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The acceleration efficiency of a laser driven linear accelerator is analyzed. The laser power, loss
factor, and impedances determine the maximum charge that can be accelerated and the efficiency of
that acceleration. The accelerator structure can be incorporated into a laser cavity. The equation for the
resultant laser pulse is derived and analyzed. A specific example is presented, and the steady-state laser
pulse shapes, acceleration efficiency, and average unloaded gradient are calculated.
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FIG. 1. (Color) A relativistic, pointlike bunch with charge q
passing through at infinitesimal length dz of accelerator. P is
The charge will radiate energy into the accelerating
mode with a loss factor per unit length [1]

power in the accelerating mode, which has group velocity 	g
and phase velocity 	phase � 1.
I. INTRODUCTION

Lasers have caught the imagination of scientists as
possible accelerator power sources since their discovery.
There is the potential of enormous accelerating gradients
if the laser fields can be turned into longitudinal accel-
erating fields. This has led to research into a variety of
possible acceleration mechanisms including nonlinear
laser-particle interactions, laser driven plasma waves,
and laser driven vacuum acceleration. This manuscript is
devoted to a specific manifestation of the latter—laser
driven structures that are conceptually similar to rf
driven linear accelerators.

Efficiency is as important an attribute as acceleration
gradient for high energy physics because the luminosity
of a high energy linear collider is proportional to beam
power, and economical operation requires high efficiency.
The acceleration efficiency of a laser driven structure
depends on the properties of the structure itself. This is
covered in the next section.

The efficiency can be increased significantly by incor-
porating the accelerator into the laser cavity. Energy that
would otherwise be lost is recovered by doing this. Beam
generated fields affect the laser cavity, and they must be
included in the analysis. The intracavity accelerator is a
major topic of this paper and is analyzed in Sec. III.

II. PASSAGE OF A SINGLE BUNCH

A. Impedances and loss factor

The first considerations are for the passage of a single,
relativistic, pointlike bunch through an infinitesimal
length of accelerator structure. The situation is illustrated
in Fig. 1. The unloaded gradient, G0, is related to the
power flow by the characteristic impedance of the accel-
erating mode that depends on the accelerator geometry

ZC �
G2

0�
2

P
: (1)
1098-4402=04=7(6)=061303(10)$22.50 
k �
1

4

c	g
1 � 	g

ZC
�2 : (2)

This produces a decelerating gradient GF � kq and fields
in the narrow-band accelerating mode that interfere with
the fields from the external power source.

In addition to these narrow-band fields, there will be
radiation into a wide frequency band from processes such
as Cherenkov radiation. As an example, an effective
impedance for this radiation has been found by calculat-
ing the retarding field due to Cherenkov radiation in an
infinite dielectric rod with a hole of radius R in the center
[2]. The effective retarding gradient is

GH �
qcZH
�2 ; (3)

where

ZH � Z0
1

2��R=��2
: (4)

ZH is defined in this way to show the dependence on the
dimensionless parameter R=�. This result holds for other
geometries with R being a characteristic separation from
the particle to the structure boundary and with a factor of
order unity multiplying the expression for ZH [3].
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B. Optimum efficiency and accelerated charge

The beam-loaded gradient is

G � G0 �GF �GH �

����������
PZC

p

�
� q

�
cZH
�2 � k

�
; (5)

and the increase in the kinetic energy of the beam per unit
length is

dUkin

dz
� qG: (d)

The acceleration efficiency is the ratio of this increase to
the electromagnetic energy per unit length P=	gc with a
leading factor that accounts for the difference between
the group and particle velocities. It is

� �
1

�1 � 	g�

	gc

P
dUkin

dz
: (7)

The efficiency is an optimum when

q � qopt �
G0

2�cZH=�2 � k�
; (8)

and for that charge the efficiency is

�max �
ZC	g

4ZH�1 � 	g� � ZC	g
: (9)

The efficiency and gradient for different charges are

� � �max
q
qopt

�
2 �

q
qopt

�
(10)

and

G �

����������
PZC

p

�

�
1 �

q
2qopt

�
: (11)
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FIG. 2. (Color) A beam bunch and accelerator structure of length L
mode, and F1 and F2 are the corresponding fields. The time coord
electron bunch is �0 ahead of the center of the laser pulse at z � 0 an
to be constant for the length of the structure.

