
PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS, VOLUME 7, 101001 (2004)
Beam-size effect at colliders and correlations of particles in a beam

G. L. Kotkin and V. G. Serbo*
Novosibirsk State University, 630090, Novosibirsk, Russia

(Received 8 August 2003; published 4 October 2004)
*Electronic

101001-1
For several processes at colliding beams, macroscopically large impact parameters give an essential
contribution to the standard cross section. These impact parameters may be much larger than the
transverse sizes of the colliding bunches. In that case, the standard calculations have to be essentially
modified. The corresponding formulas for such a beam-size effect were given 20 years ago without
taking into account correlations of particle coordinates in the beams. In the present paper we derive
formulas necessary to take into account quantitatively the effect of particle correlations in the
spectrum of bremsstrahlung as well as in pair production. Our results are quite different from those
obtained in recent papers [V. N. Baier and V. M. Katkov, Phys. Rev. D 66, 053009 (2002); V. N. Baier and
V. M. Katkov, hep-ph/0305304.]. We point out the origin of this difference.

DOI: 10.1103/PhysRevSTAB.7.101001 PACS numbers: 13.66.–a
I. INTRODUCTION

The so-called beam-size or MD effect is a phenomenon
discovered in experiments at the MD-1 detector on the
VEPP-4 collider, Novosibirsk 1981 (the term ‘‘MD ef-
fect’’ is used in honor of the MD-1 group). It was ob-
served [1] that the number of measured photons in the
process e�e� ! e�e�� was considerably smaller than
expected. A qualitative explanation of the effect was
given by Tikhonov [2], who pointed out that those impact
parameters %, which give an essential contribution to the
standard cross section, reach values of %m � 5 cm
whereas the transverse size of the bunch is �? �
10�3 cm. The limitation of the impact parameters to
values % & �? is just the reason for the decreasing num-
ber of observed photons. The first calculations of this
effect have been performed in Refs. [3,4]. The detailed
description of the MD effect can be found in Ref. [5].
Later on, the effect of limited impact parameters was
taken into account using the single bremsstrahlung reac-
tion for measuring the luminosity at the VEPP-4 collider
[6] and at the LEP-I collider [7].

A general scheme to calculate the finite beam-size
effect was developed in Ref. [8] starting from the quan-
tum description of collisions as an interaction of wave
packets that form bunches. Since the effect under discus-
sion is dominated by small momentum transfer, the
general formulas can be considerably simplified. The
corresponding approximate formulas were derived in
[8]. In the second step, the transverse motion of the
particles in the beams can be neglected. The less exact
(but simpler) formulas, which are then found, correspond
to the results of Refs. [3,4]. It has also been shown that
similar effects have to be expected for several other
reactions such as bremsstrahlung for colliding ep beams
[9,10], e�e� pair production in e�e, and �e collisions [8].
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The corresponding corrections to the standard formulas
are now included in programs for simulation of events at
linear colliders. The influence of MD effect on polariza-
tion was considered in Ref. [11]. In 1995 the MD effect
was experimentally observed at the electron-proton col-
lider HERA [12] at the level predicted in [10].

The possibility of creating high-energy colliding
���� beams is now widely discussed. For several pro-
cesses at such colliders a new type of beam-size effect
will take place —the so-called linear beam-size effect
[13]. The calculation of this effect was performed by
methods developed for the MD effect in [8].

It was realized in recent years that the MD effect in
bremsstrahlung plays an important role in the beam life-
time problem. At storage rings TRISTAN and LEP-I, the
process of single bremsstrahlung was the dominant
mechanism for the particle losses in beams. If an electron
loses more than 1% of its energy, it leaves the beam.
Since the MD effect considerably reduced the effective
cross section of this process, the calculated beam lifetime
in these storage rings was larger by about 25% for
TRISTAN [14] and by about 40% for LEP-I [15] (in
accordance with the experimental data) than without
taking into account the MD effect. According to our
calculations [16], at B factories PEP-II and KEK-B the
MD effect reduces beam losses due to bremsstrahlung by
about 20%.

It is seen from this brief listing that the MD effect is a
phenomenon interesting from the theoretical point of
view and important from the experimental point of
view. In the present paper we consider once again the
MD effect to take into account correlations of particle
coordinates in the beams. Usually these correlations are
small; however, more accurate measurements may be
sensitive to them. In the present paper we derive formulas
which are necessary to take into account quantitatively
the effect of particle correlations in the spectrum of
bremsstrahlung as well as in pair production.
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FIG. 2. Compton scattering of equivalent photon on the
electron.
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Additionally, we compare our results with those ob-
tained in recent papers [17,18] in which previous results
[3,4,8] about bremsstrahlung spectrum were revised. It
was claimed that an additional subtraction, related to the
coherent contribution, has to be done. In the present paper
we analyze the coherent and incoherent contributions in
the conditions, considered in papers [17,18], when the
coherent length is much smaller than the bunch length
but much larger than the mean distance between particles.
In the present paper we derive expressions for the coher-
ent and incoherent contributions and show that under
these conditions the coherent contribution is completely
negligible and, therefore, there is no need to revise
the previous results. Our preliminary results were given
in [19].

