
PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS, VOLUME 7, 064201 (2004)
Influence of conducting plate boundary conditions on the transverse envelope equations
describing intense ion beam transport

Steven M. Lund*
Lawrence Livermore National Laboratory, University of California, Livermore, California 94550, USA

Boris Bukh
Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720, USA

(Received 22 July 2003; revised manuscript received 23 February 2004; published 4 June 2004)
*Electronic

064201-1
In typical diagnostic applications, intense ion beams are intercepted by a conducting plate associated
with devices used to measure beam phase-space projections. This results in the transverse space-charge
field near the plate being shorted out, rendering simple envelope models with constant space-charge
strength inaccurate. Here we develop corrected envelope models based on analytical calculations to
account for this effect on the space-charge term of the envelope equations, thereby removing a
systematic source of error in the equations and enabling more accurate comparisons with experiment.
For common intense beam parameters, we find that the envelope correction occurs primarily in the
envelope angles near the plate and that the effect can be large enough to degrade precision beam
matching in periodic transport lattices. Results are verified with 3D self-consistent particle-in-cell
simulations based on intense beam experiments associated with driver development for heavy-ion
fusion.
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the transmitted component of the beam distribution. related particle losses.
I. INTRODUCTION

Reduced models of intense ion beams often employ the
rms envelope equations to simply describe the self-con-
sistent evolution of the statistical beam edge in response
to applied focusing, space-charge, and thermal defocus-
ing forces [1–4]. Such envelope models are typically
solved with constant rms beam emittances (statistical
measures of beam phase-space area) and constant per-
veance (space-charge strength) to extrapolate experimen-
tal measurements and understand the evolution of the
beam envelope away from diagnostic stations. More com-
plete descriptions of beam evolution employ the Vlasov
model and must typically be solved by numerical simu-
lations that can be difficult and computationally inten-
sive. Therefore, developing easy to solve and reliable
reduced envelope descriptions of the beam carries prac-
tical value.

A typical slit-scanner intercepting beam diagnostic
used to measure transverse beam phase-space projections
is sketched in Fig. 1. In this diagnostic an elliptical cross-
section beam emerging from a transport channel free
drifts into a conducting plate with a thin slit that passes
a thin ribbon of particles (sized for adequate signal while
maintaining good resolution) that is then intercepted by a
second nearby slit plate. The second thin slit is parallel to
the first slit and is combined with a Faraday cup to collect
address: smlund@lbl.gov
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By differentially moving the plates in directions perpen-
dicular to the slit axes and recording signals collected,
phase-space projections of the beam distribution perpen-
dicular to the slit axis can be unfolded at the axial
location of the first plate [5,6]. Sequences of such diag-
nostics with orthogonal slits are often employed to
measure the evolution of transverse beam phase-space
projections from which beam envelope parameters are
calculated. Alternatively, optical beam imagers have
been employed to measure more complete phase-space
data of the beam distribution and envelope projections are
made [7]. Both classes of intercepting beam diagnostics
are characterized in an approximate fashion by a con-
ducting plate that intercepts the beam with near normal
incidence at the axial plane of the measurement. The plate
will alter the electrostatic self-field produced by the space
charge of an intense beam which will in turn alter the
dynamics of particles and the transverse beam envelope
near the plate relative to the usual situation where the
plate is not present when no measurements are made.
Developing a simple model to compensate for systematic
changes in the transverse envelope induced by such plates
is needed for more precise estimates of the envelope of
beam particles without the need for large simulations.
Elimination of systematic errors in envelope modeling
can improve the precision of envelope matching which
is important in limiting the generation of beam halo and

This paper is organized as follows. In Sec. II an elec-
trostatic beam envelope model is derived with form factor
corrections to the usual space-charge terms in the
2004 The American Physical Society 064201-1



Transmitted
Beam

Diagnostic
Plane Slit Plate

Slit Plate

Faraday Cup
Beam

Beam
Measured

Motion
Motion

of Plate
of Plate

FIG. 1. (Color) Cross section of slit-plate diagnostics for measurement of beam phase space.
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envelope equations. These form factors can be used to
calculate corrections from a variety of self-field effects
and are used in this study to evaluate the effect of an
intercepting conducting plate altering beam space-charge
fields. A simple plane in free-space model of the plate is
adopted and an image-charge solution for the beam self-
fields is used to derive explicit expressions for the form
factor corrections in a form convenient for analytical
modeling. Particle-in-cell (PIC) simulations of a more
realistic version of this geometry based on practical ex-
periments are described in Sec. III. These simulations are
used to check assumptions made in Secs. IV and V to
simplify envelope models. The space-charge model is
solved for a uniform-density, axisymmetric (@=@� � 0)
beam in Sec. IV. Analytical field solutions are employed
to calculate form factors and derive a heuristic corrected
envelope equation for an axisymmetric beam in the pres-
ence of the conducting plate. Model predictions are veri-
fied with PIC simulations. Insights gained in Sec. IV are
then applied to the more difficult case of a uniform-
density elliptical beam in Sec. V, where a more approxi-
mate corrected envelope equation is derived and again
verified with simulations.

II. ENVELOPE MODEL

Consider a long-pulse, unbunched beam with particles
of charge q and massmmoving with axial velocity�bc (c
is the speed of light in vacuuo) and relativistic factor
	b � 1=

���������������
1 � �2

b

q
. We take the transverse orbits x�s� and

y�s� of a beam particle to satisfy the paraxial (radial
energy variation of particles neglected) equations of mo-
tion [1]
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Here, s is the axial coordinate of a beam slice, primes
denote derivatives with respect to s, x�s� and y�s� are
the linear applied focusing functions of the lattice, and
the electrostatic potential � is related to the number
density of beam particles n by the 3D Poisson equation

r2� � �
q
�0
n (2)

subject to � � const on conducting boundaries. Here, �0

is the permittivity of free space, and SI units are em-
ployed except where otherwise noted. Specific forms of
the focusing functions x and y are given for various
classes of transport lattices in Ref. [2]. The terms
�	b�b�0x0=�	b�b� and �	b�b�0y0=�	b�b� in Eq. (1) are
associated with any acceleration of the beam slice which
changes �b and 	b. Such acceleration effects must be
calculated consistently with longitudinal particle dynam-
ics and can also result in changes in x and y depending
on the particular applied focusing system employed.

