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Longitudinal solitons in bunched beams
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Stable, coherent, longitudinal oscillations have been observed in several accelerators. Within the
context of perturbation theory, the beam parameters and machine impedance often suggest these
oscillations should be Landau damped. When nonlinear effects are included, long-lived, stable
oscillations become possible for low intensity beams. In this paper we report observations of stable
humps in bunched beams and present a theoretical framework for their description. Implications for
bunched beam stochastic cooling are considered.
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I. INTRODUCTION

Solitary waves in the form of holes or humps have been
observed in plasmas and coasting beams and the theory
has been developed [1–6]. These solitons are stationary
solutions of a coupled Vlasov-Poisson system.

For bunched beams below transition, the space charge
force reduces the incoherent synchrotron frequency and,
as such, is generally referred to as a defocusing imped-
ance. Above transition space charge is focusing, leading
to an increase in the incoherent synchrotron frequency.
The change from focusing to defocusing at transition is
an example of the mass conjugation theorem [4,7], and we
will generally refer to focusing and defocusing imped-
ances so that our results apply equally well above and
below transition. Since we consider relativistic beams, the
wall impedance is also included.

Solitons in bunched beams were suggested by observa-
tions of ‘‘rf activity’’ during bunched beam stochastic
cooling studies in the SPS [8] and the Tevatron [9,10]. The
rf activity was strong and extended to very high fre-
quency, making the design of a cooling system difficult.
A bunched beam stochastic cooling system for RHIC is in
the design stage [11] and the possibility of a halo cooling
system for the LHC has been considered [12]. It is there-
fore both timely and prudent to acquire a working knowl-
edge of these phenomena. Before proceeding with the new
material we review the coasting beam case.

Let � denote machine azimuth and !0 be the angular
revolution frequency. We use the comoving phase � �
��!0t as the longitudinal coordinate. Assume that the
beam current I��; t� varies slowly in the comoving frame
so that the longitudinal voltage per turn is given by
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where W��� is the longitudinal wake potential, and we
have assumed a short range wakefield to remove multi-
turn contributions to the voltage. This wakefield includes
both the space charge piece as well as the contributions
from bellows, transitions, etc. We have made the usual
approximation that the frequency spread in the beam is
small enough so that the locations of the impedance
producing objects in the ring are irrelevant and only the
sum of all the individual contributions matters. The equa-
tion of motion for a single particle is

d2�

dt2
� �


!2
0q

2�
2E
V��; t�;

where 
 � 1=�2
T � 1=�2 is the frequency slip factor,

q is the charge per particle, E is the central energy, and

 � v=c. Set p � d�=dt and introduce the phase space
density f��;p; t�, where fdpd� is the number of par-
ticles in dpd�. The Vlasov equation for f is then

@f
@t

� p
@f
@�

�

!2

0q

2�
2E
V��; t�

@f
@p

� 0;

where

V��; t� � �q!0

Z
W��1�d�1

Z
f��1 ��;p�dp:

Soliton solutions are independent of time and nonlin-
ear. When

W��� � W0�2sgn��� exp���j�j�;

where � > 0 and W0 are constants, the voltage is related
to the current via

V��� � �2 @
2V

2 � 2W0
@I

:

For this case analytical progress is possible [4]. Certain
other wakefields are tractable as well [2–4]. For the
present case we will set � � 0 so that the coasting
2004 The American Physical Society 044402-1
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FIG. 1. Simple picture of a soliton in a coasting beam. The
horizontal axis is �, the longitudinal position within the bunch.
The vertical axis is p � d�=dt. The density is symmetric in p
and only the p > 0 portion is shown.
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FIG. 2. Wall current monitor data for a freshly injected
bunch.
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FIG. 3. Wall current monitor data at injection for the same
bunch as in Fig. 2, but 17 min later.
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beam Hamiltonian is approximated as

H��;p� � p2=2 � k=2
Z
dpf�p;��:

The constant is given by

k �
2
�q!0�

2L


2E
;

where L is the net inductance. The net inductance satisfies
j!0L � Z=n, where Z is the sum of the broadband wall
impedance and the longitudinal space charge impedance.