In the next section we present the qualitative descrip-
tion of the MD effect. In Sec. III we discuss our approx-
imations. Basic formulas for coherent and incoherent
contributions are given in Sec. IV. Corrections to the
standard cross section, related to the particle correlations,
are derived in Sec. V. A comparison of our results with
those in Refs. [17,18] is presented in Sec. VI. Some con-
clusions are given in Sec. VII.
✬ ✩
II. QUALITATIVE DESCRIPTION OF THE MD
EFFECT

Qualitatively we describe the MD effect using the
ep! ep� process as an example. [Below we use the
following notations: Ne and Np are the numbers of elec-
trons and protons (positrons) in the bunches, �z � l is the
longitudinal, �x and �y are the horizontal and vertical
transverse sizes of the proton (positron) bunch, �e �
Ee=�mec

2	, �p � Ep=�mpc
2	, and re � e2=�mec

2	 is the
classical electron radius.] This reaction is described by
the diagram in Fig. 1 which corresponds to the radiation
of the photon by the electron (the contribution of the
photon radiation by the proton can be neglected). The
large impact parameters % * �?, where �? is the trans-
verse beam size, correspond to small momentum transfer

hq? � � 
h=%	 & � 
h=�?	. In this region, the given reaction
can be represented as a Compton scattering (Fig. 2) of an
equivalent photon, radiated by the proton, on the electron.
The equivalent photons with frequency ! form a ‘‘disk’’
of radius %m � �pc=!, where �p � Ep=�mpc

2	 is the
Lorentz factor of the proton. Indeed, the electromagnetic
✲
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FIG. 1. Block diagram of radiation by the electron.
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field of the proton is �p times contracted in the direction
of motion. Therefore, at distance % from the axis of
motion a characteristic longitudinal length of a region
occupied by the field can be estimated as �� %=�p,
which leads to the frequency !� c=�� �pc=%.

In the frame of reference connected with the collider,
the equivalent photon with energy 
h! and the electron
with energy Ee 
 
h! move toward each other (Fig. 3)
and perform the Compton scattering. The characteristics
of this process are well known. The main contribution to
the Compton scattering is given by the region where the
scattered photons fly in a direction opposite that of the
initial photons. For such a backward scattering, the en-
ergy of the equivalent photon 
h!, the energy of the final
photon E�, and its emission angle �� are related by


h! �
E�

4�2
e�1 � E�=Ee	

�1 � ��e��	
2� (1)

and, therefore, for typical emission angles �� & 1=�e one
has


h!�
E�

4�2
e�1 � E�=Ee	

: (2)

As a result, we find the radius of the disk of equivalent
photons with the frequency ! (corresponding to a final
photon with energy E�) as follows:

%m �
�pc

!
� 4�e�e�p

Ee � E�
E�

;

�e �

h

mec
� 3:86  10�11 cm:

(3)

For the HERA collider with Ep � 820 GeV and Ee �
28 GeV one obtains
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FIG. 3. Scattering of equivalent photons, forming the disk
with radius %m � �pc=!, on the electron beam with radius�?.
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%m * 1 cm for E� & 0:2 GeV: (4)

Equation (3) is also valid for the e�e� ! e�e�� process
with replacement of the protons by the positrons. For the
VEPP-4 collider it leads to

%m * 1 cm for E� & 15 MeV; (5)

for the KEK-B and PEP-II colliders we have

%m * 1 cm for E� & 0:1 GeV: (6)

The standard calculation corresponds to the interaction
of the photons (that form the disk) with the unbounded
flux of electrons. However, the particle beams at the
HERA collider have finite transverse beam sizes of the
order of �? � 10�2 cm. Therefore, the equivalent pho-
tons from the region �? & % & %m cannot interact with
the electrons from the other beam. This leads to the
reduction of the number of the observed photons. The
‘‘observed cross section’’ d�obs is smaller than the stan-
dard cross section d� calculated for an infinite transverse
extension of the electron beam,

d�obs � d�� d�cor: (7)

Here the correction d�cor can be presented in the form

d�cor � d�C�!;Ee; E�	dn�!	; (8)

where dn�!	 denotes the number of ‘‘missing’’ equivalent
photons and d�C is the cross section of the Compton
scattering. Let us stress that the equivalent photon ap-
proximation in this region has a high accuracy (the ne-
glected terms are of the order of 1=�p). But for the
qualitative description it is sufficient to use the logarith-
mic approximation in which this number is (see [20],
Sec. 99)

dn �
�
�
d!
!

dq2
?

q2
?

: (9)

Since q? � 1=%, we can present the number of missing
equivalent photons in another form,

dn �
�
�
d!
!

d%2

%2 ; (10)

with the integration region in %:

�? & % & %m �
�pc

!
: (11)

As a result, this number is equal to

dn�!	 � 2
�
�
d!
!

ln
%m
�?

; (12)

and the correction to the standard cross section with
logarithmic accuracy is
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d�cor �
16

3
�r2

e
dy
y

�
1 � y�

3

4
y2

�
ln

4�e�p�1 � y	�e
y�?

