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A spin matching method to cure intrinsic coupled spin resonances in the AGS is proposed and
explored using an extension of the existing DEPOL program algorithm. The extension of DEPOL to handle
linear coupling in the polarized beam acceleration is documented. Data collected from recent polarized
proton experiments in the AGS are compared with the predictions derived from the extended DEPOL

program.
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AGS. Because of the difficulty of preserving the polar-
ization when accelerating through the spin-orbit reso-

tory frame, we obtain the TBMT equation (Thomas,
Bargmann, Michel, and Telegdi) [2]
I. INTRODUCTION

The goal of the Relativistic Heavy Ion Collider (RHIC)
spin project at Brookhaven National Laboratory is the
delivery of polarized protons at the center of mass ener-
gies of 200–500 GeV. Polarized H� ions from the
Optically Pumped Polarized Ion Source [1] are acceler-
ated to 200 MeV by a radio frequency quadrupole and a
drift tube linac. They are then strip injected into the AGS
Booster and accelerated to 1.5 GeV. The Alternating
Gradient Synchrotron (AGS) accelerates polarized pro-
tons to 25 GeV and is the third stage in a complex of
accelerators shown in Fig. 1. During injection in the AGS
only one of the 12 rf buckets is filled and accelerated for
the final injection into the RHIC with a typical bunch
intensity of 1� 1011 particles. A major bottleneck in the
process of accelerating polarized protons occurs in the
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nances, the AGS accounts for most of the polarization
losses. This paper describes work aimed at calculating and
neutralizing these resonances. To understand these
mechanisms it is necessary to understand the basics of
spin motion.

The dynamics of the spin vector of a charged particle is
determined by the interaction of the magnetic moment
with the surrounding magnetic field. In the particle’s rest
frame this is described simply by

d ~SS
dt

� ~��� ~BB; (1)

where ~SS is the spin vector of a particle and ~�� is the
magnetic moment. Transforming the fields to the labora-
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d ~SS
dt

�
e

m

~SS

�

�
�1�G
� ~BB? � �1�G� ~BBk

�

�
G
�




� 1

� ~EE� ~��
c

�
; (2)

where the electromagnetic field vectors ~EE, ~BB?, and ~BBk are
evaluated in the laboratory’s frame relative to the direc-
tion of the particle’s motion. G � g� 2=2 is the anoma-
lous magnetic moment coefficient, and 
mc2 is the energy
of the particle. However in reality the spin vector for a
true spin- 12 particle (i.e., an electron or proton in our case)
should strictly speaking be treated quantum mechani-
cally. But since we are not typically concerned with the
spin state of a single particle but the ensemble average
polarization in any given direction we define a polariza-
tion vector for a bunch with N protons as

~PP �
1

N

XN
j�1

~SSj
jSjj

; (3)

where ~SSj is the spin vector of the jth proton. The magni-
tude of polarization relative to the reference axis � is then
given by

P � �̂� 
 ~PP: (4)

Since electric fields are normally small and parallel to
the relativistic ~�� vector, the TBMT equation becomes

d ~SS
dt

� ~SS� ~��; (5)

where

~�� �
e

m

��1�G
� ~BB? � �1�G� ~BBk� (6)

has a magnitude of the spin precession frequency with its
vector aligned along the axis of precession.
Reference O

FIG. 2. The curvilinear coordinate system for particle motion in
radial, longitudinal, and transverse vertical unit basis vectors, and
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It is convenient to describe particle motion in the
Frenet-Serret coordinate system shown in Fig. 2 , where
x̂x, ŝs, and ẑz are the unit basis vectors along the radially
outward, the longitudinal, and the transverse vertical
axes, respectively.

Following Courant and Ruth [3] we have picked ŝs to
point in the counterclockwise direction instead of the
more common notation (x̂x; ŷy; ŝs) with ŝs defined in the
clockwise direction. Transforming � to the frame which
rotates with the cyclotron frequency !c we obtain

~�� rs � ��xx̂x��sŝs� ��z �!c�ẑz�: (7)

The stable spin direction n̂nco is given by the periodic
solution to the TBMT equation on the closed orbit. In the
absence of solenoidal fields, vertical bends, and misalign-
ments, n̂nco is vertical. In the laboratory frame we find that
~�� � �e=
m��1�G
�Bzẑz, where ẑz is the unit basis vector

in the vertical direction and Bz is the vertical guide field.
The periodic solution for this ideal case defines the
direction of equilibrium polarization. Since the particle
traverses the accelerator at the cyclotron frequency !c �
�e=
m�Bz, the spin tune, defined as the number of spin
precessions about the stable spin direction per revolution
on the design orbit, becomes

�sp �
��!c

!c
� G
; (8)

i.e., a spin vector will precess around the vertical direc-
tion G
 times during each revolution.

