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Observation of beam-size blowup due to half-integer resonance in a synchrotron
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Beam blowup due to a half-integer resonance was observed in the HIMAC synchrotron with a
nondestructive two-dimensional beam-profile monitor. As the betatron tune approached a half-integer,
the vertical beam size became larger by about 13%. The measured rms beam size is in good agreement
with a space-charge-included numerical simulation.
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number of numerical studies [5–7] were conducted to
study the half-integer resonance of a high-intensity syn-

fixed emittance gradually increases when the bare tune
approaches a half-integer from above, and rapidly from
I. INTRODUCTION

In a high-intensity synchrotron, one of the most serious
problems is beam loss, which causes the activation of
accelerator components. One of its major sources is beta-
tron resonance. However, the resonance behavior is very
complicated in the presence of a space-charge field, and
the detailed mechanism is not clearly understood.

One familiar model [1,2] shows that the betatron tune
of a particle is reduced by a space-charge field in propor-
tion to the beam intensity, and the oscillation resonates
with a periodic external field. This effect limits the maxi-
mum beam density. However, this model is not self-
consistent because it assumes that both the space-charge
field and the tune of a particle are constant. In an actual
beam, however, the tune of a particle is shifted when the
space-charge field is decreased by a beam-size blowup.
Therefore, when the amplitude of a particle oscillation is
increased due to a resonance, the tune of a particle
becomes higher and the resonance condition is changed.
This is called detuning effect, which should be taken into
account in a self-consistent model.

One method used to analyze the betatron resonance in a
high-intensity synchrotron is to employ the Vlasov-
Poisson equation. Another is to use an envelope equation,
which can be applied only to half-integer resonance. The
envelope equation for a uniform beam density was first
derived by Sacherer [3] to describe a half-integer reso-
nance in terms of the coherent quadrupole-mode oscil-
lation. The envelope equation was generalized to the rms
envelope equation [4] for a beam with a general distribu-
tion.With the rms envelope equation, the beam size, as far
as its rms value, can be analyzed self-consistently.

One of the remarkable results from the envelope equa-
tion is that the half-integer resonance occurs at coherent
quadrupole-mode tune, instead of incoherent tune. A
1098-4402=04=7(6)=064203(7)$22.50 
chrotron, and verified that the half-integer resonance
occurs at coherent quadrupole-mode tune and thus the
intensity limit of a beam under a half-integer resonance is
related to the coherent quadrupole-mode tune.

It has been experimentally observed that the half-
integer resonance occurs depending on the beam intensity
[8]. In 2000, an experimental study of the half-integer
resonance was conducted with the Heavy Ion Medical
Accelerator in Chiba (HIMAC) synchrotron [9] in the
National Institute of Radiological Sciences (NIRS). In
the experiment, the decrease in the beam intensity was
measured when the betatron tune was swept across a half-
integer value. As a result, it was found that the threshold
of the bare tune needed to avoid beam loss was shifted
higher when the initial beam intensity was high. Also,
it was found that the beam was lost gradually when a
half-integer resonance was crossed from above with de-
creasing tune, while rapidly from below. The gradual
beam-loss behavior can be explained by the fact that
the tune shift depends on the beam density. Since the
beam loss decreased the space-charge density, the de-
pressed tune was increased away from the half-integer
value when the bare tune was above the half-integer.
That effect compensated for the bare tune approaching
the resonance, and thus the beam intensity gradually
decreased.

The next subject is how far the bare tune should be
moved away from the half-integer. It is obvious that the
beam loss begins when the beam full size reaches the
aperture of a vacuum chamber. Therefore, it is essential to
know the matched beam size, which is defined by the
closed envelope trajectory in one revolution, for a given
bare tune, beam intensity, emittance, and periodic exter-
nal-field error. According to a numerical simulation [8],
the matched rms envelope and the beta function with a
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TABLE I. Parameters of the HIMAC synchrotron at injection energy.