Denote a transverse statistical average over an axial
slice of beam particles by h	 	 	i?. rms measures of the
transverse edge radii of the beam envelope are

rx�s� � 2
������������
hx2i?

q
; ry�s� � 2

������������
hy2i?

q
: (3)

The statistical envelope radii rx and ry correspond to the
transverse edge radii of a uniform-density beam slice of
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elliptical transverse cross section with principal axes
aligned with the x- and y-coordinate axes and centered
at x � 0 � y (i.e., hxi? � 0 � hyi?). Differentiating the
equations for rx and ry and employing Eq. (1) yields the
envelope equations

r00x �
�	b�b�

0

�	b�b�
rx � xrx �

2Q
rx � ry

Fx �
"2
x

r3
x
� 0;

r00y �
�	b�b�0

�	b�b�
ry � yry �

2Q
rx � ry

Fy �
"2
y

r3
y
� 0:

(4)

Here,

Q �
q�

2��0mc2	3
b�

2
b

� const (5)

is the dimensionless perveance (� � q
R
dxdyn � const

is the line-charge density of the beam slice),

Fx � �
4��0

�

�
rx � ry
rx

��
x
@�
@x

�
?

;

Fy � �
4��0

�

�
rx � ry
ry

��
y
@�
@y

�
?

(6)

are form factors, and

"x � 4�hx2i?hx02i? � hxx0i2?
1=2;

"y � 4�hy2i?hy
02i? � hyy0i2?

1=2 (7)

are the rms edge emittances which correspond to
statistical measures of beam phase-space area in x-x0

and y-y0 [1].
For the special case of a 2D (@=@z � 0) transverse

beam in free space with elliptical symmetry charge

density [i.e., n � n��� with � �
�����������������������������
x2=r2

x � y2=r2
y

q
],

Sacherer [3] analyzed beam self-fields and showed
that Fx � Fy � 1. The Vlasov model self-consistent
Kapchinskij-Vladimirskij distribution satisfies this con-
dition for the special case of a uniform-density elliptical
beam with constant normalized emittances "nx �
	b�b"x � const and "ny � 	b�b"y � const [1,4]. The
envelope equations (4) are also often applied with Fx �
Fy � 1 to nonuniform density beams with evolving
normalized emittances in an rms equivalent beam sense
[1,3]. By calculating the form factors Fx and Fy as
functions of rx and ry (and possibly other s-varying quan-
tities) in specific geometries for a given (possibly self-
consistently evolving) beam charge distribution, the
envelope equations (4) can be compensated for effects
such as evolving space-charge nonuniformities and con-
ductor boundary conditions (often called image charges).
In this paper we address a specific form of image-charge
compensations associated with conducting plates inter-
cepting the beam. Formally, Eqs. (4) are consistent with
constant normalized emittances only when the electric
self-field components
064201-3
Ex � �
@�
@x

; Ey � �
@�
@y

(8)

used in calculating Fx and Fy are linear functions of x and
y, respectively, within the beam. However, Eqs. (4) are
sometimes solved with Fx and Fy calculated with non-
linear terms in Ex and Ey (i.e., Ex containing terms / x2,
xy, x3, . . .) and assumed constant normalized emittances.
The efficacy of such nonconsistent orderings must be
established for logical consistency if nonlinear field
terms are employed to claim more accurate estimates of
envelope evolutions with Eqs. ;(4) because emittance
evolutions consistent with self-field nonlinearities can
also influence the envelope evolution. Unfortunately,
such consistency checks have rarely been carried out in
the literature when nonlinear self-field terms are included
in form factor corrections to the envelope equations. In
Sec. IV we address this issue by making comparisons of
corrected moment envelope model results derived with
both linear and nonlinear self-field models to self-con-
sistent PIC simulations.

For purposes of deriving analytical models, we idealize
the geometry as a beam impinging on a perfectly con-
ducting plane at z � 0 in free space from z < 0 as
sketched in Fig. 2. In this situation the method of images
can be used to solve for � in the beam region with z < 0
as

��x� �
q

4��0

Z
beam

d3~xx
	
n�~xx�

jx� ~xxj
�

n�~xxI�
jx� ~xxIj



: (9)

Here x � xx̂x� yŷy � zẑz and xI � xx̂x� yŷy � zẑz are the
direct and image coordinates of a beam particle, and we
have dropped an arbitrary additive constant to � consis-
tent with taking a bias � � 0 on the plate. For transverse
effects the value of the plate bias is not important if the
energy of the beam is sufficiently high (specified more
concretely later). However, if longitudinal acceleration
effects induced by the plate are also evaluated, the choice
of plate bias can become important.

III. PARTICLE-IN-CELL SIMULATIONS

Self-consistent 3D electrostatic PIC simulations are
carried out to validate approximations and model as-
sumptions that are made in subsequent sections to derive
approximate form factors and enable direct solution of
the envelope model. The simulations allow analysis of
model deviations resulting from more realistic geometry,
self-field nonlinearities, emittance growth, rapid varia-
tions in the beam envelope near the plate, energy devia-
tions (acceleration) due to the beam seeing its image in
the plate, and effects resulting from deviations in the
beam transverse cross sections from simple uniform-
density elliptical. In this section we describe the general
features of the simulations and numerical parameters.
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Simulation results are given in Secs. IV and V where
comparisons to reduced analytical models are made.

Simulation parameters are based on typical diagnostic
measurements in the High Current Experiment (HCX) for
heavy-ion fusion (HIF) [5,6,8], where a coasting (�b �
const) intense K� ion beam with particle kinetic energy
Eb � �	b � 1�mc2 � 1:0–1:7 MeV is focused in a FODO
quadrupole lattice [2] with period Lp � 435:2 mm. At
Eb � 1:0 MeV, injected beam currents are in the range
I ’ �=

���������������
2Eb=m

p
� 180–250 mA (corresponding to Q�

7–10 � 10�4) with beam emittances "x � "y �
50–100 mm mrad. Electric quadrupole focusing strengths
are tuned for an undepressed single-particle phase ad-
vance of"0 � 40�–90� per lattice period. For quadrupole
focusing strength with"0 � 80�, a typical matched beam
envelope in the HCX periodic transport channel has
average envelope radius �1=Lp�

RLp
0 ds rx�s� � 10 mm

and maximum envelope angles are max�jr0xj � 50 mrad.
Free drifts (x � y � 0) from the exit of quadrupole
focusing elements to conducting plates of slit-scanner
diagnostic stations are �60–120 mm.