Using the orbital angle � as the independent variable in
the local rotating system the TBMT equation becomes

d ~SS
d�

�
d ~SS
dt
dt
d�

�
1

!c

~SS� ~��rs � �
1

!c

~��rs � ~SS � ~!!� ~SS:

(9)

In the formalism of quantum mechanics a spin- 12 par-
ticle can be found in either the up or the down eigenstate
s

z
r

x

r
0

rbit

Particle Position

a synchrotron. Here x̂x, ŝs, and ẑz are, respectively, the transverse
~rr0 is the reference orbit.
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or in a coherent mixture of them with a certain probabil-
ity distribution. Using a two component spinor with  �
�ud�, where u and d are the amplitudes for the particle to be
in the two pure spin states and dropping the 
h=2 units on S
for the rest of the paper, we find

~SS 
 h j ~""j i �  y ~"" ; (10)

where the components of ~"" are the usual Pauli matrices:

"x�
�
0 1
1 0

�
; "s�

�
0 �i
i 0

�
; "z�

�
1 0
0 �1

�
: (11)

The TBMT equation of spin motion becomes

d 
d�

�
i
2
� ~"" 
 ~!!� �

i
2

�
!z; !x � i!s

!x � i!s; �!z

�
 : (12)

In an ideal case with !x � !s � 0, a solution to the
TBMT equation is

 ��� � e�i�G
=2�����0�"z ��0� � t��; �0� ��0�; (13)

where t��; �0� is the spin transfer matrix from azimuthal
position �0 to �. The spin transfer matrix in one revolu-
tion around the accelerator becomes

t��0 � 2$; �0� � e�i$�spn̂nco��0�
 ~"": (14)

Here n̂nco��0� is vertical.
The AGS contains a partial snake. This is a solenoid

which rotates a spin vector by an angle %< 180� about
the ŝs direction per pass through the partial snake (a full
100% snake rotates the spin vector by % � 180�). The
partial snake is an important device for reducing the
depolarization at certain spin-orbit resonances. We de-
scribe its function in more detail later. The one-turn
matrix for transforming the spinor wave function in the
presence of the partial snake is

 ��0 � 2$� � e�i�G
=2��2$��0��sn�"ze�i�%=2�"s

� e�i�G
=2���sn��0�"z ��0�

� e�i$�spn̂nco��0�
 ~"" ��0�; (15)

where �sn is the location of the partial snake. Solving for
the spin tune �sp, we find that the spin tune is perturbed
from G
 as given by

cos��sp$� � cos�G
$� cos
�
%
2

�
: (16)

The stable spin direction becomes

n̂nco��0� �
1

sin$�sp

�
� sin�G
�$� �0 � �sn�� sin

%
2
x̂x

� cos�G
�$� �0 � �sn�� sin
%
2
ŝs

� sin�G
$� cos
%
2
ẑz
�
: (17)

If we let % � r$ with r representing the percentage of the
snake used, at G
 � m � integer, the spin tune becomes
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m� r
2 . Thus the spin tune is shifted away from an integer

by � r
2 . In addition the stable spin direction is shifted

which changes the average vertical polarization by

hSzi � Pinj

�
sin�$G
� cos�r$2 �

sin�$�sp�

�
2
: (18)

Here Pinj is our injected vertical polarization. For the data
presented in this paper the snake strength ranged between
r � 3%–5%.

When a particle moves away from the ‘‘ideal orbit,’’ the
off-diagonal terms in Eq. (12) are no longer zero. By ideal
orbit we mean the periodic orbit obtained without mis-
alignments and which therefore goes through the centers
of the quadrupoles. The perpendicular and parallel fields
can be expressed using

~BB? �
� ~vv� ~BB� � ~vv

v2
; ~BBk �

� ~vv 
 ~BB� ~vv

v2
: (19)

Making use of the Lorentz force equation,

d ~vv
dt

�
e

m

~vv� ~BB; (20)

the perpendicular fields can be expanded in terms of
derivatives with respect to s:

~BB? �
p
e

�
1�

x
)

���
x00 �

1

)

�
ẑz�

z0

)
ŝs� z00x̂x

�
: (21)

Here ) is the radius of curvature and p � 
mv is the
momentum of the beam which we have taken to be mov-
ing in the ŝs direction (counterclockwise). For the parallel
fields we find that the dominant terms which lie along the
s direction are

~BB k � �Bs � z0Bz�ŝs: (22)

Assuming that B�0�s � 0 and using Ampère’s law, we
obtain

~BB k � �
p
e

�
z
)

�
0

: (23)

B�0�s � 0 is true for all elements except the partial sole-
noidal snake. In this case the spin perturbing effect of the
partial solenoidal snake can be treated separately in the
manner of Eq. (15). From the field expansions we can
identify the elements of ~!!,

!x � �)z00�1�G
�;

!s � �1�G
�z0 � )�1�G�
�
z
)

�
0

;

!z � �G
� �1�G
�)x00:

(24)

Depolarization due to spin-orbit resonances occurs if
the fields drive the spin vector at a harmonic of the spin
tune causing a spin depolarizing resonance condition.
This most commonly happens during acceleration when
the unperturbed spin tune G
 ramps with energy and
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crosses different resonant spin tunes. The spin resonance
amplitude can be calculated by expanding the perturbing
fields in a Fourier series:

!x � i!s �
X
K

"Ke
�iK�; (25)

where

"K �
�1

2$NT

Z 2$NT

0

�
�1�G
��)z00 � iz0�

� i)�1�G�
�
z
)

�
0
�
eiK�d�: (26)

Here K is the resonant spin tune, and the number of turns
NT depends on the rationality of K. If K is an integer then
NT � 1; however if K is an irrational number then we
need an infinite number of turns. When calculating the
resonant spin tune, the second term in !z is usually
dropped since it is a small term compared to G
.
However this term can generate a set of important hybrid
resonances around the sidebands of dominant spin reso-
nances [4]. It is also worth pointing out that � is constant
in a region without dipoles; for this reason it is clearer to
express Eq. (26) in terms of s:

"K � �
1

2$NT

Z CNT

0

�
�1�G
�

�
z00 �

iz0

)

�

� i�1�G�
�
z
)

�
0
�
eiK��s�ds; (27)

where C is the circumference of the ring.
The amount of depolarization caused by acceleration

through any given spin resonance can be evaluated using
the Froissart-Stora formula [5]

Sz � 2e��$j"K j2=2.� � 1; (28)

where

. �
1

!rev

d�s
dt

(29)

is the spin tune crossing rate divided by the angular
revolution frequency !rev, and Sz is the vertical compo-
nent of the spin vector after passing through a spin
resonance for an initially vertical spin. For a flat orbit
in a constant vertical field . ’ d�G
�=d�. Equation (28)
represents a solution to the TBMTequation for the special
case of crossing an isolated spin resonance. When
j"Kj2=2. is large, a full spin flip can be induced to
preserve polarization.

Spin depolarizing resonances in the AGS are of three
main types: imperfection resonances, intrinsic reso-
nances, and intrinsic coupled spin resonances. All three
are predominately due to spin kicks accumulated from
vertical beam motion through quadrupoles. They differ in
the causes of the vertical motion. Imperfection reso-
nances usually arise from vertical closed orbit distortions.
Intrinsic resonances arise from vertical betatron oscilla-
051001-4
tions. Intrinsic coupled spin resonances are derived from
the projection of horizontal betatron oscillations in the
vertical plane due to linear coupling. We can understand
the motion of the beam around the ring by breaking up its
motion into contributions from betatron motion z� and
closed orbit distortions zco as

z � z� � zco: (30)

For the case of intrinsic resonances we use only the z�
piece to evaluate Eq. (26). The spin tune �sp has a frac-
tional part which requires that the integral be evaluated
using NT � 1. However in the perfectly decoupled case
where the only coherent frequency is from the vertical
betatron tune, the integral can still be calculated using
only one turn by picking the appropriate exponential term
from the cosine function in the betatron equation of
motion. If we consider the effect of vertical betatron
oscillations through quadrupole fields, the intrinsic reso-
nance condition occurs when the spin tune obeys �sp �
m� �z, where m is an integer.

In the case of linear coupling the presence of two
frequencies in the vertical motion requires more care. In
addition, depolarizing fields arising from off-axis dis-
placement through skew quadrupoles, vertical orbit cor-
rectors, and the fringes of the solenoid will contribute
directly and indirectly via feed-down from sextupoles to
both imperfection and intrinsic resonances. In Secs. III,
we will treat this problem in detail. For the time being we
note that since intrinsic coupled spin resonances arise
from the normal-mode tune �u associated with the hori-
zontal betatron tune �x, these resonances occur whenever
�sp � m� �u � m� �x.

For imperfection resonances we use zco to evaluate
Eq. (26). Since K is an integer we need to use only one
turn (NT � 1). The effects of both partial and full snakes
are calculated nonperturbatively in Eq. (15) so we need
not calculate the zeroth order effect of the solenoidal
partial snake.

There is one other class of spin resonances that is due to
synchrotron motion. These resonances arise mainly from
the kinematic effect of spin tune modulation. They occur
at �sp � K �m�syn wherem is an integer,K is the tune of
the primary resonance, and �syn is the synchrotron tune.
If the primary resonance strength is greater than the
synchrotron tune, then synchrotron sidebands overlap
with the primary resonance. This is the case for the
AGS where �syn is about 10�3. Previous polarized proton
experiments indicate that these resonances are not im-
portant at the spin tune crossing rate of . � 10�5 (see [6]
for more detail).

Using Eq. (27) to calculate spin resonances assumes
that n̂nco is vertical. We also find resonances driven by
longitudinal and radial fields. An extension of this ap-
proach to include n̂nco that is tilted away from the vertical
direction is not easily possible with this formalism. A
051001-4
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tilted n̂nco requires a large horizontal field in the form of a
partial or full Siberian snake or a spin tune close to an
integer. In either case the integral in Eq. (26) will depend
on NT when K is not an integer. A proper treatment for
cases where n̂nco has large deviations from the vertical axis
may not be treated by this perturbative formalism; how-
ever other approaches may permit a calculation with a
tilted stable spin direction n̂nco [7].