061303-2
As an example, the photonic band gap fiber accelerator
of Lin [4] has R � 0:678�, � � 1:05 �m, 	g � 0:60,
ZC � 19:5 � (k � 2:0 � 1021 V=Cm), and ZH � 130 �
(cZH=�2 � 3:5 � 1022 V=C m) when the crystal is ap-
proximated as a solid dielectric and variation of the
dielectric constant with frequency is ignored. Lin as-
sumed a square laser pulse and estimated the damage
threshold for a 10 cm long fiber to be P � 7:4 kW using
the results of Stuart et al. for fused silica [5]. The un-
loaded gradient, optimum charge, and efficiency at that
power are G0 � 380 MeV=m, qopt � 5 fC, and �max �
0:05. This example shows that the maximum efficiency
can be rather high, but the accelerated charge is low. The
latter is a consequence of (i) the proportionality qopt / �
in Eq. (8) and (ii) the structure having a beam hole
comparable to the wavelength resulting in large ZC and
ZH. One way to accelerate more charge in a single bunch
would be to increase the characteristic size of the struc-
ture, thereby reducing ZC and ZH, and using higher laser
power to obtain the unloaded gradient. Some initial work
in this direction has been reported by Cowan et al. [6].

C. Finite length structure

The results above can be generalized to a structure of
length L and time-dependent input power P1, and field
F1 �

������������
P1ZC

p
=� (Fig. 2). The laser envelopes are functions

of �, which is measured from a reference point on the
pulse. The sign convention is the one that would follow
from an instantaneous snapshot: � > 0 is ahead of the
reference point. The laser pulse and particle bunch propa-
gate at different velocities, and, if the bunch is at �0 at
z � 0, then at z � L it is at

� � �0 �
L
c

1 � 	g
	g

� �0 � ��: (12)
z = L

P2, F2

τ
τ0+∆τ
F2(τ)

. P1 and P2 are the input and output power in the accelerating
inate � is shown with � > 0 to the right of the center line. The
d �0 � �� ahead at z � L. The group velocity of 	g is assumed
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The average, effective unloaded gradient is

hG0i �
1

��

Z �0���

�0

F1���d�: (13)

The change in the beam kinetic energy in passing
through the structure is

�Ukin � qL
�
hG0i � q

�
cZH
�2 � k

��
; (14)

and the effective unloaded gradient should be used in the
expression for the optimum charge

qopt �
hG0i

2�cZH=�
2 � k�

: (15)

The beam produces fields in the accelerating mode. One
manifestation of this is the ‘‘self-field’’ that decelerates
the source charge with gradient GF. Another is fields
radiated out of the downstream end of the accelerator
given by

Eb��� � �2kq����� �0� � ���� ��0 � ����

� �2kqS��; �0�; (16)

where � is the step function. The fields produced near the
downstream end of the accelerator arrive the earliest
when the bunch arrives at � � �0 � ��, and the fields
produced at the beginning propagate at the group velocity
q

z = 0

Accelerato

ZC   βg

Modulator

Μ  ωm

cTcT

1

5 4

τ

τ0

FIG. 3. (Color) The intracavity, actively mode-locked laser driv
discussed in the text, and the subscripts 1; . . . ; 5 refer to the locati
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and arrive at � � �0. This expression is shown to satisfy
energy conservation in Appendix A.
III. INTRACAVITY, ACTIVELY MODE-LOCKED
ACCELERATOR

A. Accelerator/laser cavity equation

The intracavity, actively mode-locked laser driven ac-
celerator is illustrated in Fig. 3. The accelerator structure
is incorporated into a laser cavity consisting of a gain
medium, amplitude modulator, and four mirrors. Three of
the four mirrors are assumed to be completely reflecting.
The fourth mirror, the one located at position 3, is a
partially reflecting beam combiner, and an external laser
beam is injected into the cavity at that mirror. Losses,
other than those associated with the beam combiner, are
included and parametrized by a loss factor �. The laser
envelope at location n is Fn��� where � is measured from
the center of the pulse

The particle beam is a train of bunches of charge q
spaced at the round-trip laser period T, which includes the
dispersive effects of the gain medium. Bunches are �0

ahead of the corresponding laser pulse at location 1, and
phases are defined by taking the phase of the beam
current as zero.