We employ the 3D WARP code developed for simulation
of intense beams in HIF applications [9]. This code has an
extensive hierarchy of models allowing both checks of
numerical methods and idealizations made. A multigrid
field solver is employed that allows boundaries of detailed
conductor structures to be placed at subgrid resolution on
the regular parallelepiped grid of the code. To represent
HCX-like beams, we carry out steady-state, midpulse
simulations of a beam injected into a focus-free drift
x

y

ry
rx

s

Transverse

Beam

Beam Slice

FIG. 2. (Color) Geometry of an unbunched beam inc

064201-4
section. In all simulations presented we take Eb �
1:0 MeV, singly ionized ions with mass m � 39:1 amu,
and the injected beam current is varied to attain a speci-
fied perveance Q. The drift is 70 mm long axially. To
reduce the idealization of the geometry taken in Fig. 2, a
grounded (� � 0) cylindrical conducting pipe with ra-
dius rp � 100 mm is added. Such pipes or other structures
that reduce longitudinal self-field components of the
beam are often present in experiments. The beam is
injected from the left side of the grid (s � 0) with
@�=@z � 0 to model a beam entering from a long focus-
ing channel. On the right side of the grid, the conducting
plate at the diagnostic plane (s � sp � 70 mm) is held at
� � 0. The injected beam is ‘‘semi-Gaussian’’ with a
uniform distribution of particle coordinates x and y
within an elliptical beam envelope with principal radii
rx and ry along the transverse x and y axes. The injected
semi-Gaussian beam also has particle angles x0 and y0

with coherent components r0x�x=rx� and r0y�y=ry� and in-
coherent spatially uniform, Gaussian distributed spreads
in angles with variances set such that the specified emit-
tances "x and "y are injected. This injection condition is a
reasonable approximation to a relaxed, strongly space-
charge dominated beam emerging from a long transport
channel where the density is expected to be nearly uni-
form and the beam edge sharp [10]. The injected incoher-
ent longitudinal velocity spread of the beam is Gaussian
distributed with variance set such that the spread in
longitudinal particle velocities about the mean velocity
set by the specified particle kinetic energy is equal to half
y

x

z

s = sp

Beam Slice
Axial Coordinate of

Plate
Conducting

ident on a conducting plane from the left (z < 0).

064201-4



PRST-AB 7 STEVEN M. LUND AND BORIS BUKH 064201 (2004)
the transverse spread in incoherent particle velocities (i.e.,
the longitudinal temperature in the beam frame is
half the transverse temperature). No coherent spread in
axial velocity is taken across the transverse profile of the
injected beam. For the strong space-charge parameters
considered in this study, we saw little difference from the
injection condition taken compared to simulations done
with a relaxed matched beam in a long periodic (or
continuous) focusing channel that terminates with a drift
near the diagnostic plate. A beam emerging from a long
focusing channel may have a small coherent spread
in axial velocity across the profile of the beam.
Characteristics of this spread will depend on the beam
injector and the details of the transport.

Numerical parameters of the simulations are set for
high resolution to resolve nonlinear space-charge fields
and a sharp beam edge. Spatial grids are uniform
with typical transverse grid increments dx � dy�
0:2–0:4 mm and axial grid increment dz� 0:2–0:8 mm,
corresponding to �25–50 grids across the transverse
radius of the beam and �80–350 grids along the longi-
tudinal axis of the beam. An axisymmetric r-z field
solver is used in place of the full three-dimensional field
solver in cases where an axisymmetric beam is injected
with rx�0� � ry�0� and r0x�0� � r0y�0�, and 4-fold trans-
verse symmetry is used for elliptical beam injections
with rx�0� � ry�0� and/or r0x�0� � r0y�0�. Exploiting these
symmetries allows more rapid simulations and improved
statistics. The same three-dimensional particle mover is
used for both axisymmetric and nonaxisymmetric injec-
tions. Particles are advanced in time with periodic field
solves (subcycled relative to particle advances to reduce
simulation time, with 5–20 advances per field solve)
from injection until exiting the grid at the diagnostic
plate where the particle disappears in the simulation.
Particles are typically injected for two transit times
through the axial grid, allowing transients to propagate
off the grid to attain a steady midpulse solution. More
than 7 � 106 macroparticles with smoothed interactions
are used to represent the beam filling the grid on the
steady-state solution to reduce statistical noise in the
calculation of self-fields and better represent the ideal
Vlasov evolution. All simulation results are converged
to the accuracy presented with respect to time step,
gridding, and particle statistics.

IV. CORRECTED ENVELOPE EQUATIONS FOR
AXISYMMETRIC BEAMS

Before proceeding to analyze the more difficult case of
an elliptical beam in Sec. V, we first develop modeling
techniques for an axisymmetric (@=@� � 0) beam with
rx�s� � ry�s� � R�s� [11].

A. Self-field solution

We further idealize the beam self-field solution given
by Eq. (9) by assuming that the beam is normally incident
064201-5
with uniform density and a constant, round edge radius
(rx � ry � R � const). Then the beam density is given by

n�r; z� �
�

�qR2 ��R� r����z�; (10)

where ��x� is the Heaviside step function [��x� � 0 for
x < 0 and ��x� � 1 for x > 0]. In �r; �; z� cylindrical
coordinates with x � r cos� and y � r sin�, 1=jx� ~xxj
can be expanded as [12]

1

jx� ~xxj
�

X1
%��1

Z 1

0
dkei%���~���J%�kr�J%�k~rr�ek�z>�z<�;

where z> and z< denote the greater and lesser of z and ~zz,
and J%�x� is the %th-order ordinary Bessel function. Using
this expansion and Eq. (10) in Eq. (9) gives for z < 0

��r; z� �
�
��0

Z 1

0

dw

w2 �1 � e�wjzj=R�J0

�
w
r
R

�
J1�w�; (11)

and the corresponding radial and axial electric field
components Er � �@�=@r and Ez � �@�=@z are

Er�r; z� �
�

��0R

Z 1

0

dw
w

�1 � e�wjzj=R�J1

�
w
r
R

�
J1�w�;

Ez�r; z� �
�

��0R

Z 1

0

dw
w
e�wjzj=RJ0

�
w
r
R

�
J1�w�:

(12)

These field components are plotted in Fig. 3. Note that the
radial field remains nearly linear within the beam (r < R)
until z is a fraction of a beam radius from the plate. The
axial field increases with decreasing jzj because the
negative image beam becomes closer as the plate is
approached.