In recent years several novel methods to overcome the
spin depolarizing resonances in the AGS have been pio-
neered. In 1994 a partial snake was installed and tested in
the AGS [8]. The effect on the spin tune was shown in
Eq. (16), where at every integer value of G
 we see a
discontinuity in the spin tune, and the spin tune becomes
m� �r$=2�. The partial snake creates strong imperfec-
tion resonances at every integer K causing a spin flip.
However, since the partial snake was built using a sole-
noid, strong coupling was introduced into the AGS, and
the coupled spin resonances were enhanced.

In 1997, an ac dipole was installed and used to over-
come strong intrinsic resonances in the AGS [9,10]. By
driving the ac dipole near the vertical betatron tune to
enhance the natural intrinsic resonance, a full spin flip is
achieved. However, the ac dipole could not be used on the
weak intrinsic resonances since the amplitude of the
beam oscillation required to achieve a full spin flip was
beyond the physical aperture of the AGS beam pipe.

Spin depolarizing resonances due to coupling may
account for as much as a 30% loss of polarization in the
AGS from the 70% injected. The major source of coupling
in the AGS is the solenoidal snake. In the past some
preliminary work was done to understand this phenome-
non [11], and a method to overcome these resonances was
attempted [12]. In the polarized proton run of 2002, the
response of these coupled spin resonances to the strength
of the solenoidal snake, skew quadrupoles, and vertical
and horizontal betatron tune separations provided a
benchmark for a modified DEPOL program [3].

To date, problems in the AGS remain with the weak
intrinsic resonances and the coupled spin resonances.
Problems with these resonances have hampered efforts
to deliver the targeted 70% polarization to RHIC. So far
the AGS has only been able to deliver a maximum of 40%
polarization to RHIC. The polarized proton source during
the 2002 run delivered protons polarized at 70% to the
AGS Booster with 2� 1011 particles per pulse. The po-
larized proton bunches were transferred to the AGS at
G
 � 4:6 without polarization loss. Thus losses in the
AGS amount to nearly 40% of the delivered polarization,
all of which are due to the coupled and weak intrinsic
resonances. A better understanding of the behavior of
these resonances is urgently needed so that an effective
remedy can be implemented.

This paper presents studies of spin matching correction
in the AGS. Sections III extend the DEPOL algorithm to
cover coupled spin resonances. A discussion of the AGS
051001-5
lattice and experimental setup is given in Sec. IV.
Section V presents data gathered during the 2002 polar-
ized proton run where the response of crossing the 0� �x
coupled spin resonance was studied. These results are
compared to the new DEPOL predictions. In Sec. VI, a
new technique to suppress coupled spin resonances via
spin matching with two families of skew quadrupoles
rather than machine decoupling is presented. The con-
clusion is that by adding an additional family of skew
quadrupoles the remaining coupled spin resonances can
be suppressed.

II. TECHNIQUES FOR CALCULATION OF THE
RESONANCE STRENGTH

As demonstrated previously the spin resonance
strength for a vertically oriented spin vector can be cal-
culated to first order using

"K � �
1

2$NT

Z CNT

0

�
�1�G
�

�
z00 �

iz0

)

�

� i�1�G�
�
z
)

�
0
�
eiK��s�ds; (31)

where C is the circumference of the ring, K is the reso-
nance spin tune, ) is the bending radius, x and z are the
transverse horizontal and vertical components of the
particle motion, � is the orbit bending angle, and the
independent variable s is the path length along the design
orbit. Primes indicate derivatives with respect to s.

Although other algorithms [7] which address the prob-
lem of spin resonance calculation exist, owing to our
familiarity with DEPOL, we proceed by building from
its algorithm [3]. In DEPOL the strengths of imperfection
and intrinsic resonances are evaluated by breaking up the
integral in Eq. (31) into a sum over each element in the
lattice

"K �
X
lattice

"Km
NT

; (32)

"Km � �
1

2$

Z s2

s1

�
�1� K�

�
z00 �

iz0

)

�

� i�1�G�
�
z
)

�
0
�
eiK��s�ds: (33)

Assuming that 1=) is a step function, constant in the
element and zero just outside the element, partial inte-
gration leads to an intermediate form,

"Km �
1

2$

�
�1� K���1 � i�

)
z1e

iK�1

�
�1� K���2 � i�

)
z2e

iK�2

� �1� K�
Z s2

s1

z00eiK�ds

�
K

)2
�K �G�

Z s2

s1

zeiK�ds
�
: (34)
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Here �i is the contribution due to edge focusing of the magnet and zi � z�si�. Applying partial integration again, we
obtain

"Km �
1

2$

�
�1� K���1 � i�

)
z1e

iK�1 �
�1� K���2 � i�

)
z2e

iK�2

� �1� K�
��
z02 �

iK
)
z2

�
eiK�2 �

�
z01 �

iK
)
z1

�
eiK�1

�
�

�
K�K2 �G�

)2

�Z s2

s1

zeiK�ds
�
: (35)

In the uncoupled case the integral is evaluated using the

homogeneous equation z00 � �Kzz, where Kz�s� is the
focusing function of the guide field. Substitution using
this equation allows an exact evaluation of Eq. (35).