This cavity is an actively mode-locked laser with
seeding in the accelerating mode from the beam induced
field and, in addition, from the external laser. An equation
for F1��� is developed in Appendix B by closely follow-
ing Siegman’s treatment of active mode-locked homoge-
nous lasers [7]. It is
z = L

r Structure

   βphase = 1

Gain Medium

αmpm   δωa    ωa 

r Eext, φext

El

2

3

en accelerator. The parameters of the different elements are
ons indicated in the cavity.
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d2F1���

d�2
�
M!2

m��!a�
2�2

8$mpm
F1���

�
�1 � $mpm � �� �=r���!a�

2

4$mpm
F1���

�
��!a�

2

4r$mpm
�2kqrS��; �0� �

��������������
1 � r2

p
Eext���ei�)ext��=2�;

(17)

where � is the eigenvalue for the steady-state solution.
The solution of the equation starts with the eigen-

modes of the homogenous equation. They are orthonor-
mal Hermite functions

hn�u� �
1�������������������

2nn!�1=2
p exp

�
�
u2

2

�
Hn�u�; (18)

with u � �=,� [8]. The Hn�u� are Hermite polynomials,
061303-4
and for any n

,� �

��������������������������
8$mpm

M!2
m��!a�

2

4

s
: (19)

The eigenvalues are

�n � r
�
1 � $mpm � ��

4�2n� 1�$mpm
��!a,��

2

�
: (20)

This result has been obtained by Kim et al. [9]. The mode
that lases, the one with the largest eigenvalue, is a
Gaussian shaped pulse F1�u� � h0�u�.

The solution of the full equation (17) is a sum of
Hermite functions [10]. Multiplying by ,2

� and expressing
the fields as functions of u, the equation becomes
d2F1�u�

du2
� u2F1�u� �

�1 � $mpm � �� �=r���!a,��2

4$mpm
F1�u� �

��!a,��2

4r$mpm
�2kqrS�u; u0� �

��������������
1 � r2

p
Eext�u�e

i�)ext��=2�:

(21)

The solution can be written in a number of ways that have different limits as the right-hand side of Eq. (21) goes to
zero [10]. The solution that approaches a Gaussian pulse with peak accelerating field Gpk is

F1�u� � �1=4Gpk
X1
n�0

-nhn�u�
-0 � 2n

: (22)

The expansion coefficients (n � 0; 1; . . . ) are given by

-n �
��!a,��2

4r$mpm�
1=4Gpk

Z 1

�1
�2kqrS�u; u0� �

��������������
1 � r2

p
Eext�u�e

i�)ext��=2�hn�u�du

�
��!a,��2

4r$mpm

�
2kqr

�1=4Gpk

Z u0���=,�

u0

hn�u�du�

��������������
1 � r2

p

�1=4Gpk
ei�)ext��=2�

Z 1

�1
Eext�u�hn�u�du

�
; (23)
and the relation between -0 and � is

� � �0 �
4r$mpm-0

��!a,��
2 : (24)

B. No external laser

First consider the case where r � 1. The circulating
fields are completely reflected at the beam combiner, and
the external laser beam does not couple into the cavity. If
)f is the phase of the laser field with respect to the beam
current, the eigenvalue is

� � �0 �
2kqe�i)f

�1=4jGpkj

Z u0���=,�

u0

h0�u�du: (25)

The integral is positive independent of the location of the
beam with respect to the envelope of the laser pulse, and
the eigenvalue is a maximum when the laser field is � out
of phase with the beam current, i.e., at the phase for
maximum deceleration. The beam is decelerated rather
than accelerated.