Equations (12) can be partially checked by calculating
the radial field far from the plate and the longitudinal
field on axis (r � 0):

lim
jzj!1

Er�r; z� �
�

��0R

Z 1

0

dw
w
J1

�
w
r
R

�
J1�w�

�
�

2��0R

(
r
R ; 0 � r

R � 1;
1
r=R ; 1 � r

R ;

Ez�r � 0; z� �
�

��0R

Z 1

0

dw
w
e�wjzj=RJ1�w�

�
�

��0R2 �
�����������������
R2 � z2

p
� jzj�:

(13)

The radial field limit is the usual expression for a uni-
form-density beam of radius R. The expression for the
on-axis field Ez�r � 0; z� shows that ��r � 0; z� logarith-
mically diverges in jzj with

��r � 0; z� �
�

2��0R
2

�
jzj

�����������������
R2 � z2

p
� z2

� R2 ln

	
jzj �

�����������������
R2 � z2

p
R


�
: (14)
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FIG. 4. Radial potential drop of a uniform density axisym-
metric beam with radius R � const near a conducting plate.
The potential drop !��z� � ��r � 0; z� ���r � R; z� from
beam center (r � 0) to edge (r � R) is normalized by
�=���0� and plotted versus jzj=R.

FIG. 3. Radial and axial electric self-field components
[Eq. (12)] of a uniform density axisymmetric beam with radius
R � const near a conducting plate. In (a) the scaled radial
electric field Er=��=���0R� is plotted versus r=R in fixed z
planes. In (b) the scaled axial electric field Ez=��=���0R� is
plotted versus jzj=R in fixed r cylinders.
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This divergence is related to the 2D nature of the problem
and shows that this model is inadequate for direct use in
estimates of axial acceleration induced by the plate.
Regularization of this divergence to model image induced
self-field accelerations can be carried out by adding a
grounded, cylindrical pipe to cut off the self-field inter-
action range (as would be present in the laboratory) or by
using an axially bunched beam model. Even though � is
diverging in jzj in this simple model, the formula for Er
can still be applied in Eqs. (1) and (4) when the beam
energy is held fixed because the transverse dynamics do
not depend on the absolute scale of �. Because little
fractional change in particle energy will occur in a
high-energy beam when the beam is near the plate we
will neglect such energy changes in our model induced by
Ez. We analyze only transverse beam effects using the
formula for Er and take �b � const and 	b � const near
the plate. A rough estimate for the validity of this ap-
proximation can be obtained by requiring that the axial
beam energy be much greater than the on-axis potential
energy drop experienced by beam particles impinging on
the plate from one beam radius in axial distance from the
064201-6
plate. Using Eq. (14) to estimate the potential drop, we
obtain

E b � q��r � 0; R� �
q�

2��0R2 (15)

as a criteria for the validity of neglecting acceleration
effects induced by the plate on the transverse envelope.

This simple self-field model can also be used to esti-
mate the scaling in jzj of the transverse potential drop
from the radial center (r � 0) to the edge (r � R) of the
beam. Equation (11) gives

!��z� � ��r � 0; z� ���r � R; z�

�
�
��0

Z 1

0

dw

w2 �1 � e�wjzj=R��1 � J0�w�J1�w�:

(16)

Equation (16) provides a reliable estimate for !� in
physical applications even though � diverges in jzj be-
cause the potential drop is a relative transverse measure.
The potential drop is plotted in Fig. 4. Observe that !��z�
rapidly decreases from the limiting value limjzj!1!� �
�=�4��0� to zero near the plate. This shorting out of the
transverse ion beam potential well suggests that any
(ideally only small numbers of) electrons trapped in the
ion distribution will likely be lost near the diagnostic
plane because the electrons are much more mobile than
ions and will be radially lost within short axial propaga-
tion distances in this region. Biases can also be applied to
radial structures far outside of the beam to prevent such
electrons from producing cascade interactions back with
the beam. Quantifying such effects will become impor-
tant in diagnostics to measure trapped electron compo-
nents—a topic not directly addressed in this paper, but of
increasing interest in high-intensity beam transport
[13,14].
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B. Corrected envelope equation and results

We apply the self-field solution above to motivate a
simple, corrected envelope equation for an axisymmetric
beam with a normally incident centroid impinging on a
conducting plate from z < 0. We take x�s� � y�s� �
�s�, "x � "y � ", and rx�s� � ry�s� � R�s�. The form
factors (6) are calculated from Eq. (12) as

Fx � Fy � �
4��0

�

�
r
@�
@r

�
?

� Fa

�
jzj
R

�
; (17)

where

Fa�,� � 8
Z 1

0

dw

w2 �1 � e�w, �J1�w�J2�w�: (18)

The integral in Eq. (18) can be equivalently calculated as

Fa�,� � 2,2

	
2F1

�
�

1

2
;
1

2
; 2;�

4

,2

�
�1




� 2,2

�
2

�

Z 1

0
dt

�����������
1 � t
t

r ��������������
1 �

4t

,2

s
� 1

�
: (19)

Here, 2F1�a; b; c; x� is the hypergeometric function with
integral representation

2F1�a;b;c;x� �
#�c�

#�b�#�c�b�

Z 1

0
dt tb�1�1�t�c�b�1�1�tx��a;

and #�x� �
R
1
0 dt t

x�1e�t is the gamma function. We heu-
ristically apply this form factor to a beam slice with
evolving radius rx�s� � ry�s� � R�s� that is at an axial
distance jzj � js� spj from the plate to obtain the cor-
rected axisymmetric beam envelope equation

R00 � R�
Q
R
Fa

�
js� spj

R

�
�
"2

R3 � 0: (20)
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This equation is not self-consistent because the form
factor correction is derived for R � const but is applied
for evolving R�s�. However, the error involved in this
approximation is expected to be small unless the envelope
radius changes rapidly near the plate.