In the case of linear coupling, however, the homoge-
neous equation is no longer valid for all the elements since
z00 will depend not only on normal quadrupole fields but
also on skew quadrupole fields and fields from vertical
orbit correctors. In order to include the local spin perturb-
ing effects arising from these radial fields we proceed by
block diagonalizing the individual transfer matrices for
the coupling elements. Thus we hope to transform the z
coordinate into a basis where a new homogeneous equa-
tion is true. The technology to accomplish this has al-
ready been developed by Teng [13]. Given an element with
off-diagonal values in the 4� 4 transfer matrix:

M e �

�
Ae Be
Ce De

�
; (36)

the 2� 2 submatrices Ae, Be, Ce, and De of the single
element transfer matrix Me can be used to develop a
transformation which will block diagonalize Me. The
result is

R eMeR�1
e �

�
Ee 0
0 Fe

�
; (37)

R e �
1																	

1� jrej
p �

I �re
re I

�
; (38)

r e��

�
Tr�Ae�De�

2

�

																																																				
jBe�Cej�

Tr2�Ae�De�

4

s �
Be�Ce
jBe�Cej

: (39)

The overbar on C indicates a symplectic conjugate, which
is defined as

C � �SCTS; (40)

with S being the matrix

S �

�
0 1
�1 0

�
: (41)
051001-6
Working with the canonical pairs �x; px=ps� and
�z; pz=ps� with pz=ps � z0 and px=ps � x0 just outside
the magnet, we can use Re to transform them to a locally
uncoupled basis a, a0, b, and b0:

0
B@
x
x0

z
z0

1
CA� R�1

e

0
B@
a
a0

b
b0

1
CA: (42)

In this basis the homogeneous equations a00 � �Kaa
and b00 � �Kbb will hold. (Note that we absorb the sign
which determines focusing or defocusing in the Ka and
Kb variable.) We can determine focusing functions Ka
and Kb by considering that most elements can have their
transfer matrices cast in the form

�
a2
a02

�
�

�
cos�’a�

sin�’a�					
Ka

p

�
						
Ka

p
sin�’a� cos�’a�

��
a1
a01

�
: (43)

Thus Ka � ��Ee2;1=Ee1;2� and Kb � ��Fe2;1=Fe1;2�. So to
solve the integral in Eq. (35) we can write

z � �re1;1a� re1;2a
0 � b�

1																	
1� jrej

p (44)

to obtain

Z s2

s1

zeik�ds � �
1																	

1� jrej
p Z s2

s1

�
re1;1

a00

Ka
�
b00

Kb

� re1;2a
0

�
eiK�ds: (45)

Now using an integration technique similar to the origi-
nal DEPOL [3],

Z s2

s1

a00eiK�ds�
�a02�

iK
) a2�e

iK�2 ��a01�
iK
) a1�e

iK�1

1�K2=Ka)
2 (46)

we obtain a final closed expression:
Z s2

s1

zeiK�ds �
1																	

1� jrej
p ��

iK
)
re1;2 � re1;1

���a02 � iK
) a2�e

iK�2 � �a01 �
iK
) a1�e

iK�1

Ka � K2=)2

�

�

��b02 � iK
) b2�e

iK�2 � �b01 �
iK
) b1�e

iK�1

Kb � K2=)2

�
�re1;2�a2e

iK�2 � a1eiK�1�
�
: (47)
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Thus our final expression for the resonance contribution from each element is

"Km �
1

2$

�
�1� K���1 � i�

)
z1e

iK�1 �
�1� K���2 � i�

)
z2e

iK�2 � �1� K�
��
z02 �

iK
)
z2

�
eiK�2 �

�
z01 �

iK
)
z1

�
eiK�1

�

�

�
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iK
) b1�e

iK�1

Kb � K2=)2

�
�re1;2�a2e

iK�2 � a1eiK�1�
�
��
: (48)
For those elements which are already block diagonal, we
can neglect the local rotation to a diagonal basis and
employ the original formZ s2

s1

zeiK�ds�
�z02�

iK
) z2�e

iK�2 ��z01�
iK
) z1�e

iK�1

Kz�K2=)2
: (49)

It should be noted that this algorithm does not take into
account the effects of synchrotron sidebands, which in
other machines can lead to an additional series of spin
depolarizing resonances. In the AGS their effect can be
neglected since the synchrotron sideband resonances
merge with the main intrinsic resonance. Additionally
we have neglected the effect arising from the change in
the stable spin direction caused by the partial snake. For
spin resonances away from the imperfection resonance
condition, the spin vector is only slightly perturbed from
its vertical direction. This algorithm does however ac-
count for multipole feed-down effects caused by closed
orbit errors, provided that the software, which calculates
the orbit, includes these effects in the transfer matrices.