The equilibrium pulse shape can be calculated using
the equations above. The quantity ��!a,��

2=4$mpm is
proportional to �!a=!m and is much greater than 1, and,
therefore, the wakefield determines the pulse shape even
for modest beam charge. Results are shown in Fig. 4. For
example, the case when 2kq=Gpk � 0:001 would corre-
spond to q� 0:04qopt in Lin’s structure [4].

C. Solution with the external laser

These results, in particular that the laser lases with the
beam at the decelerating phase, are not surprising since
this is the phase of the field seeding the laser. The external
laser is necessary to change this and bring the beam to the
accelerating phase.

The calculation that follows uses a particular external
laser pulse shape for definiteness, Eext � �1=4Epkh0�u�,
although the expressions in Eqs. (22)–(24) are general.
The eigenvalue, assuming that the laser lases in phase
061303-4
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with the beam current ()f � 0), is

� � �0 �

�
Epk

��������������
1 � r2

p

Gpk
ei�)ext��=2�

�
2kqr

�1=4Gpk

Z u0���=,�

u0

h0�u�du
�
: (26)

The assumption about the phase is correct provided the
quantity in square brackets, which is proportional to the
integral of the entire pulse seeding the laser cavity, is
positive. This requires)ext � ��=2. The cavity will lase
in phase with the beam current in the region below and to
the right of the dashed line in Fig. 5.

The expansion coefficients are

-n �
��!a,��2

4$mpm

�
2kq

�1=4Gpk

Z u0���=,�

u0

hn�u�du

� �n;o
Epk
Gpk

��������������
1 � r2

p

r

�
; (27)

and the average unloaded gradient can be expressed in
terms of them:

hG0i � �1=4Gpk
X1
n�0

-n
-0 � 2n

,�
��

Z u0���=,�

u0

hn�u�du:

(28)

Placing the accelerator in the laser cavity does not
affect the optimum accelerated charge, qopt, because
061303-5
that limit arose from considerations of the decelerating
gradient. The benefit of having it there is an increase in
the acceleration efficiency by reducing the input energy
needed to reach the same unloaded gradient. The kinetic
energy gain of the beam is given by Eq. (14), and the
acceleration efficiency is

��
�Ukin

�2,�
ZC

R
1
�1F

2
1�u�du

� R
1
�1F

2
1�u�du����

�
p
E2
pk�

R
1
�1�F

2
1�u��F

2
3�u�du

�
� �0!�:

(29)

The single passage efficiency, �0, is multiplied by a
factor, !�, giving the efficiency increase. The first term
in the denominator of !� corresponds to energy from the
external laser, and the second term is the energy added by
the gain medium.

D. A specific example

A specific example is chosen for illustrating the appli-
cation of these results. The gain medium is Nd:YAG with
�!a � 2�� 120 GHz. The voltage gain coefficient and
modulation are chosen to give ,� � 40 psec and
��!a,��

2=$mpm � 1 � 104. The accelerator structure is
that of Lin [4] described above. For this example, the
starting position of the bunch is �0 � �2:5,�, and inter-
action time is �� � 5,�. These give an accelerator length
061303-5
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beam is at the accelerating phase, )f � 0. The dashed black line is � � �0.
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L � 7:5,�c � 9 cm, and the average unloaded gradient
without recycling is Gpk=2.

The peak accelerating gradient is limited by material
damage. The damage fluence, &damage, and peak gradient
for a Gaussian pulse, Gpk;nr, are related by

Gpk;nr �
Gpk
Emax

���������������������
&damageZ0���������
�"r

p
,�

s
: (30)

The quantity "r is the dielectric constant, and the ratio
Gpk=Emax is the ratio of the peak gradient to the maxi-
mum electric field in the dielectric ( � 1=2:1 for Lin’s
structure). Using this and the results of Stuart et al. for
the damage fluence in fused silica [5] (&damage �
12:5 J=cm2 for a full width at half maximum pulse length
of 95 psec, which corresponds to ,� � 40 psec), the peak
accelerating gradient is Gpk;nr � 320 MeV=m. The aver-
age unloaded gradient is hG0i � 160 MeV=m, and the
optimum charge without recycling using Eq. (15) is
qopt � 2:2 fC.