Rather than directly employing Eqs. (18) or (19) to
calculate the nonlinear form factor Fa, simpler approxi-
mate analytical expressions for Fa can be calculated as
follows. In the beam (i.e., r � R and z � 0), the Poisson
equation (2) can be expressed as�

1

r
@
@r
r
@
@r

�
@2

@z2

�
��r; z� � �

�

��0R
2 : (21)

The solution to this equation can be expanded in a power
series in r2 as

��r; z� �
X1
%�0

f2%�z�r
2%; (22)

where the f2%�z� are z-varying expansion coefficients.
Identifying ��r � 0; z� � f0�z� and requiring that
Eq. (21) is satisfied for all powers of r shows that

f0�z� � ��r � 0; z�;

f2%�2�z� � �
�

4��0R
2 /0;% �

1

�2%� 2�2
@2

@z2 f2%�z�;
(23)

where /0;% is the Kronecker delta function (/0;% � 1
when 0 � % and /0;% � 0 when 0 � %). Using the on-
axis field Ez�r � 0; z� � �@��r � 0; z�=@z in Eq. (13)
and iterating the recursion between terms in Eq. (23),
we obtain a series expansion for Er�r; z� � �@��r; z�=@z
that is valid within the beam:
Er�r; z� �
�

2��0R2

�
jzj�����������������

R2 � z2
p r�

X1
%�2;3;...

��1�%%

22%�2�%!�2
@2%�2

@z2%�2

z�����������������
R2 � z2

p r2%�1

�
: (24)

The first term of this expansion corresponds to the linear self-field component / r, and the % � 2 term corresponds to a
cubic nonlinear self-field component / r3. Using the linear and then the linear plus cubic terms of Eq. (24) in Eq. (17)
gives

Fa�,� ’

8<
:

,���������
1�,2

p ; linear term;

,���������
1�,2

p �1 � 1
4

1
1�,2 �1 � ,2

1�,2�; linear plus cubic terms:
(25)
The envelope equation (20) with the linear term form
factor in Eq. (25) is consistent with taking emittance " �
const because the self-field is taken to be linear in this
approximation.

The full nonlinear [Eq. (18) or Eq. (19)] and approxi-
mate [Eq. (25)] form factors are plotted in Fig. 5 versus
axial distance from the plate in beam radii , � jzj=R �
js� spj=R. For large , note that Fa ’ 1 and we obtain the
usual envelope equations [1], whereas Fa rapidly de-
creases to zero at , � 0 when , is decreased to values
corresponding to axial distances within the order of a
beam radius from the plate. This decrease stems from the
radial self-field of the beam being shorted out near the
conducting plate, resulting in a decrease in the strength of
the perveance term in the envelope equation.

A numerical solution to the corrected envelope equa-
tion (20) with " � const is plotted in Fig. 6 together with
the uncorrected solution with Fa � 1. Parameters chosen
represent a typical diagnostic measurement in the HCX
064201-7
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and with linear and linear plus cubic nonlinear approximations
[red and green, Eq. (25)] plotted versus , � js� spj=R.
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experiment described in Sec. III and the corrected solu-
tion employs the full nonlinear form factor given by
Eqs. (18) or (19). In Table I, values of the envelope radius
R and angle R0 at the plate (s � sp) are contrasted for
constant emittance numerical solutions to Eq. (20) for a
range of beam parameters and initial conditions.
Parameters chosen in the first three groups of rows in
Table I include the solution shown in Fig. 6 and represent
possible ranges of beam parameters for the HCX experi-
ment and other low-energy quadrupole transport lines for
heavy-ion fusion. The last row is a more extreme case
representing a possible low-energy solenoidal transport
lattice under consideration for heavy-ion fusion applica-
TABLE I. Initial and final envelope radii and angles for an axisymmetric beam free drifting from s � 0 into a conducting plate
at s � sp � 70 mm. Envelope solutions are produced by numerical integration of Eq. (20) with various form factor models for Fa
and self-consistent 3D PIC simulations are produced with the WARP code. Final envelope radii and angles are tabulated for
uncorrected envelope model with Fa � 1, linear corrected envelope model Fa [Eq. (25)], full nonlinear envelope model Fa [Eq. (18)
or (19)], and PIC simulations.

Beam parameters Initial conditions Final conditions (R in mm, R0 in mrad)
Perveance, Q Emittance, " R�0� R0�0� Fa � 1 Fa linear Fa nonlinear 3D PIC

(mm mrad) (mm) (mrad) R�sp� R0�sp� R�sp� R0�sp� R�sp� R0�sp� R�sp� R0�sp�

8 � 10�4 50 10 0 10.20 5.73 10.19 4.99 10.19 5.07 10.2 5.0
8 � 10�4 50 10 20 11.59 25.35 11.58 24.63 11.58 24.70 11.6 24.6
8 � 10�4 50 10 40 12.98 45.03 12.98 44.32 12.98 44.39 13.0 44.3
8 � 10�4 50 10 �20 8.81 �13:80 8.80 �14:56 8.80 �14:49 8.8 �14:5
8 � 10�4 50 10 �40 7.42 �33:21 7.42 �34:00 7.42 �33:92 7.4 �33:9

8 � 10�4 100 10 0 10.22 6.24 10.21 5.50 10.21 5.58 10.2 5.5
8 � 10�4 50 15 0 15.13 3.77 15.12 3.06 15.12 3.13 15.1 3.1

5 � 10�4 50 10 0 10.13 3.66 10.12 3.19 10.12 3.24 10.1 3.2
10 � 10�4 50 10 0 10.25 7.11 10.23 6.18 10.24 6.28 10.2 6.2
15 � 10�4 50 10 0 10.37 10.54 10.36 9.16 10.36 9.30 10.3 9.2

100 � 10�4 125 25 0 25.98 27.71 25.82 19.56 25.84 20.46 25.8 19.7

064201-8 064201-8
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tions [15]. Final values are tabulated for form factors
Fa � 1 (uncorrected), Fa � js� spj=

�������������������������������
R2 � �s� sp�2

q
[linear field correction, Eq. (25)], and Fa�js� spj=R�
[nonlinear correction, Eq. (18) or Eq. (19)]. Negligible
differences are observed between envelope solutions pro-
duced with the nonlinear form factor and the approximate
form factor based on linear plus cubic field terms in
Eq. (25). For most applications, deviations between re-
sults produced by the linear-field approximation and non-
linear form factors are not significant. The most
significant correction for parameters explored is in the
envelope angle at the plate R0�sp� with �1 mrad changes
characteristic of perveance ranges possible in HCX-like
experiments. In all cases corrections to the envelope
coordinate at the plate R�sp� are very small and not likely
resolvable. The values of the final corrected envelope
coordinate and angle at the plate depend on the drift
length to the plate, the beam emittance ", and perveance
Q. These dependencies cannot be scaled away. However,
we find that deviations between the corrected and uncor-
rected envelope angles at the plate increase most strongly
with increasing values of Q.