For a round Gaussian beam with rms radius �, in a
round pipe of radius b � �, the longitudinal space charge
impedance is well approximated by

Z
n

�������sc
� �j

Z0


�2 ln

�
b

1:5�

�
; (1)

where � � 1=
���������������
1 � 
2

p
is the Lorentz factor, Z0 � 377�,

and the derivation is given in the appendix.
Figure 1 shows a model due to Sacherer [13], in the

frame comoving with the soliton. The piecewise constant,
phase space density is either 0, f0, or f0 � f1; and the
distribution is independent of time. Since the phase space
density is constant on contours of constant H, one obtains
the equations H��1; p1� � H��2; 0� and H��1; p2� �
H��2; p0�. These may be combined to give

p2
2 � p2

0 � p2
1 � 2k�f0�p0 � p2� � f1p1	:

Taking p0, f0, and p1 as input parameters yields

p2 �
�����������������
p2

0 � p2
1

q
and p2

1 � 2k�f0�p0 �
�����������������
p2

0 � p2
1

q
� �

f1p1	. Taking p1 
 p0 and expanding the square root
gives

p1 �
�2kf1

1 � kf0=p0
:
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If the correction term kf0=p0 is set to zero, the condition
is identical to that for a phase space density of f1 to self
bunch. The change in the line density due to the soliton is
� �p2

1=k. For an inductive impedance above transition
k > 0. This results in a deficit of phase space density and
one observes a hole in the line density. When � � 0 the
problem is more difficult. In a forthcoming publication
[14], in which the delta effect is taken into account, we
shall investigate the extent to which these predictions of
the Sacherer model can be maintained. We go on to
present some bunched beam data for the RHIC.
II. DATA

Long-lived coherence has been observed in the SPS
[8,12], the Tevatron [9,15], and now the RHIC [16].
Figure 2 shows a mountain range plot of the line density
for freshly injected protons with � � 25:9. The ampli-
tude of the coherent oscillation increased steadily, and
Fig. 3 shows the same bunch, still at injection energy,
17 min later. Figures 4 and 5 show different bunches at
044402-2
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FIG. 4. Wall current monitor data for a bunch at the begin-
ning of flattop.
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flattop with � � 107. In all the cases shown, only the
28 MHz accelerating cavities were operating and the total
acquisition time was 4000 turns � 50 ms. RHIC’s tran-
sition energy is �T � 23:8, so all the data are above
transition. All the data show a coherent oscillation which
corresponds to a region of overdensity, or hump, in the
longitudinal phase space. This behavior is commonplace
in RHIC and we have never observed a stable hole.
Measurements of RHIC’s broadband impedance [17]
give Z=n � j�3 � 1�� for the inductive wall contribution.
The longitudinal space charge impedance at � � 25:9 is
Z=n � �j1:3� and the space charge impedance becomes
negligible at store. For all the data shown the coherent
force leads to a reduction in the incoherent synchrotron
frequency and as such it is defocusing, in the usual sense.
We have also obtained data showing humps in deuteron
beams with � � 10:7 < �T and Z=n � �5j�. Again, the
deuterons show humps for impedances that are usually
thought of as defocusing. Therefore, we always see humps
with a defocusing impedance, which is just the reverse of
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FIG. 5. Wall current monitor data for a different bunch at
flattop.
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what one expects for coasting beams.We go on to consider
the theory of solitons in bunched beams.

III. BUNCHED BEAM MODEL

For bunched beams we simply include the rf voltage in
the coasting beam equations of motion. To simplify nota-
tion let � denote the position in the bunch measured in
units of rf radians, !s;0 denote the small amplitude an-
gular synchrotron frequency, and use s � !s;0t as the
evolution variable. Let #��; s� be the normalized line
density of the particles

Z �

��
d�#��; s� � 1:

The rf voltage is V�t� � Vrf sin� and !rf is the angular rf
frequency. The total charge in the bunch is Q which is
assumed positive, and the effect of transition energy is
included in the sign of the rf voltage with Vrf > 0 below
transition and Vrf < 0 above transition. Since solitons are
long lived we neglect the effect of any synchronous phase.
The equation of motion for � is

d2�

ds2
� sin� �

LQ!2
rf

Vrf

@#��; s�
@�

: (2)

To simplify notation set

‘ � �
LQ!2

rf

Vrf
:

Space charge dominated beams below transition have
‘ > 0. For a steady state, matched bunch, a positive value
of ‘ defocuses the beam and leads to an incoherent
synchrotron frequency that is less than the synchrotron
frequency for ‘ � 0. Set p � d�=ds so that

dp
ds

� � sin�� ‘
@#��; s�
@�

: (3)

A drift-kick computer code has been written to simulate
these equations of motion. Figure 6 shows simulation
results for a short, roughly matched bunch that is dis-
placed in phase from the stable fixed point. As is clear
from the figure, a positive value of ‘ produces solitons of
high density. Solitons in the RHIC accelerator always
have ‘ > 0. However, for some ranges of the simulation
parameters a hump can form with a focusing impedance.
Next we present an analytic model of this phenomena.

IV. EQUATIONS OF MOTION

Taking p as the momentum coordinate and � as
the position coordinate, Eq. (3) follows from the
Hamiltonian

H��;p; s� � p2=2 � 1 � cos�� ‘#��; s�: (4)

Introduce the distribution function f��;p; s�, where
f��;p; s�d�dp is the fraction of particles in d�dp.
044402-3



FIG. 6. Scatter plots of p versus � from longitudinal simu-
lations with a sinusoidal rf voltage and a broadband impedance.
The initial conditions (top panels) are identical and the only
difference during the evolution is the sign of the broadband
impedance. Effects of a defocusing impedance are shown on
the left and those for a focusing impedance are shown on the
right. Plots at 400 synchrotron periods (middle panels) and 800
synchrotron periods (bottom panels) clearly show that a defo-
cusing impedance can lead to solitons.
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The line density is then

#��; s� �
Z
d�1dp1&����1�f��1; p1; s�:
044402-4
Consider a canonical transformation of Goldstein’s [18]
first type with a generator given by

F1��;�� �
�2

2
cot�� � s�; (5)

where � is the new position coordinate and J is the new
momentum coordinate. The old and new coordinates are
related via

p �
������
2J

p
cos�� � s�; � �

������
2J

p
sin�� � s�:

These are rotating coordinates so both J and � are
‘‘slow’’ variables as long as the bunch is not too long.
Since the transformation is canonical dpd� � dJd�.
The Hamiltonian in the new variables is

H1��; J; s� � H �
@F1

@s

��������;�

� H � J (6)

�� J� Jcos2�� � s�

� �1 � cos�
������
2J

p
sin�� � s�	�

� ‘
Z
d�1dJ1f��1; J1; s�&�

������
2J

p
sin�� � s�

�
��������
2J1

p
sin��1 � s�	: (7)

Assume that f varies slowly compared with the sinusoids
which is equivalent to assuming that the coherent fre-
quency of the soliton is close to the small amplitude
synchrotron frequency. Define the phase average of a
generic function h�J;�; s� as

hh�J;�; s�is �
1

2�

Z 2�

0
h�J;�; s�ds;

with the slow variables held constant during the average.
For the first line in Eq. (7)
�J� hJcos2�� � s�is � 1 � hcos�
������
2J

p
sin�� � s�	is � �J=2 � 1 � J0�

������
2J

p
� � *�J� � �J2=16;

where J0�x� is the Bessel function, and we have introduced *�J� both for convenience and to allow for other forms of rf
voltage. Averaging the Hamiltonian in (6) gives

H1 � *�J� � ‘
Z
d�1dJ1f��1; J1; s�h&�

������
2J

p
sin�� � s� �

��������
2J1

p
sin��1 � s�	is: (8)

To perform the phase average of the delta function notice������
2J

p
sin�� � s� �

��������
2J1

p
sin��1 � s� �

�������������������������������������������������������������������
2J� 2J1 � 4

��������
JJ1

p
cos�� � �1�

q
cos�s� ,� � R cos�s� ,�;

where , is a phase that depends on J, J1, �, and �1. And

h&�R cos�s� ,�	is �
Z 2�

0

ds
2�

&�R cos�s� ,�	jR;,;fixed �
Z �

��

ds
2�

&�R cos�s�	 �
1

�R
:

The last steps follow since , and R are slow, and the delta function in the integrand on the right is nonzero only when
s � ��=2. The Hamiltonian becomes