Parameter Value

Circumference 2
R � 129:6 m
Lattice structure 12 FODO, superperiod is six
Beam energy Kinj � 6:0 MeV=u (� � 1:06; � � 0:113)
Revolution frequency 261.4 kHz
Aperture limit �123 mm (H), �32 mm (V) at quadrupole magnet
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below. Consequently, above a half-integer tune, the
threshold of the bare tune needed to avoid beam loss
directly depends on the aperture limit, as well as the
beam intensity and the strength of the harmonic compo-
nent of the external-field error.

In order to verify that the beta function gradually
depends on the bare tune above a half-integer value, we
measured the beam size in the HIMAC synchrotron near
a half-integer tune. The measured rms beam size as a
function of the bare tune agreed with both the matched
rms envelope with a fixed emittance and that of a multi-
particle simulation, which is described in Sec. III. We
compare the results to a similar experiment done by
Cousineau et al. [10], also in Sec. III.

II. EXPERIMENT

A. Synchrotron

The experiment was carried out in the HIMAC syn-
chrotron with a coasting C6� beam at an energy of
6 MeV=u. The main parameters of the synchrotron are
tabulated in Table I. The amplitude of betatron oscillation
of a particle is limited by the aperture of the vacuum
chambers at quadrupole magnets, which is �123 mm in
the horizontal direction and �32 mm in the vertical
direction.

The circulating-beam current was monitored with a dc
current transformer (DCCT). The betatron tune was mea-
sured with an electrostatic quadrupole pickup, or by the
rf-knockout method. The betatron tune of a low-intensity
beam (�0x; �0y, bare tunes) depends linearly on the cur-
rents of a vertical focusing magnet [horizontal defocusing
quadrupole (QD)] and a horizontal one [horizontal focus-
ing quadrupole (QF)]. The coefficients were measured to
be [8]���0x

��0y

�
�

�
�0:060� 0:001 �0:00766� 0:0001

�0:0098� 0:0005 �0:05966� 0:00001

�

�

�
�IQF
�IQD

�
; (1)

where the currents of the quadrupoles (IQF; IQD) were
measured in the unit of ampere. Those coefficients were
used to evaluate the bare tune, when the currents
were varied.

The synchrotron naturally has a harmonic component
of the gradient-field error, which resonates with betatron
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oscillation near a half-integer. The �y � n=2 half-integer
stop band width is given by

��y

2
�

������� 1

4


I
�y�s�K�s� exp�in�y�s�	ds

�������; (2)

where �y�s� is the betatron amplitude function, �y�s� the
betatron phase advance, K�s� the field gradient error,
defined by K � �@Bx=@y�=B0�, and B0� the magnetic
rigidity of a beam. In the HIMAC synchrotron, the stop
band width of �y � 3:5 half-integer resonance was mea-
sured by observing the beam intensity as a function of
tune [8]. There, a pair of additional quadrupoles (QDS) at
exactly opposite sides of the synchrotron was excited in
counterphase in order to determine the absolute phase of
the field-error harmonics. As a result, the contribution of
gradient-field error was estimated to be

��y

2
� j�7:1� 0:5� � i�3:1� 0:8�j � 10�3; (3)

where the longitudinal coordinate is taken so that
�y�s� � 0 at one of the QDS magnets.

B. Nondestructive beam-profile monitor

In our experiment, a gas-sheet beam-profile monitor
(SBPM) [11,12] was employed to measure the beam pro-
files. One of the advantages of the monitor is that a very
short-time measurement is possible. For example, a mea-
surement within a few �s is possible in our experimental
condition, where the number of circulating particles is
more than 108. Another advantage is that the transverse
space-charge field can be derived, because the monitor
can measure a two-dimensional profile in real spaces.

The SBPM is composed of a gas-sheet beam generator
and a multichannel plate (MCP) profile monitor. A pulse
of an O2 gas-sheet beam is introduced inside the vacuum
chamber to make a screen of the gas target (Fig. 1).
Because the gas target is very thin (1.3 mm), the emit-
tance blowup of a beam due to the interaction with it is
negligible. Secondary ions produced in the gas target are
collected to the MCP by a collection field. The effects of
the field on a circulating beam are compensated by two
correction electrodes on both ends of the monitor. Since
the gas-sheet plane is inclined by 45� with respect to the
circulating-beam axis, the image of the secondary ions on
the MCP shows a two-dimensional beam profile in trans-
verse real space.
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FIG. 1. (Color) Layout of the gas-sheet beam-profile monitor.
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The resolution of the monitor was measured with a
very small cooled beam. As the beam was cooled, the
measured beam profile became smaller under the low
intensity, and the final beam sizes were 0.76 mm (hori-
zontal) and 1.51 mm (vertical), respectively, in the full
width of half maximum (FWHM). The vertical resolu-
tion was worse than the horizontal one because it was
affected by the thickness of the gas target.