;

y �
E�
Ee
: (13)

[Within this approximation, the standard cross section
has the form

d� � d�C
�
�
d!
!

dq2
?

q2
?

�
16

3
�r2

e
dy
y

�
1 � y�

3

4
y2

�
ln

4�e�p�1 � y	

y

with the integration region !=�c�p	 & q? & mec= 
h cor-
responding to the impact parameters % in the interval
�e & % & %m.]

III. APPROXIMATIONS

For future linear e�e� colliders the transverse sizes of
the beams will change significantly during the time of
interaction due to a mutual attraction of very dense
beams. However, for most of the ordinary accelerators,
including practically all e�e� and ep storage rings, the
change of the transverse beam sizes during the collisions
can be neglected. Below we use two main approxima-
tions: (i) the particle movement in the bunches has a
quasiclassical character, and (ii) the particle distribution
remains practically unchanged during the collision. For
definiteness, we use again the ep collision as an example.

Therefore, if the proton (electron) bunch moves along
(opposite) the direction of z axis with the velocity vp
(ve), its density has the form

np � np�%; z� vpt	; ne � ne�%; z� vet	: (14)

We also introduce so-called ‘‘transverse densities’’

np�%	 �
Z
npdz; ne�%	 �

Z
nedz; (15)

which is equal to the total number of protons (electrons)
which cross a unit area around the impact parameter %
during the collision. Using the transverse densities, we
express the luminosity for collisions of beams whose axes
are separated by the impact parameter % as

L�%	 �
Z
ne�r?	np�%� r?	d2r?: (16)

The usual luminosity for a single collision of ep beams
Lep is then

Lep � L�0	: (17)

Below we consider in detail the case when an electron
deflection angle �e is smaller than the typical radiation
angle �1=�e. It is easy to estimate the ratio of these
angles. The electric E and magnetic B fields of the proton
bunch are approximately equal in magnitude, jEj �
101001-3
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jBj � eNp=���x � �y	l� . These fields are transverse and
they deflect the electron into the same direction. In such
fields the electron moves around a circumference of ra-
dius R� �emec

2=�eB	 and gets the deflection angle �e �
l=R. Therefore, the ratio of these angles is of the order of

�e
�1=�e	

� ! �
reNp

�x � �y
: (18)

The parameter !
 1 only for the SLC and future linear
e�e� colliders (see the TESLA, NLC, JLC, and CLIC
projects), in most of the existing storage rings ! & 1.

In our consideration we use the equivalent photon
approximation. In the region of interest (where impact
parameters are large, % * �?) this simple and transpar-
ent method has a high accuracy: the neglected terms are
of the order of 1=�. It should be stressed that the operator
quasiclassical method, used in Ref. [17], just coincides in
this region with the equivalent photon approximation.

IV. COHERENT AND INCOHERENT
CONTRIBUTIONS

A. General formulas

The corresponding formulas for the number of events
in a single collision of the electron and proton bunches
can be found in Refs. [21,22]. To calculate the MD effect,
we need to know the distribution of equivalent photons
(EP) for large values of impact parameters. In this region
we can consider the electron-proton scattering as the
scattering of electrons on the electromagnetic field of
the proton bunch. Replacing this field by the flux of EP
with some frequency distribution, we obtain the number
of events in the form

dN � dL�e�!	d�C�!;Ee; E�	;

dL�e�!	 � n��%; !	d!ne�%	d
2%:

(19)

Here ne�%	 is the transverse electron density (15) and
n��%; !	d! is the transverse density of EP with the
frequencies in the interval from ! to !� d!. The quan-
tity dL�e�!	 denotes the differential luminosity for the
collisions of EP and electrons and d�C�!;Ee; E�	 is the
Compton cross section for the scattering of the equivalent
photon with the frequency ! on the electron.

For comparison with the experimental data the number
of events in a single collision of beams dN should be
averaged over many collisions of bunches in a given
experiment. For example, the typical rate at the HERA
collider is less than 1=100 bremsstrahlung photons in a
certain interval of frequencies per a single collision of the
beams; therefore, in that experiment the averaging over
many collisions of bunches really does exist.

The transverse density of the EP is determined by
density of the electromagnetic field for a given frequency,
i.e., by jE!�%	j

2=�4�	, where E!�%	 is the spectral com-
ponent of the collective electric field of the proton bunch.
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As a result, the transverse density of the EP is

n��%; !	d! �
c

4�2 hjE!�%	j
2i
d!

h!

; (20)

where the sign h� � �i denotes the above mentioned statis-
tical averaging. The field E!�%	 itself depends on a dis-
tribution of charges in the proton bunch at t � 0. We
introduce the exact (fluctuating) density of the proton
bunch n�r	 and the average density

np�r	 � hn�r	i (21)

as well as the corresponding form factor

Fp�q	 �
Z
np�r	e�iqrd3r (22)

with the normalization

Fp�0	 �
Z
np�r	d3r � Np: (23)

In the classical limit

n�r	 �
X
a

%�r� ra	; (24)

where ra is the radius vector of the ath proton. In these
notations, the exact (fluctuating) collective field is

E!�%	 � �
ie
�c

Z
d2q?

q?e
iq?%

D�q	

Z
d3rn�r	e�iqr;

D�q	 � q2
? �

q2
z

�2
p
;

(25)

with qz � !=c.
As a result, the number of events

dN / n��%; !	