H1 � *�J� �
‘
�

Z
d�1dJ1

f��1; J1; s��������������������������������������������������������������������
2J� 2J1 � 4

��������
JJ1

p
cos�� � �1�

p : (9)
044402-4
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The equations of motion for � and J are

d�

ds
�

@H1

@J
;

dJ
ds

� �
@H1

@�
:

The corresponding Vlasov equation is

@f
@s

�
@H1

@J
@f
@�

�
@H1

@�

@f
@J

� 0: (10)

We seek uniformly rotating solutions (i.e., the solitons),

f��; J; s� � g�� � ~rrs; J�;

where ~rr is a constant. Inserting this functional form in the
Vlasov equation gives�

~rr�
@H1

@J

	
@g
@�

�
@H1

@�

@g
@J

� 0; (11)

where g � g��; J� is a function of two variables. For
some purposes it is useful to transform back to
Cartesian phase space coordinates.

A �
������
2J

p
sin�; B �

������
2J

p
cos�:

This is a canonical transformation so the density g�A;B�
satisfies

@K
@B

@g
@A

�
@K
@A

@g
@B

� 0; (12)

with the new Hamiltonian

K � R�A;B� � V�A;B�; (13)

where the single particle motion is generated by

R�A;B� � *��A2 � B2	=2� � ~rr�A2 � B2�=2; (14)

and collective effects are due to
044402-5
V�A;B� �
‘
�

Z
dA1dB1

g�A1; B1�������������������������������������������������
�A� A1�

2 � �B� B1�
2

p : (15)
V. APPROXIMATE SOLUTIONS

For physical solutions of Eq. (12), local extrema of g
occur at stable fixed points of K. Additionally, contours of
constant values of g and K coincide. Suppose we have a
situation like that shown in the bottom left panel of Fig. 6.
Choose the A axis to pass through the center of the soliton
so it is centered at A � A0, B � 0. We will consider
solutions for which this is a fixed point of both R and
V. In the vicinity of the fixed point the leading order
approximation to the single particle generator is
R�A;B� � R0 � 3�A� A0�

2, where 3 � �A2
0=16 for sinu-

soidal rf. To this order @R=@A � 23�A� A0� and
@R=@B � 0. In this approximation the curvature of the
soliton apparent on the left side of Fig. 6 will be absent,
but for solitons of small angular extent, the results should
be good.

If one could find a class of functions g�A;B� which were
constant on elliptical contours, and yielded linear coher-
ent forces within the beam, the Vlasov equation would
reduce to an algebraic equation among the various pa-
rameters. Much of the relevant mathematics is the same as
for transverse space charge [19] but will be reproduced
here for completeness. First, notice that Eq. (15) is the
electrostatic potential of a two dimensional charge sheet
in the plane containing the sheet. Let us add a third
dimension z.

The generalization of Eq. (15) is
V�A;B; z� �
‘
�

Z
dA1dB1dz1

g�A1; B1; z1�������������������������������������������������������������������������
�A� A1�

2 � �B� B1�
2 � �z� z1�

2
p ; (16)
which satisfies the equation�
@2

@A2 �
@2

@B2 �
@2

@z2

�
V�A;B; z� � �4‘g�A;B; z�: (17)

Consider distributions of the form,

g�A;B; z� �
n�A2=a2 � B2=b2 � z2=c2�

abc
; (18)

and define

T�A;B; z; 6� �
A2

a2 � 6
�

B2

b2 � 6
�

z2

c2 � 6
: (19)

The field gradients are given by

@V
@A

�� 2‘A
Z 1

0
d6

n�T�A;B; z; 6�	

�a2 � 6�

� ��a2 � 6��b2 � 6��c2 � 6�	�1=2; (20)
@V
@B

�� 2‘B
Z 1

0
d6

n�T�A;B; z; 6�	

�b2 � 6�

� ��a2 � 6��b2 � 6��c2 � 6�	�1=2; (21)

@V
@z

�� 2‘z
Z 1

0
d6

n�T�A;B; z; 6�	

�c2 � 6�

� ��a2 � 6��b2 � 6��c2 � 6�	�1=2: (22)