The sensitivity of the MCP was not uniform among the
locations. According to a measurement with an ultravio-
let (UV) light source, the sensitivity decreased near the
center of the MCP. In the beam-profile measurement, the
nonuniformity of the MCP was corrected with the sensi-
tivity map measured with UV light with 2 mm� 2 mm
step size.
C. Experiments

The time dependence of the two-dimensional beam
profile was measured with sweeping the vertical bare
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FIG. 2. Operation pattern of the vertical bar
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tune across 3.5 downward. The beam intensity was mea-
sured simultaneously with the DCCT. The bare tune was
controlled by changing the strength of the QD, while the
QF was kept constant. Figure 2 shows the excitation
pattern of the QD. The bare tune at the starting point
was measured by the rf-knockout method; a monochro-
matic rf field in the horizontal and vertical directions was
applied to a low-intensity beam and searched the frequen-
cies where the beam was to be lost. The tunes were found
to be �3:204; 3:575� with an accuracy of �0:002. The bare
tune at an arbitrary time was evaluated with the current
of QD and the coefficients in Eq. (1).

In order to measure the beam size precisely, it is
important to eliminate any coherent-mode betatron os-
cillations, which may cause a spread in the beam profile.
A flat region of the QD was put at the beginning (Fig. 2)
in order to stabilize any coherent oscillation arising from
an injection mismatch. A time of 60 ms was sufficient for
that purpose. It was verified with a fixed QD that the two-
dimensional beam profile remained constant after a few
vertical bare tune

3.575

time(sec)

3.16

3.24

3.497
3.500

80msec

e tune in resonance crossing experiments.
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times of 10 ms. It is expected that the change of tune in
the operation shown in Fig. 2 does not excite a betatron
mismatch because a tune variation of 0:01� 10�5 per
revolution is sufficiently adiabatic.

In the experiment, no harmonic field was excited arti-
ficially as a driving force of the half-integer resonance,
and the natural gradient-field error [Eq. (3)] was used.

Each beam profile was measured in different machine
cycles. The reproducibility of the vertical beam profile
was very good within a few percent.
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FIG. 4. (Color) Two-dimensional beam profile measured with
the SBPM, for bare tunes (a) 3.513, (b) 3.511, (c) 3.510, and
(d) 3.508, respectively.
D. Experimental results

Figure 3 shows that the beam intensity decreased as the
bare tune approached the half-integer value. The two-
dimensional beam profiles were measured at the points
plotted by open circles in Fig. 3. Each profile showed an
elliptic cross section in the transverse real space (Fig. 4).
Because of the multiturn beam injection in horizontal
space, the horizontal emittance was much larger than the
vertical one. In Fig. 5, the two-dimensional profiles are
projected onto the horizontal and vertical spaces, respec-
tively. Until the beam began to be lost, the horizontal
profile was kept constant with an rms size (~xx) of 17�
1 mm. On the other hand, the rms size of the vertical
profile (~yy) was around 4 mm in the beginning, and be-
came gradually larger as the bare tune approached the
half-integer value [Fig. 7(b)]. The expected tune shift is
0.0086 for quadrupole mode and 0.0057 for a particle of
an rms-equivalent uniform beam.

Similar to the gradual beam-loss characteristic, the
gradual dependence of the beam size on the bare tune
can be explained by the detuning effect. When the beam
size became larger, the depressed tune gets higher and is
no more on the half-integer stop band. This mechanism
stabilized the resonant blowup of the beam at a finite
beam size for a given bare tune.