�
�

4�4!

Z �q?q0
?	

D�q	D�q0	
ei�q?�q0

?
	%S�q;q0	d2q?d2q0?

(26)

depends on the beam structure factor

S�q;q0	 �
Z
S�r; r0	e�i�qr�q0r0	d3rd3r0;

S�r; r0	 � hn�r	n�r0	i
(27)

in which

qz � q0z � !=c: (28)

Below we analyze these formulas in conditions when
the coherence length lcoh � c=! is much smaller than the
bunch length l, but much larger that the mean distance
between particles in the beam a, i.e., at

a�
c
!
� lcoh �

4�2
e 
hc
E�

�1 � E�=Ee	 � l: (29)
101001-4
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B. The beam structure factor

The obtained general formulas include the coherent
and incoherent contributions. The coherent contribution
is determined by the average field which is given by
Eq. (25) with the replacement of the exact density n�r	
by the average density np�r	. The average density of the
proton bunch has a single scale in the longitudinal direc-
tion—the length of the bunch l. Therefore, the average
field of the bunch is essential in the region of frequencies
! � cqz & c=l and should be small in the region of large
frequencies !
 c=l. In particular, if the proton bunch
has the Gaussian distribution,

np�r	 �
Np

�2�	3=2�x�yl
exp

�
�

x2

2�2
x
�

y2

2�2
y
�
z2

2l2

�
; (30)

its form factor is equal to

Fp�q	 � Np exp
�
�

1

2
�qx�x	

2 �
1

2
�qy�y	

2 �
1

2
�!l=c	2

�

(31)

and vanishes in the discussed region of frequencies from
the interval (29).

If we introduce the density fluctuation

�n�r	 � n�r	 � np�r	; (32)

we can rewrite the average product of densities in the
form

hn�r	n�r0	i � np�r	np�r0	 � h�n�r	�n�r0	i: (33)

In accordance with this presentation, we split the function
S�r; r0	 in two items called coherent and incoherent con-
tribution:

S � Scoh � Sincoh; Scoh�r; r0	 � np�r	np�r0	;
Sincoh�r; r0	 � h�n�r	�n�r0	i:

(34)

The coherent contribution to the structure factor is equal
to

Scoh�q;q0	 � Fp�q	F�
p�q0	: (35)

This formula was used in Refs. [21,22] to obtain main
characteristics of the coherent bremsstrahlung. It also
allows us to obtain the following estimate for the
Gaussian beam in the region of interest (at jqxj; jq0xj &

1=�x and jqyj; jq0yj & 1=�y):

Scoh�q;q0	 � N2
p exp���!l=c	2�: (36)

Let us now consider the incoherent contribution. A
bunch at colliders can be treated as a continuous media
with a smooth average particle distribution. It was shown
in the appendix that for such a media the function
Sincoh�r; r0	 is expressed only via the average density
101001-5
np�r	 and via the correlation function C�r; r0	 as follows:

Sincoh�r; r0	 � %�r� r0	np�r	 � C�r; r0	: (37)

If we neglect the correlations of the particle coordi-
nates in the beam, the correlation function C�r; r0	 van-
ishes, and we obtain [taking into account Eq. (28)]

Sincoh�q;q0	 � F�q? � q0
?	: (38)

It is important that this expression is determined only by
the transverse average density of the proton bunch and it
does not depend on !. Equation (38) has been used to
derive the previous results about MD effect (for details see
Ref. [5] and Sec. V). For the Gaussian beam in the region
of interest, we get from (38) a useful estimate

Sincoh�q;q0	 � Np: (39)

The correlations of the particle coordinates may arise
due to Coulomb interaction of particles in the beam. In
this case the characteristic quantity—the correlation
length lcorrel —is related to the Debye radius. It is evident
that the correlations are negligible if the correlation
length is much larger than the coherence length, i.e., at
lcorrel 
 lcoh. According to an estimate [4] it is just the
case for the VEPP-4 experiment [1]. In any case, the
correlations may give an essential correction to the stan-
dard bremsstrahlung cross section only if

lcorrel & lcoh: (40)

Therefore, the important quantity is the spectral compo-
nent of the correlation function:

C!�r?; r0?	 �
Z
C�r; r0	e�i!�z�z

0	=cdzdz0: (41)

With this notation the incoherent contribution is now

Sincoh�q;q0	 � F�q? � q0
?	 � C!�q?;q0

?	; (42)

where

C!�q?;q0
?	 �

Z
C!�r?; r0?	e

�i�q?r?�q0
?
r0
?
	d2r?d2r0?:

(43)
V. CORRECTION TO THE STANDARD
BREMSSTRAHLUNG CROSS SECTION

Let us compare the coherent and incoherent contribu-
tions for the Gaussian beams. In this case, the ratio

dNcoh

dNincoh
�

Scoh�q;q0	

Sincoh�q;q0	
� Np exp���!l=c	2� (44)

is determined by the parameter !l=c. Since 
h!�

E�=�4�2
e�1 � E�=Ee	�, it is also useful to introduce the

coherence length (29) and the critical energy for coherent
bremsstrahlung
101001-5
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Ec �
4�2

e 
hc
l

: (45)

If the coherence length is large, lcoh * l, or if the final
photon energy is small, E� & Ec, the parameter!l=c & 1
and the coherent contribution is dominant.