III. IMPLEMENTATION OF NEW ALGORITHM
DEPOL uses Courant-Snyder parameters from the MAD

[14] output files to construct the z1;2 and z01;2 values
necessary to evaluate the resonance amplitude. Yet
when MAD evaluates the Courant-Snyder values under
conditions of linear coupling, it employs u and v coor-
dinates which correspond to the block diagonal basis for
the one-turn transfer matrix. To correctly evaluate
the resonance strength we must transform back to the
original basis to obtain x; x0; z; z0. So in the DEPOL code
we read in values for the R matrix of the MAD output files
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and use it to transform the u; u0; v; v0 back to the x; x0; z; z0

basis. From here we can then implement Eq. (48) or (49)
for each element.

Of course now one could directly calculate Eq. (31) by
picking a sufficiently large value for NT and evaluating it
directly, but this would be computationally expensive. If
we look closely at the behavior of the elements which
make up the integral to be evaluated in Eq. (31), it appears
that we can factor out the phase element which changes
with each period around the lattice. The remaining ele-
ments in the sum remain constant for each pass. The
factored phase elements can be evaluated analytically
using the properties of a geometric series. This results
in four separate functions called enhancement functions
[6],

Eu�NT���
XNT
n�0

ei2$n�K��u�

��eiNT$�K��u�
sin�$�NT�1��K��u��

sin�$�K��u��
;

Ev�NT���
XNT
n�0

ei2$n�K��v�

��eiNT$�K��v�
sin�$�NT�1��K��v��

sin�$�K��v��
:

(50)

Here �u and �v are the normal-mode betatron tunes, and
NT is the number of passes around the lattice. Each
function, once evaluated, can then be multiplied by the
appropriate terms in the sum over one pass in the lattice.
The factors from Eq. (48) become
ale
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Here we are using the Courant-Snyder parameters ��l�u;v
and .�l�u;v evaluated at the l element in the u� v basis.
Also we use emittances 8u;v, the phase advance ��l�u;v,
and R is the one-turn rotation matrix. So we only need to
evaluate the enhancement function to a sufficiently large
value of NT and then use factors derived above to evaluate
Eq. (48). For our purposes we chose NT � 10 000. We
found that for NT > 1000 the enhancement factor
converged with j;"Kj< 0:000 001 for a 10$ mm-mrad
emittance.

IV. EXPERIMENTAL SETUP

The AGS has 12 superperiods, each with 20 combined-
function magnets to both bend and focus the beam around
a ring of 807.12 m in circumference. A single superperiod
can be seen in Fig. 3. In the AGS a partial solenoidal
snake was employed to overcome imperfection reso-
nances [8], and an ac dipole was used to overcome strong
intrinsic resonances [9]. In past years the AGS was oper-
ated with a spin tune crossing rate of . � 4:8� 10�5.
However, during the 2002 run a backup power supply was
used to power the AGS main magnets resulting in a
slower crossing rate of . � 2:4� 10�5. The lower accel-
eration rate allowed for a weaker partial snake since, at a
051001-8
slower acceleration rate, effective spin flipping due to the
imperfection resonances is enhanced. Lowering the par-
tial snake strength has the advantage of reducing the
effective strength of the coupled spin resonances, but
this is offset by an increase in the depolarization at all
intrinsic resonance crossings, due to the slower accelera-
tion rate. In the past, a 5% partial snake strength was
used, but during this run a modified partial snake ramp
was found to be the most effective. The current control of
the partial snake was set up to maintain a 3% snake from
injection toG
 � 7:5 and then to ramp up to 5% byG
 �
21. From G
 � 21 to extraction at G
 � 46:5 the snake
was held at 5%.

The AGS is also equipped with a family of six skew
quadrupoles each of which is located in the 17th straight
section of every other superperiod, next to the horizontal
tune quadrupoles. They are 0.390 88 m in length and the
current can range from 0 to a maximum of 500 A which
corresponds to

R
�@Bz=@z�ds � 0:84 T.
V. STUDY OF COUPLING SPIN RESONANCES

The primary source of coupling in the AGS is the
partial solenoidal snake. But it has been observed that
051001-8
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FIG. 3. AGS superperiod. Here up and down vectors show the direction and magnitude of the focusing gradient, and the letters
denote the names assigned to each series of magnets.
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the bare AGS machine has a net skew quadrupole com-
ponent. Coupling studies in the past estimated the average
roll per combined-function magnet to be 0.13 mrad [15].
Additionally closed orbit errors can contribute to cou-
pling via feed-down from the sextupole fields present
in the AGS combined-function magnets and sextupole
magnets.