In order to evaluate the increase of the vertical beam
size, the vertical beam profiles n�y� were fitted with over-
lapped Gaussians,
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FIG. 3. Beam-loss behavior when the resonance line
was crossed downward. The open circles show that the two-
dimensional beam profiles were measured at those points.
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where A1;2, �1;2, and y0 are free parameters. Typical
fitting functions are plotted in Fig. 6. The rms sizes
were calculated by

~yy �
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FIG. 5. (Color) Projections of the profiles on horizontal (a) and
vertical (b) plane. The solid (black), dashed (red), dotted
(green) and dash-dotted (blue) lines show the profile at �0y �
3:513, 3.511, 3.510 and 3.508, respectively. Those profiles are
normalized with their peak values.
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FIG. 6. Vertical beam profiles measured at �y � 3:513
(a), 3.511 (b), 3.510 (c), and 3.508 (d). Fitting function is the
superposition of two Gaussians.
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where the SBPM resolution of �0 � 0:7 mm is taken into
account. The rms beam sizes are plotted in Fig. 7. The
horizontal error bars show the systematic error related to
the accuracy in the initial tune measurement and the
uncertainty of the coefficient in Eq. (1). On the other
hand, the vertical error bars come from the fitting
error including the statistical error of the projected 1D
profile. The vertical error was 0.1 mm at the maximum
(�y � 3:5135).
III. DISCUSSION

Two types of numerical simulations were carried out to
be compared with the experimental result: (A) We calcu-
lated the matched rms beam size with the rms envelope
equation, and then (B) a multiparticle simulation was
0

0.5

1

1.5

2

3.5 3.51 3.52 3.53

in
te

n
si

ty
(1

09 p
p

p
)

(A)

3

3.5

4

4.5

5

3.5 3.51 3.52 3.53
vertical bare tune

ve
rt

ic
al

 r
m

s-
si

ze
(m

m
)

(B)

FIG. 7. (Color) Beam intensity (a) and vertical rms beam size
(b) when the resonance line was crossed downward. In (a), the
black and red solid lines show experimental and simulation
results, respectively. The black circles and the red line in
(b) show the results from an experiment and a multiparticle
simulation, respectively, and the dashed line shows the
matched solution of the envelope equation.
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made while taking into account any change in the particle
distribution.

In both simulations, the sheet beam approximation was
taken here, and one-dimensional motion in the vertical
space was assumed, because the horizontal emittance was
more than ten times larger compared with the vertical
one. A uniform distribution with an rms size of �17 mm
was assumed in the horizontal direction. Further, the
thin-lens approximation was used for the quadrupole
magnets, whose effective length was 192 mm.

Two pairs of virtual quadrupole magnets were addi-
tionally used in order to simulate the harmonic compo-
nent of the gradient-field error. The first set (QE1) of them
was located at the same position to the QDS, and the other
(QE2) was perpendicular to it in the envelope phase
advance. In each pair, the normalized field strength,
�yK, has the same magnitude and opposite sign, in order
not to change the betatron tune. The values of �yK for
QE1 and QE2 are given by 2
 times the real and the
imaginary part of the right-hand side in Eq. (3), respec-
tively. The modeled lattice structure is shown in Fig. 8. A
simulated beam was monitored at a point corresponding
to the position of the SBPM. Some details of the simula-
tions are described separately in the following subsec-
tions, but a complete description of the methods is given
in Ref. [8].
A. Matched rms envelope

The matched rms envelope was calculated as a function
of the vertical bare tune for 3:5< �0y < 3:52. The vertical
rms emittance was fixed at 2:5
 mmmrad, with which
the rms beam size at the SBPM agreed with the experi-
mental one at the initial value of the vertical bare
tune (3.52).
SBPM

QE1+

QE1-

QE2+

QE2-

QD

QF

FIG. 8. (Color) Modeled lattice structure used in the numerical
simulations.
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The result is plotted as the dashed line in Fig. 7(b).
Until a part of the beam begins to be lost, the rms
envelope agrees with the rms beam size measured in the
experiment. The rms envelope gradually increases as the
bare tune approaches the half-integer value.