On the contrary, in the region of large photon energy,
E� 
 Ec, or small coherence length, lcoh � l, considered
here, the incoherent contribution dominates. In particular,
for Np � 1011 the ratio dNcoh=dNincoh is small even for
!l=c � 6,

dNcoh

dNincoh
� Npe

�36 � 1; (46)

and the coherent contribution becomes completely negli-
gible. In this case the number of events for bremsstrah-
lung can be presented in the form [cf. (7)]

dNincoh � Lepd�obs; d�obs � d�� d�cor; (47)

where Lep is the luminosity (17) of the ep collisions, d�
is the standard cross section for the ep! ep� process,
and d�cor is the correction related to the MD effect. Then
we perform integration over q? and q0

? using the well-
known equality

Z q?eiq?%

q2
? � �1=b	2

d2q? �
2�i
b

%

%
K1�%=b	; (48)

where Kn�x	 denotes the modified Bessel function of the
third kind (the McDonald function). As a result, we
obtain the correction to the standard cross section in the
form [cf. with the approximate formulas (8) and (12)]

d�cor � d�C�!;Ee; E�	
�
�
d!
!
G�!	; (49)

where d�C is the Compton cross section and the function
G�!	 consists of two items

G�!	 � G�1	�!	 �G�2	�!	: (50)

The first item represents the previous result for the MD
effect (without taking into account the correlations),

G�1	�!	 �
Z d2%

�%2
m

�
1 �

L�%	
L�0	

�
K2

1�%=%m	;

%m �
c�p
!

;
(51)

where L�%	 is defined in (16). Some other useful expres-
sions forG�1	�!	 as well as its asymptotics can be found in
[5]. The second item is directly related to the correlation
function (37) and (41)
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G�2	�!	 � �
Z d2%

�%2
m

ne�%	
Lep

C!�r? � %; r0? � %	


�r?r0?	
r?r0?

K1�r?=%m	K1�r
0
?=%m	d

2r?d
2r0?:

(52)

Note that the main contribution toG�1	�!	 (51) is given by
the region of large impact parameters (11) while the main
contribution to G�2	�!	 is given by the region % & �?. If
the quantity %m is small, %m � �?, the correction to the
standard cross section vanishes, since in this case
K1�%=%m	 � %m=% and G�!	 � �%m=�?	

2 � 1.
The quantity d�Cd!=! in (49) can be expressed via

the energy E� and the emission angle �� of the final
photon as follows [taking into account relation (1)]:

d�C
�
�
d!
!

� 2�r2
e
dy
y

dz

�1 � z	2
F�y; z	;

F�y; z	 � 2�1 � y	
1 � z2

�1 � z	2
� y2;

(53)

where

y �
E�
Ee
; z � ����e	2; re �

e2

mec
2 : (54)
VI. COMPARISON WITH THE RESULTS OF
REFS. [17,18]

We derive the final expression for the incoherent con-
tribution from general equations (19), (20), and (25) as a
simple consequence of natural assumptions about the
particle distribution in a proton bunch. It is useful to
rewrite these equations in the form convenient for com-
parison with the corresponding equations in [17,18]. To do
this, we note that the Compton cross section d�C /

jeMComptonj
2, where eMCompton is the amplitude of the

Compton scattering for the EP with the polarization
vector e � E!�%	=jE!�%	j. Therefore, the number of
events in a given collision of beams is proportional to
jMj2, where

M � E!�%	MCompton (55)

is related to the probability amplitude of the process.
Further, we use Eqs. (24) and (48) and present the collec-
tive field of the proton bunch E!�%	 as a sum of fields of
all protons:

E !�%	 �
XNp
a�1

E�a	
! �%	;

E�a	
! �%	 �

2e
c%m

%0
a

%0
a
K1�%0

a=%m	e�i!za=c;

(56)

where %0
a � %� %a is the impact parameter between the
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electron and the ath proton, and the parameter %m �

�pc=! is the radius of the disk of EP (see Fig. 3).
As a consequence, the amplitude M is the sum

M �
XNp
a�1

mae
�i!za=c;

ma �
2e
c%m

K1�%
0
a=%m	

%0
a

%0
a
MCompton;

(57)

where the item ma exp��i!za=c	 is the contribution to M
related to the interaction of the electron with the ath
proton, while jMj2 can be presented as a double sum

jMj2 �
X
a;b

mam
�
be

�i!�za�zb	=c: (58)

We split this sum into the sum with a � b and the sum
with a � b:

jMj2 � �1 � �2; �1 �
X
a

jmaj
2;

�2 �
X
a�b

mam�
be

�i!�za�zb	=c:
(59)

Equations (57)–(59) can be considered as the same start-
ing formulas in our approach, based on the equivalent
photon approximation, and in the approach of [17,18],
based on the operator quasiclassical method.

