas for the envelope-mismatched
beam, test particles gain negligible energy as the mis-
match is raised. SD’s findings pertain to zero noise; we
find nonzero noise substantially magnifies them by fur-
ther weakening and/or breaking the tori. When the KAM
tori are broken, a series of small, successive kicks can
104202-10
much more easily push a particle to ever-increasing radii.
Moreover, the associated time scale is short; significant
extended halo can form in just a few dynamical times,
i.e., orbital periods.

E. Noise-induced breakdown of tori

To visualize noise-induced disintegration of tori with
consequent halo formation, we plot the Poincaré sections
of 18 test-particle orbits having initial conditions that
collectively represent the whole of configuration space.
We take only the n � 1 mode to be excited, with ampli-
tude 
1 � 0:05, and integrate the 18 trajectories for a total
time t � 2048 (about 250tD). We do a series of these
experiments, starting with a noise strength hj�!ji �
10�6 and successively increasing it to 10�5, 10�4, 5�
10�4, and 10�3; for every experiment we set tc � 80. We
record the positions and velocities of the particles at
every period T � 2"=!1. For each experiment the re-
spective PSS is shown in Fig. 9; different colors denote
different orbits.

The Poincaré sections clarify the underlying micro-
scopic dynamics. As the noise strength is raised, ‘‘inter-
nal’’ (lower-energy) tori are clearly the first, and thus the
easiest, to break. With stronger noise the outermost tori
break as well. Note that the strongest noise considered is
only a 0.1% fluctuation of the mode frequency, and yet
this noise breaks all of the tori [panel (f)]. It is important
to remember that these plots lack statistical significance
since only 18 orbits are represented. In a statistically
important, i.e., much larger, sample some number of
particles may conceivably break through the outer tori
even with very small noise. What the plots suggest is that
this number should increase as the noise strength in-
creases, in keeping with what one would expect intui-
tively. The ‘‘disintegration time scale’’ (delineating the
onset of halo formation) is as indicated in the plots of RH
discussed earlier, and these plots were developed with
meaningful statistics, i.e., with 106 test particles.

We now repeat the same investigation for the corre-
sponding envelope-mismatched beam, i.e., M �

1	 
1=21 =2 � 1:1118. Here, we record the positions and
velocities of the particles at every period at which the
core has its minimum radius; the results appear in Fig. 10.
Panel (a) depicts the PSS with zero noise, whereas
panel (b) depicts the PSS with noise having the same
parameters (hj�!ji � 10�3 and tc � 80) as in Fig. 9(f).
Although with this noise the KAM tori become slightly
fuzzier, they are not yet broken, and this stands in stark
contrast to the situation wherein a collective mode of
similar amplitude is active in an envelope-matched
beam. Even when the noise has very large amplitude
[hj�!ji � 10�1 in Fig. 10(c)], the beam boundary in
phase space appears still to be sharply defined, although
the tori have now obviously broken to a certain degree,
particularly in the beam’s interior. Hence, although the
104202-10



FIG. 9. (Color) Poincaré sections for a set of 18 representative initial conditions integrated over t � 2048 DE units ( � 250tD) with
various noise strengths, and with tc � 80, 
1 � 0:05, and 
2 � 0: (a) hj�!ji � 0, (b) hj�!ji � 10�6, (c) hj�!ji � 10�5,
(d) hj�!ji � 10�4, (e) hj�!ji � 5� 10�4, and (f) hj�!ji � 10�3.
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tori of the envelope-mismatched beam are seen to be
robust, they are not indestructible; sufficiently strong
noise will eventually break them.

IV. DISCUSSION AND CONCLUSIONS

The foregoing results illustrate that collective modes
can have a critical impact on halo formation by destabi-
lizing the phase space near the beam boundary. Particles
then are freer to roam by interacting with the collective
modes, extracting energy from them, and thereby popu-
lating a halo. By keeping a statistically small number of
particles in phase with collective modes, colored noise
contributes toward not only populating the halo, but also
expanding its extent, and it does so rapidly.
104202-11
One might reasonably question, because they are un-
realistic, whether density discontinuities inherent to col-
lective modes in the warm-fluid KV beam might vitiate
our findings by imposing correspondingly unrealistic
dynamics. The answer would seem to be ‘‘no’’ because
we showed in earlier work (Ref. [1]) that adding noise to a
perturbed thermal-equilibrium beam, a beam that is de-
void of discontinuities and wherein the perturbation
mimics the presence of a global collective mode, yields
orbital amplitudes entirely consistent with those com-
puted herein.