Because the envelope angle error induced by the plate
is systematic, it can degrade precision beam matching.
The angle error in R0 can be viewed as a mismatch seed
that evolves into mismatch excursions in R in subsequent
or prior transport. For example, in the continuous focus-
ing approximation [2], it can be shown that a small-
amplitude envelope perturbation /R � R� Rm about a
matched beam solution with R � Rm � const with finite
initial angle error /R0�0� � 0 and zero initial coordinate
error /R�0� � 0 will lead to maximum envelope pertur-
bation excursions max�/R expressible in two equivalent
forms as

max�/R
Rm

�
j/R0�0�j����

Q
p

1

2�1 � 4"2
0"

2=�Q2L2
p�

1=4

�
j/R0�0�j����

Q
p

�����������������������������
1 � �"="0�

2

2 � 2�"="0�
2

s
: (26)

Here, in the first form, "0 is the phase advance of oscil-
lations of a single particle in the applied focusing over
one lattice period Lp (in continuous focusing all that
matters is the rate of phase accumulation "0=Lp, but the
expression is written in this form to allow extrapolation to
periodic focusing lattices). In the second form, "="0 is
the ratio of single-particle phase advances in the presence
(") and absence ("0) of the space charge of a uniform-
density matched beam. The depressed phase advance " is
calculated from the matched beam in the periodic lattice.
The space-charge depression "="0 is a function of
�"0"=�QLp�

2 and satisfies limQ!0"="0 � 1 at zero
beam intensity and "="0 � 0 at the space-charge limit.
Results in Ref. [2] establish that Eq. (26) is accurate for
the breathing envelope mode in periodic focusing chan-
064201-9
nels with "0 < 90�. Stability requirements dictate that
this restriction in "0 will be well satisfied for most
intense beam transport channels [16]. Equation (26)
is consistent with /R0 � 1 mrad errors leading to a
maximum (" � 0, maximum beam intensity) fractional
mismatch amplitude of max�/R=Rm � 2:5% for Q �
8 � 10�4.

Self-consistent WARP PIC simulations were also carried
out for beam envelope model solutions presented in Table I
and results are also summarized in Table I. General
features of the simulations are presented in Sec. III.
Simulation parameters in addition to the varied beam
parameters listed in the table are given there. The enve-
lope coordinates and angles presented are statistically
calculated from the simulated particle distribution with
R � 21=2hx2 � y2i1=2? and R0 � 21=2hxx0 � yy0i?=hx

2 �
y2i1=2? . Potential contours of a simulation are shown in
Fig. 7. The contours clearly show the strong influence of
the plate on the beam self-field. The simulations agree
well with the envelope model results for the small angle
corrections and provide strong support for the accuracy of
the reduced envelope models derived. Indeed, the level of
agreement is surprising for the cases with larger initial
envelope angles R0�0� because the envelope model form
factors are derived taking R � const and therefore do not
consistently take into account changes in the envelope
radius near the plate. The transverse beam emittances "x
064201-9
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and "y were statistically calculated from the simulated
particle distribution using Eq. (7) and typically had
�1%–2% variations (both increases and decreases) along
the axial length of the simulations. These variations were
dominated by statistical noise and other numerical errors.
The magnitudes of the emittance variations related to
nonlinear self-fields of the beam are both too small and
too near the plate to induce significant changes in the
beam envelope. Little change in simulation results is
obtained when the pipe radius of the grounded cylindrical
pipe is increased or decreased by factors of 2 and more.
Finally, it is interesting to note from Table I that corrected
envelope model results derived with linear self-field form
factor corrections for Fa [Eq. (25)] agree better with the
simulations than envelope model results obtained with
the form factor Fa derived from the full nonlinear self-
field model [Eqs. (17) and (19)]. This provides an explicit
illustration of the general point made in Sec. II that
inconsistent nonlinear corrections to the form factors
Fx and Fy without the correct emittance evolutions in
the nonlinear fields need not result in improved modeling.

V. CORRECTED ENVELOPE EQUATIONS FOR
ELLIPTICAL BEAMS

Calculation of the form factors in Eq. (6) to obtain
corrected envelope equations for beams of elliptical cross
section (rx � ry) is considerably more complicated than
for the axisymmetric beams analyzed in Sec. IV.
However, using the axisymmetric beam results as a guide
to motivate model approximations, we develop a simple
model that recovers most of the effect of the plates on
elliptical beams.

A. Self-field solution

To model the beam self-fields, we assume a uniform-
density, normally incident beam of elliptical cross section
with edge radii rx � const and ry � const along the x and
y axes. In this case the beam density is

n�x; y; z� �
�

�qrxry
�

�
1 �

x2

r2
x
�
y2

r2
y

�
���z�: (27)

The 3D Poisson equation (2) is approximated within the
beam (i.e., x2=r2

x � y2=r2
y � 1 and z � 0) as

�
@2

@x2 �
@2

@y2

�
� ’ �

�
�rxry�0

�
@Ez
@z

�r � 0; z�

� �
�e

�rxry�0
; (28)

where we calculate the on-axis electric field Ez�r �
0; z� � �@��r � 0; z�=@z exactly from Eqs. (9) and (27)
and obtain
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Ez�r � 0; z� �
�
��0

�Z �

��

d�
2�

������������������������������������������������
r2
xcos2�� r2

ysin
2�� z2

q
r2
xcos2�� r2

ysin
2�

�
jzj
rxry

�
: (29)

Equation (29) is derived by differentiating Eq. (9) with
respect to z, evaluating the result at r � 0, and
then taking ~xx � rx ~�� cos~��, ~yy � ry ~�� sin~��, and d3~xx �
rxryd~�� ~��d~��d~zz and carrying out integrals with respect
to ~zz and ~��. As a partial check of Eq. (29), observe that
for a round beam with rx � ry � R that this expression
reduces to the on-axis field of the axisymmetric beam
previously calculated in Eq. (13). Using Eq. (29), we
calculate the corrected line-charge density �e in
Eq. (28) in several equivalent forms as

�e � �� �rxry�0
@Ez
@z

�r � 0; z�

�
2�
�

ryjzj

rx
���������������
r2
x � z2

p &

�
r2
x � r2

y

r2
x

�������r
2
x � r2

y

r2
x � z2

�

�
2�
�

rxjzj

ry
���������������
r2
y � z2

q &

�
�
r2
x � r2

y

r2
y

��������
r2
x � r2

y

r2
y � z2

�
: (30)