However, further calculations are quite different. As in
Refs. [17,18], below we consider the case when one can
separate the transverse and longitudinal distributions and
neglect the correlations between the transverse coordi-
nates in the proton bunch. It means that we can present the
exact n�r	 and average np�r	 densities in the form

n�r	 � f�r?	n�z	; hn�r	i � np�r	 � fp�r?	np�z	

(60)

with the normalizations
Z
f�r?	d2r? � 1;

Z
n�z	dz � Np: (61)

In the classical limit one has

n�z	 �
X
a

%�z� za	;

Fp�qz	 �
Z
np�z	e�iqzzdz �

X
a

he�iqzzai;

(62)

where za is the longitudinal coordinate of the ath proton.
It was shown in the appendix that the average product of
the longitudinal densities hn�z	n�z0	i is expressed only via
the average longitudinal density and the longitudinal
correlation function C�z; z0	 as follows [cf. (33)–(37)]:

hn�z	n�z0	i � np�z	np�z
0	 � h�n�z	�n�z0	i; (63)

h�n�z	�n�z0	i � %�z� z0	np�z	 � C�z; z0	: (64)
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In our approach, the number of events is proportional to
jMj2 averaged over collisions of beams, i.e.,

dN / hjMj2i � h�1i � h�2i: (65)

Here the item h�1i contains the factor hjmaj
2i? and the

item h�2i contains the factor hmai?hm�
bi? where

hjmaj
2i? �

Z
jmaj

2fp�%a	d
2%a;

hmai? �
Z
mafp�%a	d

2%a:
(66)

Both these factors do not depend on index a. Therefore,
the first item is equal to

h�1i � Nphjmaj
2i?; (67)

that leads to the correction, corresponding to G�1	 in
(49)–(51).

The second item is equal to

h�2i � jhmai?j
2hZi; Z �

X
a�b

e�i!�za�zb	=c: (68)

It was shown in the appendix that

hZi � jFp�!=c	j2 � C!; (69)

where the longitudinal form factor Fp�qz	 is defined in
(62) and the longitudinal structure factor is

C! �
Z
C�z; z0	e�i!�z�z

0	=cdzdz0: (70)

In the considered region of large frequencies (29), the
longitudinal form factor is small, in particular, for the
Gaussian beams [cf. (36), (44), and (46)]

jFp�!=c	j2 � N2
p exp���!l=c	2� � Np: (71)

As a result, we obtain

h�2i � jhmai?j
2C!; (72)

that leads to the correction, corresponding to G�2	 in
(49)–(52) with

C!�r?; r0?	 � fp�r?	fp�r0?	C!: (73)

Therefore, in the considered approximation the correc-
tion G�2	 has the form

G�2	�!	 � � C!
Z d2%

�%2
m

ne�%	
Lep

�
r?
r?
K1�r?=%m	

 fp�r? � %	d2r?

�
2
: (74)

Usually the correlations of particles in beams are
small. If we can neglect the correlations of the longitu-
dinal coordinates in the proton bunch, the quantity hZi
becomes small,
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jhZij � Np (75)

and the item h�2i, as well as G�2	�!	, vanishes,

jh�2ij � h�1i; jG�2	�!	j � G�1	�!	: (76)

Let us consider the opposite case, when the fluctuations
are absent,

h�n�z	�n�z0	i � 0: (77)

In this unrealistic case a beam is similar to the crystal, in
which particles are localized near the centers of the
crystal structure. Now the correlations are large,

C�z; z0	 � �%�z� z0	np�z	; (78)

the quantity C! becomes large as well

C! � �Np; (79)

and correction G�2	�!	 reads

G�2	�!	 �Np
Z d2%

�%2
m

ne�%	
Lep

�
r?
r?
K1�r?=%m	

 fp�r? � %	d2r?

�
2
: (80)

The authors of [17,18] as the first step had performed
averaging over transverse coordinates of the protons.
Certainly, after that they get the same expression for �1

as in (67). For �2 they had obtained the following ex-
pression:

h�2i? � jhmai?j
2Z: (81)

When calculating Z, they add and subtract the items with
a � b, as a consequence,

Z � J� Np; J �
X
a;b

e�i!�za�zb	=c �
��������
X
a

e�i!za=c
��������

2
:

(82)

Their next step consists of replacement of the sum J by
the integral

J !

��������
Z
e�i!z=cnp�r	d3r

��������
2
; (83)

which is negligible in the considered region. In particular,
for the Gaussian beam the replacement given by Eq. (83)
means the following [see (71)]:

J ! N2
p exp���!l=c	2� � Np: (84)

This estimate leads to a large negative value of

Z � �Np (85)

and to

h�2i? � �Npjhmai?j
2: (86)

As a result, the correction G�2	 was obtained in the form
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of Eq. (80). Just the expression (80) is a new ‘‘subtraction
term’’ derived in [17,18].