During the 2002 polarized proton run, particular at-
tention was paid to studying the behavior of the 0� �u �
0� �x [16] resonance crossing during acceleration, since
the analyzing power of the AGS polarimeter was suffi-
ciently large at low energy to generate accurate measure-
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FIG. 4. Polarization after crossing the 0� �u and 0� �v
resonances during acceleration with vertical and horizontal
set-point normal mode tunes at �v � 8:8 and �u � 8:78 versus
currents of all six skew quadrupole magnets. Snake strength
was 3%. The vertical and horizontal emittances were measured
as �11� 1�$ and �21� 1�$mmmrad. In addition, a distributed
roll of <0:3 mrad was applied to the BD and CF magnets in the
curves calculated using DEPOL.
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ments, and the strength of the 0� �u coupled spin
resonance was large.

In Figs. 4–6, experimental data from scans of skew
quadrupoles, horizontal tune, and the partial snake are
compared with theoretical DEPOL calculations assuming a
70% polarization at injection into the AGS. In addition all
emittances are given in terms of the normalized phase-
space area containing 95% of the beam particles. All
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FIG. 5. Polarization after crossing the 0� �u and 0� �v
resonances with set-point vertical normal mode tune (�v �
8:8) versus horizontal set tunes. Snake strength was 3%.Vertical
and horizontal emittances were measured as �13� 1�$ and
�21� 1�$mmmrad, respectively. In addition, a distributed roll
of <0:3 mrad was applied to the BD and CF magnets in the
DEPOL calculated curves.
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polarizations are calculated using

Pf
Pi

�
1� $j"K j2

.

1� $j"K j2

.

: (55)

This equation is the result of the integration of the
Froissart-Stora formula over a Gaussian distribution.
All tunes cited reflect the set-point tunes used in the
AGS tune control program and not actual measured tunes.
The control system does not account for the effect of the
skew quadrupoles and solenoid. However for all the reso-
nance calculations the correct tune shifts were calculated
based on the currents sent to each magnet. Unless speci-
fied otherwise, the snake strength was set to 3%, the skew
quadrupoles set to zero, and the ac dipole was turned off
for Figs. 4–6. The results represent the net effect after
acceleration through both the 0� �v � 0� �z and 0�
�u spin resonances with an initial polarization of 70%.

The behavior demonstrated in these figures is consis-
tent with the present understanding of intrinsic coupled
spin resonances. An often-used analytical approximation
to betatron motion in the presence of coupling is

z� �

										
�z8z
$

r
cos��v>z � %z�

� Cx

											
�u8x
$

r
cos��2>x � %x�; (56)

where �z and �x are the unperturbed betatron amplitude
functions, �u;v are normal-mode tunes, and %z;x are the z
051001-10
and x phases. The coupling coefficient is given by

Cx �
jC�j

2

j�x � �z � lj �
																																																
��x � �z � l�2 � jC�j

2
q (57)

with C� being the integral of all the coupling elements in
the ring (for more details see [17]). From Eq. (57) we can
see that the coupling coefficient will depend on the sepa-
ration of the horizontal and vertical tunes as well as the
strength of the coupling elements. Since the magnitude of
the intrinsic coupled spin resonance depends on the am-
plitude of the vertical oscillations due to the horizontal
tune, this resonance should be directly proportional to the
strength of the coupling coefficient. Naively we should
expect, all things being equal, that a reduction in the
coupling strength should lead to a reduction in the depo-
larization resulting from crossing an intrinsic coupled
spin resonance. As we will discuss in the next section,
this may not always be the case as it is possible for a
globally decoupled machine with strong locally coupled
regions to still have significant intrinsic coupled spin
resonances.

Figure 5 shows that the polarization falls off as the
tunes approach each other. Since the coupling coefficient
by Eq. (57) is inversely proportional to the vertical and
horizontal tune separations we expect the intrinsic
coupled spin resonance strength to decrease with the
tune separation, which is exactly what we observe.

In Fig. 6 we see that as the strength of the solenoidal
snake increases, polarization falls off. This is due to the
increase in coupling C� caused by an increase in the
solenoid strength. This in turn raised the amplitude of
the associated intrinsic coupled spin resonance.

In Fig. 4, the behavior is a little more complicated. Net
polarization first rises as the strength of the skew quadru-
pole is raised to 8 A and then declines as the current is
raised above this value. Since the intrinsic coupled spin
resonance strength is proportional to the coupling coef-
ficient we believe that this behavior is due to the vectorial
nature of the global coupling coefficient C�. Since the
solenoid has both imaginary and real contributions to C�

a single family of skew quadrupoles can cancel only the
coupling component pointed in its direction. Thus at 8 A
the skew quadrupole family only partially cancels the
coupling caused by the partial snake.

Initial DEPOL calculations without rolls generated
curves which were too broad. It was only by including
either a large single roll or selectively placed rolls that a
good fit to the measured data was achieved. For all DEPOL

calculations shown here selectively distributed rolls were
applied to the CF magnets [18] (0.05 mrad per magnet)
and applied to the BD magnets [19] (0.25 mrad per
magnet ). This is not unreasonable considering previous
estimates. However it should be emphasized that this
configuration is by no means unique. While it was essen-
tial to include a net skew quadrupole component in the
051001-10
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bare AGS, the distribution and the direction of these rolls
is still unclear since our data could fit many different
configurations. Either the rolls of the magnets need to
be surveyed, or a method similar to the ‘‘action phase
jump technique’’ used in RHIC and in other machines
could be used in the AGS [20–22].