Here, &�a j b� is the complete elliptic integral of
the third kind defined by &�a j b� �

R�=2
0 d��1 �

asin2���1�1 � bsin2���1=2.
Because the corrected density �e=��rxry� in Eq. (30) is

independent of x and y, the solution to Eq. (28) consistent
with a regular external solution at large radius r can be
obtained by rescaling the usual transverse 2D field solu-
tion of a uniform-density elliptical beam [2,17] with
density �=��rxry� by replacing �! �e in the usual ex-
pressions. This gives within the beam

�
@�
@x

�
�e
��0

1

rx � ry

x
rx
;

�
@�
@y

�
�e
��0

1

rx � ry

y
ry
:

(31)

B. Corrected envelope equations and results

Using the approximate field solutions in Eq. (31), we
calculate the form factors in Eq. (6) for the elliptical
beam as

Fx � Fy � Fe �
�e
�
: (32)

Then using Eq. (30), Fe can be expressed in symmeter-
ized form as

Fe�,; �� �
2

�
,

�
��������������
�� ,2

p &

�
1 �

1

�2

��������� 1=�

�� ,2

�
: (33)

Here, � � rx=ry is the ellipticity of the envelope and , �
jzj= ���������rxry

p is the axial distance to the plate in average
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transverse beam radii. These form factors can be checked
in several limits. First, using &�a j 0� � �=�2

������������
1 � a

p
�,

limjzj!1Fe � 1 follows, and far from the plate the usual
form factors for a 2D elliptical beam in free space are
obtained. Next, using &�0 j 0� � �=2, in the limit of a
round beam with rx � ry � R, Fe � jzj=

�����������������
R2 � z2

p
con-

sistent with the linear-field axisymmetric beam result
given in Eq. (25) with , � jzj=R. The form factor
Fe�,; �� is plotted in Fig. 8 versus , �
jzj= ������������������������rx<=m:mi>ry

p
� js� spj=

���������rxry
p for values of � �

rx=ry. Because Fe is invariant under the replacement �!
1=�, only values of � � 1 are shown. Qualitatively, the
results are similar to the axisymmetric beam results
presented in Sec. IV B and there is little variation of Fe
in � for all but the most extreme values of ellipticity � �
rx=ry � 1.
TABLE II. Initial and final envelope radii and angles for axisym
s � 0 into a conducting plate at s � sp � 70 mm. Final envelope
Fe � 1, linear corrected Fe, and 3D self-consistent WARP PIC simu
perveance Q.

Beam parameters: Q � 10 � 10
Initial conditions Final conditio

rx�0� � ry�0� r0x�0� � �r0y�0� Fe � 1, uncorrected
(mm) (mrad) rx�sp� ry�sp� r0x�sp� r0y�sp� r

10 0 10.25 10.25 7.11 7.11 1
10 20 11.65 8.85 27.08 �12:84 1
10 40 13.05 7.45 47.06 �32:78 1

Beam parameters: Q � 15 � 10
Initial conditions Final conditio

rx�0� � ry�0� r0x�0� � �r0y�0� Fe � 1, uncorrected
(mm) (mrad) rx�sp� ry�sp� r0x�sp� r0y�sp� r

10 0 10.37 10.37 10.54 10.54 1
10 20 11.77 8.97 30.51 �9:42 1
10 40 13.17 7.57 50.49 �29:35 1
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To obtain corrected envelope equations for an elliptical
beam near a conducting plate, analogously to the axisym-
metric case in Sec. IV, in Eq. (4) we heuristically apply
the form factors (33) with jzj � js� spj the distance
from the conducting plate and evolving beam radii rx
and ry giving

r00x � xrx �
2Q

rx � ry
Fe

�
js� spj���������rxry
p ;

rx
ry

�
�
"2
x

r3
x
� 0;

r00y � yry �
2Q

rx � ry
Fe

�
js� spj���������rxry
p ;

rx
ry

�
�
"2
y

r3
y
� 0:

(34)

Because of the weak dependence of Fa�,; �� on � � rx=ry,
in many cases adequate precision can be attained by
approximating Fe in Eq. (34) as

Fe�,; �� ’ Fe�,; 1� �
,��������������

1 � ,2
p (35)

with , � js� spj=
���������rxry

p . Note that Fe�,; 1� is the same
form factor as for the axisymmetric beam in the linear
self-field approximation [see Eq. (25)] with , � jzj=R for
the axisymmetric beam replaced by , � jzj= ���������rxry

p for
the elliptical beam.

Results of the corrected envelope model using Eq. (33)
for Fe in numerical integrations of Eq. (34) with "x �
"y � const are contrasted to uncorrected envelope model
results with Fe � 1 and self-consistent 3D WARP PIC
simulations in Table II. Geometry and beam parameters
are analogous to those presented in Table I. Results are
grouped for two separate values of perveance Q showing
three initial conditions for each value. The first row in
each group is an axisymmetric initial condition directly
comparable to cases in Table I for consistency checks. In
metric and elliptical beam initial conditions free drifting from
radii are shown for the following: uncorrected envelope with
lations. Upper and lower table entries have different values of

�4, "x � "y � 50 mm mrad
ns (rx and ry in mm, r0x and r0y in mrad)

Fe corrected 3D PIC simulation

x�sp� ry�sp� r0x�sp� r0y�sp� rx�sp� ry�sp� r0x�sp� r0y�sp�

0.24 10.24 6.19 6.19 10.2 10.2 6.2 6.2
1.64 8.84 26.16 �13:76 11.6 8.8 26.1 �13:7
3.04 7.44 46.17 �33:67 13.0 7.4 46.1 �33:6
�4, "x � "y � 50 mm mrad
ns (rx and ry in mm, r0x and r0y in mrad)

Fe Corrected 3D PIC simulation

x�sp� ry�sp� r0x�sp� r0y�sp� rx�sp� ry�sp� r0x�sp� r0y�sp�

0.36 10.36 9.16 9.16 10.3 10.3 9.2 9.2
1.75 8.96 29.14 �10:78 11.8 9.0 29.1 �10:7
3.15 7.56 49.15 �30:69 13.2 7.6 49.0 �30:6
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TABLE III. Maximum envelope mismatch excursions seeded from errors associated with
intercepting beam diagnostics in a periodic alternating gradient transport lattice describing
the HCX experiment. Results are for "x � "y � 50 mm mrad, "0 � 80�, and a 70 mm axial
drift from the plate to a midquadrupole drift location.