A matched solution of the rms envelope equation exists
in a bare tune larger than the stop band (�0y > 3:507).
Thus, the beta function remains finite even when the
space-charge effect is taken into account, unless the
bare tune itself enters inside the stop band. This result
can be reasonably explained by the fact that the betatron
tune is reduced in proportion to the space-charge density.
If the depressed tune is near to a half-integer value, the
beam size becomes larger due to the resonance, and the
space-charge density decreases. That effect reduces the
tune depression, and pushes the depressed tune upward. If
the bare tune is above the half-integer, the depressed tune
possibly becomes no longer inside the stop band, and the
resonance is stabilized at a certain beam size. This is a
detuning effect, which is neglected in the theory of
betatron resonance in the single-particle model. If the
rms beam size is large enough, the space-charge density
is negligible, and the tune shift vanishes. Thus, the beta
function had a finite value for a bare tune outside the
stop band.

In a real synchrotron, however, the beam size is limited
by the aperture of the vacuum chamber, so that the beam
loss begins before the bare tune reaches the stop band. The
threshold of the bare tune, where a part of the beam is to
be lost, directly depends on the aperture limit and the
ratio of full beam size to the rms, as well as the beam
intensity and the strength of the harmonic component of
the external field. In our experiment, the full beam size
reached the chamber wall at �0y � 3:509, where the beam
began to be lost. The threshold of the beam loss should be
estimated with a multiparticle simulation, which is writ-
ten in the next subsection. Also, in the multiparticle
simulation, the emittance is free to grow during the
resonance crossing.

B. Multiparticle simulation

A multiparticle simulation was performed with 10 000
macroparticles. The particle density, and hence the space-
charge potential, was assumed to be symmetric with
respect to the central plane, and uniform in horizontal
and longitudinal directions. The space-charge force was
calculated from a 10 000 macroparticle distribution with
a particle-in-cell method. A parabolic distribution in
phase space was assumed as the initial state, and the
rms beam size and its derivative were taken from the
matched solution of the envelope equation. An aperture
limit was defined at �20 mm throughout the circumfer-
ence, assuming that there was a closed orbit distortion of
12 mm at the maximum, which effectively limited the
amplitude of a particle. Any macroparticle that came over
that limit was lost.
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The red lines in Figs. 7(a) and 7(b) also show the result
of a multiparticle simulation. The rms size agrees with the
experimental result as well as the matched rms envelope.
Also, the rms emittance was conserved until the beam
began to be lost. This means that the variation of the bare
tune occurred adiabatically along the equilibrium with
finite Twiss parameters. In a multiparticle simulation with
three-order faster tune variation, a quadrupole-mode os-
cillation was excited and the emittance grew. Such a
phenomenon is reported in Ref. [10].

The simulation also supports gradual beam loss in the
experiment. The rms emittance is conserved until the
beam begins to be lost. During the beam loss, the rms
beam size does not increase any more, as the experimen-
tal result shows.

Because the growth of the beam size has a gradual
dependence on the bare tune above a half-integer, the
threshold of the bare tune strongly depends on the avail-
able aperture, as well as the beam intensity and the
strength of the periodic external-field error.

IV. SUMMARY

The two-dimensional beam profiles were measured
while sweeping the vertical bare tune downward across
a half-integer value of 3.5. The vertical beam size became
larger as the tune approached the half-integer value
(Sec. II). Because of the asymmetric tunes, the horizontal
profile was not affected by the vertical resonance.

Until a part of the beam began to be lost, the vertical
rms beam size agreed with both the multiparticle simu-
lation and the matched rms envelope. In the simulation,
the rms emittance was conserved there. Those facts mean
that there was an equilibrium with finite Twiss parameters
in that region of tune, and that the variation of the bare
tune occurred adiabatically enough in the experiment.
The presence of the finite size of the matched envelope
can be explained by the detuning effect, as described
in Sec. III.

Because of the detuning effect, the bare tune can be
closer to a half-integer value by less than the tune shift of
a particle estimated without the perturbation from the
harmonic gradient error. The threshold of the bare tune,
used to avoid beam loss due to half-integer resonance,
depends on the aperture limit.
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