It is clearly seen that results (76) and (80) are quite
different. The origin of this difference is in the incorrect
calculation of quantity Z in Refs. [17,18], where this
quantity was found to be a large negative value Z �

�Np. It is not difficult to understand that in the consid-
ered region of large frequencies (29) the quantity Z
fluctuates near zero for various sets of coordinates fzag �
z1; z2; . . . ; zNp , corresponding to various collisions of
beams. After averaging over many collisions, one obtains
the estimate jhZij � Np. Moreover, let us stress that the
dispersion of Z is large, �Z� Np; therefore, the averag-
ing over many various sets of fzag is necessary to obtain
the stable result for hZi. This natural behavior of Z is
illustrated by numerical calculations given below.

Let us consider in detail replacement (83) which leads
to result Z � �Np. This replacement is true for the region
of small frequencies !l=c� 1 when J � N2

p and Z �

�Np � J � Np�Np � 1	 � N2
p, but such a replacement is

completely incorrect in the considered region of large
frequencies (29). To show this, we perform numerical
calculation of the sum J. For a given collision of beams,
we can consider a set of the longitudinal proton coordi-
nates fzag as a set of random quantities with some distri-
bution w�z	. We assume below that

w�z	 �
1�������
2�

p
l

exp
�
�
z2

2l2

�
: (87)

Now the sum

XNp
a�1

e�iqza � C� iS (88)

with

C �
XNp
a�1

cos�qza	; S �
XNp
a�1

sin�qza	; q � !=c

(89)

is also the random quantity as well as

J � C2 � S2: (90)

The quantities C and S are the sums of large numbers of
random items. Therefore, one can expect that they dis-
tribute in accordance with the normal law:

dW
dC

�
1�������������

2�Np
p

�c
exp

�
�
�C� Np 
c	2

2Np��c	2

�
;

dW
dS

�
1�����������������

2�Nps2
q exp

�
�

S2

2Nps
2

�
;

(91)

where �c �
����������������
c2 � c2

p
and
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FIG. 4. A comparison of the analytical and numerical calculations for distributions (91) and (92). The curves s and c are given for
distributions dW=dS (91) and dW=dC (92), respectively, at ql � 1, Np � 102. The histograms represent results of numerical
calculations for distribution of S and C defined in (89) for 104 various sets of random numbers fza=lg.
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c � cos�qz	 �
Z �1

�1
w�z	 cos�qz	dz � e��ql	2=2;


s � sin�qz	 � 0; c2 � cos2�qz	 �
1

2
�1 � e�2�ql	2	;

s2 � sin2�qz	 �
1

2
�1 � e�2�ql	2	: (92)
−40 −30 −20 −10
0

0.05

0.1

dW/dS 

dW/dC 

ql=10

N
p
=1000 

FIG. 5. The same as in Fig. 4, but for ql � 10, Np � 10
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We had performed the numerical calculations using the
generator of random numbers from MATLAB. These cal-
culations confirm the above distributions (91). It can be
seen from Figs. 4 and 5, where the results of numerical
calculations of C and S at ql � 1; Np � 102 and ql �
10; Np � 103 are presented for 104 various sets of fzag.
0 10 20 30 40
S, C

3 (in this case the curves s and c practically coincide).
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FIG. 6. A comparison of the analytical and numerical calculations for distributions (96). The curve is given for dW=dJ in
accordance with Eq. (96) at ql � 10, Np � 103. The histogram represents the result of numerical calculations for distribution of J
defined in (82) and (90) for 104 various sets of random numbers fza=lg.
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Since

hCi � Np 
c; h�C� Np 
c	2i � Np�c2 � c2	;

hSi � 0; hS2i � Nps2;
(93)

we have

hJi � Np � Np�Np � 1	 
c2;

hZi � Np�Np � 1	 
c2 � N2
p exp���!l=c	2�:

(94)

Moreover, taking into account that in the considered case
�Np 
c	2 � Np, we find that [in contrast to (84) and (85)]

hJi � Np; jhZij � Np: (95)

The distribution of the random quantity J becomes very
simple at ql
 1:

dW
dJ

�
1

Np
e�J=Np : (96)

The results of numerical calculations, presented in Fig. 6,
confirm Eq. (96). It should be noted that distribution (96)
is rather wide,

�J �
�����������������������
hJ2i � hJi2

q
� Np; (97)

therefore, the averaging over many various sets of fzag is
necessary to obtain the stable result for hJi.
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VII. SUMMARY AND DISCUSSION

In the present paper we performed analysis of the
coherent and incoherent contributions to bremsstrahlung
in conditions (29) when the incoherent contribution domi-
nates but large impact parameters give an essential con-
tribution to the standard cross section. In this condition,
the known correction (51) to the standard cross section is
determined by the transverse distribution of particles in
the beams.

We take into account the correlations of particles in the
beam. The corresponding correction to the standard cross
section is given by Eq. (52) and it is determined by
correlations of particles in the transverse as well as in
longitudinal coordinates.