Beam parameters Mid-drift errors (mrad) Mismatch Amplitude
Q "="0 /r0x /r0y max�/rx=rxm; /ry=rym

1:0 � 10�4 0.733 0.10 0.10 0.005
2:5 � 10�4 0.483 0.24 0.24 0.012
5:0 � 10�4 0.288 0.47 0.47 0.020
7:5 � 10�4 0.201 0.70 0.70 0.025

10:0 � 10�4 0.153 0.92 0.92 0.030
15:0 � 10�4 0.078 1.35 1.35 0.037
20:0 � 10�4 0.078 1.78 1.78 0.042
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the simulations, the envelope radii and angles are statis-
tically calculated from the particle distribution as rx �
2hx2i1=2? , ry � 2hy2i1=2? and r0x � 2hxx0i?=hx

2i1=2? , r0y �
2hyy0i?=hy

2i1=2? . Note for the axisymmetric initial con-
ditions that the Fe � 1 and Fe corrected envelope solu-
tions in Table II are identical to the Fa � 1 and Fa linear
envelope solutions in Table I. The good agreement on the
final envelope angles between the simulation results and
corrected envelope model results in Table II verifies that
the approximate self-field form factor correction in
Eq. (33) is adequate for most purposes.

To better understand the impact of these corrections on
precision matching of a beam with high space-charge
intensity in an alternating gradient quadrupole transport
lattice, we analyze the HCX experiment as a practical
example. The symmetric doublet (FODO) lattice of the
HCX is described in detail in Ref. [2] and here we model
the lattice in a simple hard-edge approximation with
lattice period Lp � 435:2 mm and quadrupole axial
length 0:6949Lp=2. Focusing strengths are adjusted for
an undepressed particle phase advance of "0 � 80� per
period—a typical operating point for a Eb � 1 MeV K�

beam. We assume that a slit diagnostic is located 70 mm
downstream of the midaxial drift between two quadru-
poles in the periodic lattice with the downstream quadru-
poles removed. This is a typical value employed and the
drifts range from 60–120 mm in the experiment depend-
ing on the specific diagnostic apparatus employed and the
location in the machine lattice. The periodic matched
beam envelope rx � rxm, ry � rym with

rxm�s� Lp� � rxm�s�; rym�s� Lp� � rym�s�; (36)

is calculated in the periodic lattice in the absence of
intercepting diagnostics. Matched beam envelope coordi-
nates �rx; r0x; ry; r0y� are advanced from the midquadrupole
drift to the plate without (Fe � 1) plate corrections to the
perveance to correspond to the uncorrected diagnostic
measurement one would anticipate to obtain for a
matched beam envelope. These envelope coordinates
are then integrated back to the mid-drift symmetry
064201-12
point using the plate corrected envelope equations
(Fe � ,=

��������������
1 � ,2

p
) approximating the physical situation

where the diagnostic influences the beam evolution.
Finally, these envelope coordinates with plate induced
mismatch are integrated forward from a midquadrupole
location in the periodic HCX lattice using the uncor-
rected envelope equations (Fe � 1) to calculate the enve-
lope mismatch evolution [2]

/rx � rx � rxm; /ry � ry � rym: (37)

The advance is carried out at a sufficient number of
lattice periods to calculate the maximum envelope mis-
match excursions in j/rxj=rxm and j/ryj=rym. Results are
summarized in Table III for a range of perveance values.
Included in the table are values of "="0 for the periodic
matched beam (" is the particle phase advance in the
lattice in the presence of uniform beam space charge) to
better illustrate relative space-charge intensity. The in-
duced mismatch angles at the midquadrupole drift are
also tabulated. Mismatch errors in the envelope coordi-
nate are negligible in all cases at the mid-drift point but
evolve due to the induced angle errors. For the HCX,Q �
7–10 � 10�4, and the uncorrected diagnostic effect can
induce up to 3% mismatch amplitudes. Uncorrected mea-
surements introduce systematic envelope errors at all
intercepting diagnostics—both where the beam is mea-
sured for use in adjusting focusing to improve the match
and where the corrected envelope is measured.
Uncorrected errors at both locations can increase the
ultimately attained mismatch amplitude. Increasing the
drift distance to the diagnostic also increases the mis-
match because the beam becomes more space-charge
dominated (space-charge forces dominate thermal forces)
as it drift expands in the absence of applied focusing
forces. Mismatches in Table III are somewhat larger
than what one would infer from the angle errors and the
continuous focusing estimate based on Eq. (26). This
deviation results from alternating gradient effects not
being properly modeled at higher values of "0 and from
the fact that the mismatch can project on both breathing
064201-12
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and quadrupole envelope modes in the alternating
gradient lattice while the formula assumes a pure breath-
ing mode projection [2]. Results are not compared to
HCX experimental data because the present perveance
in the experiment of Q ’ 8 � 10�4 results in envelope
angle corrections induced by the plate that are only near
diagnostic thresholds of �1 mrad [6,8]. Therefore mean-
ingful comparisons between theory and experimental
data require careful evaluation of error sources due to
pulse variations, excitation of focusing optics, electron
effects, and other nonideal effects. This is beyond the
scope of this theoretical study where we seek to quantify
the magnitude and characteristics of the effect under
idealized conditions.

VI. CONCLUSIONS

Generalized transverse envelope equations were
derived to improve modeling of ion beams with
high space-charge intensity impinging at normal inci-
dence on a conducting plate. Such intercepting plates
are typical in intense beam diagnostics used to measure
the transverse phase space of the particle distribution of
the beam. The corrected envelope equations were derived
for both beams of axisymmetric and elliptical transverse
cross section by deriving analytical form factor correc-
tions to the perveance term of the usual envelope equa-
tions. Predictions of this envelope model were verified
using self-consistent 3D PIC simulations. It was found
that form factors derived under the approximation of
simple linear models of the beam self-field had adequate
accuracy for most applications. For usual parameters, the
main effect of the plate is a small, systematic correction
in the envelope angle at the plate. This effect is a strong
function of the beam perveance. Taking account of this
effect enables modest improvements in precision beam
matching for parameters typical of present experiments
and promises more significant matching improvements
for future applications with higher perveance.
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