These matters are of practical importance to the evo-
lution of real beams. Transitions in an accelerator will
give rise to various mismatches that move the beam away
104202-11



FIG. 10. (Color) Poincaré sections for a set of 18 representa-
tive initial conditions in an envelope-mismatched beam inte-
grated over t � 2048 DE units ( � 250tD) with various
noise strengths, and with M � 1:1118: (a) hj�!ji � 0,
(b) hj�!ji � 10�3, and (c) hj�!ji � 10�1.

PRST-AB 7 PRODUCTION OF ENHANCED BEAM HALOS VIA . . . 104202 (2004)
from equilibrium. Subsequent charge redistribution will
trigger a hierarchy of collective modes. Unavoidable ir-
regularities in the beam line will impose a spectrum of
colored noise that adds self-consistently to the time-
dependent potential associated with the collective modes.
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Consequently, the phenomenology that we uncovered will
arise, as will the consequential growth of the beam’s
phase space in general, and beam halo, in particular.
Accounting for these details therefore becomes impera-
tive, particularly in regard to designing accelerators for
the production of high-average-current beams.

Although by working with the warm-fluid model of a
beam we have endeavored toward a treatment that is
realistic, yet still generic, our treatment nevertheless re-
tains some shortcomings that need to be rectified in
future work. These include the following: (1) The distri-
bution of collective modes will evolve in a real beam [20];
modes will tend to dissipate in conjunction with the
redistribution of the free energy they contain, a dynamic
that we have neglected. However, the time scales over
which large-scale collective modes dissipate are not yet
well quantified, and evidence from numerical simulations
suggests they may persist for hundreds of dynamical
times [21]. To the extent this proves true, our analysis
reveals the attendant impact on halo formation. (2) A real
beam contains no test particles; all of the particles inter-
act with one another. (3) A real accelerator will present a
spectrum of colored noise, i.e., a distribution of noise
parameters, in keeping with the actual hardware and field
irregularities. The totality of this phenomenology can be
incorporated only by way of careful self-consistent
N-body simulations that reflect both accurate boundary
conditions and statistically accurate initial conditions, as
well as faithfully reproduce the hierarchies of spatial and
temporal scales intrinsic to the evolving beam.

We have endeavored to show clearly and convincingly
that details can be important to the evolution of a
charged-particle beam under the influence of space
charge, in that they can make a substantial impact on
the macroscopic evolution of its phase-space distribution.
Accordingly, these details merit careful study. A seem-
ingly probable outcome would be that the proper way to
picture generically a nonequilibrium beam subject to
self-forces is in terms of an increasingly well-mixed
and continually growing phase space as opposed to a
phase space in which tori largely partition, and hence
constrain, the motion of the constituent particles. This is
especially true considering that the results herein pertain
to 1.5-dimensional beams (the half dimension corre-
sponding to time), whereas real beams are higher-
dimensional systems, and thus their phase spaces are
inherently less hospitable to barriers in the form of tori
and cantori.

In a paper that appeared subsequent to the submission
of our manuscript, Gerigk shows that modest statistical
errors in the focusing gradient generate continually grow-
ing halo [22]. His initial study centers on a cylindrical
beam that, in the absence of these errors, is in equilib-
rium, e.g., it is both rms matched and envelope matched.
He finds that the focusing errors excite oscillations in this
104202-12
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matched beam that then transfer energy to single parti-
cles. He also demonstrates that the same phenomenology
applies in a more realistic three-dimensional, i.e.,
bunched, beam. Inasmuch as Gerigk was unaware of
our earlier paper (Ref. [1]) [23], and we were likewise
unaware of his related activity, through complementary
investigations we have all independently arrived at the
same conclusion: noise constitutes a continual source of
enhanced halo production.
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