The damage fluence limit is the same with the accel-
erator in the laser cavity. That gives a relation between
Gpk and -0,

G2
pk;nr � G

2
pk

X1
n�0

�
-n

-0 � 2n

�
2
: (31)

The average gradient depends on Gpk and increases as
Gpk ! Gpk;nr. Epk and r can be determined by maximiz-
ing the efficiency once Gpk and -0 are determined.
Figure 6 shows the results of this calculation for one value
061303-6
of charge, q� qopt. The efficiency approaches �� 0:5 at
high gradient where approximately half of the input en-
ergy accelerates the beam and the other half is radiated
away as Cherenkov radiation.

Pulse shapes are shown in Fig. 7 for different values of
hG0i. The pulse broadens and there are regions of decel-
erating gradient that shrink in length and magnitude as
the average unloaded gradient increases.

The efficiency can be calculated versus bunch charge
and loss parameter �. The results are shown in Fig. 8.
When � � 0 the only losses in the cavity are due to the
beam combiner and energy radiated away as Cherenkov
radiation, and the efficiency decreases linearly with
charge as the Cherenkov radiation increases. When
� � 0 there are additional losses associated with energy
circulating in the cavity, and they are the dominant loss
mechanism at low charge making �! 0 as q! 0.
However, even with � � 0:05 there is substantial gain in
efficiency for q� qopt.
IV. SUMMARY AND CONCLUSION

We have analyzed the efficiency of a laser driven,
structure based accelerator. It has been shown that laser
power and impedances determine (i) the maximum single
pass efficiency and (ii) the optimum and maximum
single-bunch charges that can be accelerated. Those
charges are small because the impedances depend on
wavelength as ��2 although it should be possible to
increase them with structures that have low impedances
and still reach high gradients by using large laser powers.
061303-6
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However, high repetition rates and multiple beam
bunches per laser pulse are likely to be necessary to reach
beam powers of interest for a high energy linear collider.
The former is natural for lasers, and the latter can be
analyzed using the methods in this paper.
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FIG. 7. (Color) Pulse shapes fo
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High acceleration efficiency is another requirement for
large beam powers, and it has been shown that incorpo-
rating the accelerator into the laser cavity can signifi-
cantly improve the efficiency. The practicality of that will
depend on the losses in the input and output couplers.
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τ/στ

<G0> = 100 MeV/m
<G0> = 120 MeV/m
<G0> = 140 MeV/m

r different values of hG0i.
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Future research will follow the directions indicated
above.
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APPENDIX A: ENERGY CONSERVATION AND
BEAM PRODUCED FIELDS

Consider the situation illustrated in Fig. 2. The input
power with an arbitrary time dependence produces an
unloaded gradient

F1��� �
1

�

������������������
ZCP1���

p
(A1)

at the upstream end of the structure. The output pulse
shape would be the same if there were no beam and no
losses in the structure.

The beam itself produces field in the accelerating
mode. At the exit of the structure this field is given by

Eb��� � �qEw����� �0� � ���� ��0 � ����: (A2)

This expression includes the facts that the field is propor-
tional to the beam charge q, extends from � � �0 to � �
�0 � ��, and is decelerating. This appendix contains a
derivation leading to the proportionality constant Ew.
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The output power is given by

P2��� �
�2

ZC
�F1��� � Eb���2: (A3)

Energy conservation applied to the beam passage is

Uin �
Z 1

�1
P1���d� � Uout � qGHL�

Z 1

�1
P2���d�;

(A4)

where Uin and Uout are the initial and final kinetic ener-
gies of the bunch and the second term on the right-hand
side is the energy in the wideband radiation. Using Eqs. (3)
and (14) results in

qL�hG0i �GF� �
Z 1

�1
Pin���d��

Z 1

�1
Pout���d�:

(A5)

Substituting Eq. (A3) for Pout and using the expression for
GF and Eq. (A2)

qL�hG0i � kq� � �
�2q2E2

w

ZC

�
L�1 � 	g�

	gc

�

�
�qEw��������
Z C

p
Z �0���

�0

���������������
Pout���

p
d�: (A6)

Equating either the terms proportional to q or the terms
proportional to q2 gives

Ew � 2k; (A7)
061303-8
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as would be expected from the fundamental theorem of
beam loading [11].