We showed that replacing the sum J (82) by the integral
(83) in condition (29) is incorrect. As a consequence, the
additional subtraction term, derived in Refs. [17,18], has
to be omitted. On the other hand, such an additional
subtraction should be taken into account for bremsstrah-
lung of ultrarelativistic electrons on oriented crystals.
This conclusion is quite natural. A usual bunch at col-
liders can be considered as a gaseous media with a smooth
particle distribution which has characteristic scales of the
order of bunch sizes. In particular, the average particle
density in such a bunch has the only scale in the longitu-
dinal direction—the length of the bunch l. Therefore, the
average field of the bunch has the spectral components in
the region of frequencies ! � qzc� c=lcoh & c=l and
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vanishes in the region of much higher frequencies con-
sidered here. On the contrary, in the crystal case there is
another scale related to the size of the particle localiza-
tion in the crystal structure.

Let us consider once again the experiments analyzed in
Ref. [17].

The HERA experiment [12].—In this case Ee �
27:5 GeV and l � 8:5 cm; therefore, the critical energy
(45) is Ec � 27 keV. For the observed photon energies
E� � 2–8 GeV, the parameter

!l
c

�
E�
Ec
> 104; (98)

and the coherent contribution is completely negligible.
Therefore, the new correction to the previous results on
the level of 10%, obtained in [17], is, in fact, absent.

The VEPP-4 experiment [1].—In this case Ee �
1:84 GeV and l � 3 cm; therefore, Ec � 0:34 keV. For
the observed photon energies E� * 1 MeV, the parameter

!l
c

�
E�
Ec
> 103; (99)

and the coherent contribution is completely negligible.
Through the paper we consider the MD effect in

bremsstrahlung. The MD effect for the e�e� pair pro-
duction (for example, in the reaction �e! e�e�e) can be
considered in the same manner—for details see Sec. 7.1
in Ref. [5].
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APPENDIX: AVERAGE PRODUCT OF PARTICLE
DENSITIES IN THE BEAM

In the classical limit (24) the average product of par-
ticle densities in the proton beam is given by the double
sum over protons in the beam

S�r; r0	 �
XNp
a;b�1

h%�r� ra	%�r0 � rb	i: (A1)

We split this expression into the sum with a � b and the
sum with a � b:

S�r; r0	 � S1�S2; S1 � %�r� r0	
X
a

h%�r� ra	i;

S2 �
X
a�b

h%�r� ra	%�r0 � rb	i: (A2)

To perform the averaging, we introduce the average pro-
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ton distribution function

fp�r	 � np�r	=Np (A3)

with the normalization

Z
fp�r	d3r � 1: (A4)

It gives

h%�r� ra	i �
Z
%�r� ra	fp�ra	d3ra � fp�r	: (A5)

Note that quantity h%�r� ra	i does not depend on index a
and, therefore,

S1 � %�r� r0	Npfp�r	 � %�r� r0	np�r	: (A6)

If we can neglect correlations between the particle
coordinates, then the average product h%�r� ra	%�r0 �
rb	i for a � b can be presented as the product of two
averaged factors:

h%�r� ra	%�r0 � rb	i � h%�r� ra	ih%�r0 � rb	i
for a � b:

(A7)

As a consequence,

S2 �
X
a�b

h%�r� ra	ih%�r0 � rb	i

� Np�Np � 1	fp�r	fp�r0	: (A8)

If we do not neglect the correlations between the
particle positions, we should introduce the correlation
function C�r; r0	 as follows:

S2 �
X
a�b

h%�r� ra	ih%�r0 � rb	i � C�r; r0	: (A9)

In that case we obtain instead of (A8) the expression

S2 � Np�Np � 1	fp�r	fp�r0	 � C�r; r0	: (A10)

As a result,

S�r; r0	 �Np�Np � 1	fp�r	fp�r0	 � %�r� r0	np�r	

� C�r; r0	: (A11)

Since in the right-hand side of this equation the first and
second items usually do not compensate each other, we
can use the approximation

Np�Np � 1	 � N2
p (A12)

and, therefore,

S�r; r0	 � np�r	np�r0	 � %�r� r0	np�r	 � C�r; r0	:

(A13)

After that, the beam structure factor (27) is expressed as
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S�q;q0	 �
X
a;b

he�i�qra�q0rb	i

� Fp�q	F�
p�q0	 � Fp�q? � q0

?	 � C�q;q0	;

(A14)

where we take into account that q� q0 � q? � q0
?.

Let us now consider the distribution of the protons over
longitudinal coordinates, described by exact n�z	 and
average np�z	 densities defined in (60)–(62). In this case
we can repeat the above derivation of Eq. (A13) for the
longitudinal distribution with the result

hn�z	n�z0	i � np�z	np�z0	 � %�z� z0	np�z	 � C�z; z0	;

(A15)

where C�z; z0	 is the longitudinal correlation function.
After that, the longitudinal beam structure factor is ex-
pressed as
Z
hn�z	n�z0	ie�i!�z�z

0	=cdzdz0 � jFp�!=c	j2 � C! � Np;

(A16)

where the longitudinal form factor Fp�qz	 is defined in
(62) and

C! �
Z
C�z; z0	e�i!�z�z

0	=cdzdz0: (A17)

If we introduce functions

Z �
X
a�b

e�i!�za�zb	=c; J �
X
a;b

e�i!�za�zb	=c � Z� Np;

(A18)

we can rewrite Eq. (A16) in the form

hJi � hZi � Np � jFp�!=c	j
2 � C! � Np: (A19)
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