VI. SUPPRESSION OF THE COUPLED SPIN
RESONANCES

With the good agreement between experimental data
and the DEPOL calculation demonstrated in Figs. 4–6 we
can now proceed with confidence to consider ways to
improve the surviving polarization in the AGS using
DEPOL. One approach is to use an additional family of
skew quadrupoles. In the AGS, there is a skew quadrupole
at the 17th position of every other superperiod, i.e., six
skew quadrupoles in total. They are currently used to help
correct for the rolls in the combined-function bending
magnets. On the basis of Eq. (57) one might be inclined to
decouple the AGS globally. To do so ideally one should
pick locations for additional skew quadrupoles with a
large phase difference from the existing skew quadru-
poles. The approach of global decoupling might succeed
in yielding a smallC� but with sections of large skew and
solenoidal fields the spin will still be perturbed as the
particles oscillate horizontally through these sections.

Additionally, the field strength required for global
decoupling causes a large tune shift which makes identi-
fying the necessary strengths difficult, if not impossible.
Since we are concerned with eliminating the coupled spin
resonances and not necessarily decoupling the AGS, a
spin matching condition may still exist. Harmonic spin
matching has been used to date on weak intrinsic reso-
nances in COSY and ELSA [23,24] and involves the
introduction of a countervailing spin resonance perturba-
tion which exactly cancels the existing spin resonances.
To our knowledge, this technique has not been tried on
intrinsic coupled spin resonances. It may be possible to
either partly or totally cancel the intrinsic coupled spin
resonance with the perturbation introduced by an addi-
tional set of skew quadrupoles that could be located just
after dipole AD15 in every other sector. As shown in
Figs. 7–10 we find that such a spin matching condition
appears achievable for the four strongest intrinsic coupled
spin resonances.We have fixed our vertical and horizontal
normal-mode tunes (�v � 8:8, �u � 8:7) by adjusting the
normal tune quadrupoles for each skew quadrupole set-
ting. In this way the resonance location is fixed. These
figures simulate the effect of scanning through various
current strengths for skew quadrupoles in the 15th and
17th locations assuming an initial 100% polarization. A
vertical emittance of 10$ mm mrad was assumed with a
spin tune ramp rate of . equal to 2:4� 10�5 and the
snake strength was set to 5%. For these calculations the
new skew quadrupoles were assumed to have the same
size and current-to-field transfer function as the existing
051001-11
skew quadrupoles in the 17th lattice position. For all four
resonances a solution appears possible. However, over-
coming the 36� �u resonance requires a current in excess
of 1200 A. Since this high current needs to be maintained
only during the brief time of the resonance crossing it
should be possible. Actually a lower skew quadrupole
current may in reality be sufficient since these calcula-
tions were all done assuming a spin tune ramp rate of . �
2:4� 10�5 generated by the backup Westinghouse main
051001-11
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magnet power generator and not the usual rate of . �
4:8� 10�5, which is normally achieved by the Siemens
main magnet power generator. Since the resonance
strength as a function of skew quadrupole current has
many local minima, we can most likely find a minimum
-1330 -1290 -1250 -1210 -1170 -1130
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ol

ar
iz

at
io

n

Skew Quad #17 = 1200 A

without Skew Quads.

Skew Quad Currents (#15 family) (A)

FIG. 10. Polarization after crossing the 36� �u resonance
with fixed normal mode tunes (�v � 8:8, �u � 8:7) versus
currents for hypothetical skew quadrupoles in the 15th lattice
sections. The 17th skew quadrupole family was fixed at a
current of 1200 A. The dashed line indicates base polarization
without any skew quadrupoles operating.
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at a lower skew quadrupole current with a stronger resid-
ual resonance. At the higher acceleration rate depolariza-
tion would still remain effectively zero.

VII. CONCLUSION

The 2002 polarized proton run in the AGS provided an
opportunity to study the dependence of the 0� �u reso-
nance strength on tune separation, skew quadrupole cur-
rent, and snake strength. This study provides an
experimental benchmark for the extended DEPOL. These
results compared favorably with the new DEPOL calcula-
tions. Using the new DEPOL it has been shown that sup-
pression of the coupled spin resonances in AGS can be
achieved with the addition of a second family of six skew
quadrupoles in the vacant 15th straight sections. A new
helical superconducting strong partial snake [25] should
provide a solution to the weak and strong intrinsic reso-
nances and reduce coupling as compared with a solenoid.
Our results in this paper show that a solution using a
second family of skew quadrupoles with sufficient power
should be capable of achieving a solution even in the most
unfavorable relative phase location. Better results maybe
achievable at other open lattice locations.
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