APPENDIX B: EQUATION FOR THE
INTRACAVITY, ACTIVELY MODE-LOCKED

ACCELERATOR

The procedure is to follow a laser pulse around the
cavity shown in Fig. 3. Quantities are expressed in the
time domain as functions of � or in the frequency domain
as functions of the angular frequency!, and the subscript
n denotes locations in Fig. 3. Zero phase is defined by the
beam current.
b4

a1

a2

a3

a4

b1

b2

b3

FIG. 9. (Color) The a’s and b’s are the complex amplitudes of
the incoming and outgoing electric fields, respectively.

061303-9
The calculation starts at location 1 with ~FF1�!�. The
beam produces a field, given by Eq. (16), in the accelerator
structure that interferes with ~FF1 at the accelerator exit

~FF 2�!� � ~FF1�!� � 2kq~SS�!; �0�; (B1)

where ~SS�!; �0� is the Fourier transform of S��; �0� with
respect to �, and the minus sign accounts for the phase of
the beam generated fields.

The beam combiner is described by a unitary 4 � 4
matrix that relates the incoming and outgoing electric
fields in Fig. 9 [12]:
0
BBB@
b1

b2

b3

b4

1
CCCA�

0
BBB@

0 r i
��������������
1 � r2

p
0

r 0 0 i
��������������
1 � r2

p

i
��������������
1 � r2

p
0 0 r

0 i
��������������
1 � r2

p
r 0

1
CCCA
0
BBB@
a1

a2

a3

a4

1
CCCA; (B2)
where r is the reflection a2 ! b1. Therefore, the field at
location 3 is

~FF 3�!� � r ~FF2�!� �
��������������
1 � r2

p
~EEext�!�ei�)ext��=2�; (B3)

where )ext is the phase of the external laser field with
respect to the beam. The electric field lost from the cavity
at the beam combiner is

~EE l�!� � i
��������������
1 � r2

p
~FF2�!� � r ~EEext�!�e

i)ext : (B4)

The laser gain medium has a complex voltage gain

~gg�!� � 1 � $mpm � ��
4$mpm!2

��!a�2
: (B5)

In this equation �!a is the linewidth and $mpm is the
voltage gain coefficient that, in the steady state, equals
the total cavity loss. For convenience the losses due to
imperfections are included in this equation as a factor
e�� � 1 � �. The field at the exit of the gain medium is

~FF 4�!� � ~FF3�!�
�
1 � $mpm � ��

4$mpm!
2

��!a�2

�
: (B6)

The modulator is taken to be an amplitude modulator
with modulation depth M and angular frequency !m. Its
effect is to create sidebands at �!m,

~FF 5�!� � �1 �M� ~FF4�!�

�
M
2
� ~FF4�!�!m� � ~FF4�!�!m�

� ~FF4�!� �
M!2

m

2

d2 ~FF4

d!2 : (B7)

Combining these equations and keeping the lowest
order terms gives

~FF 5�!� � r�1 � $mpm � �� ~FF1�!� �
rM!2

m

2

d2 ~FF1�!�

d!2

�
4r$mpm!2

��!a�
2

~FF1�!�

� �
��������������
1 � r2

p
~EEext�!�ei�)ext��=2� � 2kqr~SS�!; �0�:

(B8)

Finally, transforming to the time domain and looking for
steady-state solutions F5��� � �F1��� gives the eigen-
value equation
061303-9
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d2F1���

d�2
�
M!2

m��!a�2�2

8$mpm
F1���

�
�1 � $mpm � �� �=r���!a�2

4$mpm
F1���

�
��!a�2

4r$mpm
�2kqrS��; �0� �

��������������
1 � r2

p
Eext���ei�)ext��=2�:

(B9)
06130
[1] K. L. F. Bane and G. Stupakov, Phys. Rev. ST Accel.
Beams 6, 024401 (2003).
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