Substituting Eqs. (20)–(22) in (17), and integrating by
parts proves that the solution works up to the boundary
condition terms. To prove the boundary conditions assume
that n�T� � 0 for T > T0, and that n�T� � n0 for all T.
Assume B2=b2 > T0, then
044402-5
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�������@V@B
�������� j2B‘j

Z 1

B2=T0

n06�5=2d6 �
4n0‘

3T3=2
0 B2

;

which goes to zero as B ! 1. Letting A ! 1 yields the
same limit and proves the boundary conditions.
044402-6
Next consider the potential in the z � 0 plane

V�A;B;0��
‘
�

Z
dA1dB1dz1

g�A1;B1;z1�������������������������������������������������������
�A�A1�

2��B�B1�
2�z2

1

q :

(23)

As c ! 0 we obtain a charge sheet with the two dimen-
sion potential
V�A;B� �
‘
�

Z
dA1dB1

1������������������������������������������������
�A� A1�

2 � �B� B1�
2

p Z
dz1g�A1; B1; z1�; (24)

where the last integral is independent of c.
For distributions where n�T� is a constant for T < T0 and zero otherwise, the gradients (20)–(22) are linear functions

in the region where n � 0. Integrating over the z dimension yields the class for functions needed for the solution of the
Vlasov equation

g�A;B� �



3
2�ab

��������������������������������������������������������
1 � �A� A0�

2=a2 � B2=b2
p

if �A� A0�
2=a2 � B2=b2 < 1;

0 otherwise;
(25)
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FIG. 7. Right-hand side of Eq. (32) as a function of r � a=b.
where a and b are parameters, and we have shifted the
center of the distribution to the stable fixed point.

In the region where g � 0 the coherent forces are

@V
@A

���A�A0�
3‘
2�

Z 1

0
d6�b2�6��1=2�a2�6��3=26�1=2;

(26)

@V
@B

� �B
3‘
2�

Z 1

0
d6�b2 � 6��3=2�a2 � 6��1=26�1=2:

(27)

With Eqs. (25)–(27) the Vlasov equation (12) is equiva-
lent to

a2�23� VAA� � b2VBB; (28)

where we have introduced the notation VAA �
@2V=@A2�A � A0; B � 0�.

The potential V�A;B� is ‘‘rounder’’ than the distribu-
tion g�A;B�. More explicitly, if a < b then

a2

b2

VAA

VBB
< 1: (29)

We have verified this via numerical calculation of the
various integrals [20]. Intuitively, notice that V�A;B� is
the convolution of g�A;B� with a cylindrically symmetric
function.

Generally, one has VAA � ��‘=a3�Ga�a=b� and VBB �
��‘=a3�Gb�a=b�. Define r � a=b

Ga�r� �
3r3

2�

Z 1

0
d6��1 � 6��r2 � 6�36	�1=2

� 3r3
X1
n�1

n
�
�2n� 1�!!

2nn!

	
2
�1 � r2�n�1; (30)
Gb�r� �
3r3

2�

Z 1

0
d6��r2 � 6��1 � 6�36	�1=2

� �3=2�r3
X1
n�0

�
�2n� 1�!!

2nn!

	
2
�1 � r2�n � r2Ga�r�:

(31)

The summations are combinations of various elliptic
integrals [21].

Equation (28) reduces to

�
2a33
‘

� Gb�r�=r
2 �Ga�r� � �0:77r ln�r�=�1 � r�;

(32)

where the approximate expression is accurate with a few
percent for 0 < r< 10. The right side of this equation is
plotted as a function of r in Fig. 7. The maximum value of
0.212 24 occurs for r � 0:269 82. Figure 8 shows the
individual Ga and Gb. For r > 0:4, r2Ga=Gb � r1=2, in
044402-6
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accord with inequality (29). Notice that any r > 0 is
permissible. For r < 1 the soliton is due to a defocusing
impedance while a focusing impedance is required
for r > 1.

When a background beam is present, as shown in
Figs. 2–5, analytic solutions of Eq. (12) have not been
found. In the next section we present some numerical
results.

VI. SELF-CONSISTENT NUMERICAL
SOLUTIONS

Equation (12) implies that contours of constant g co-
incide with those of constant K. However, this does not
imply that there always exists a single function G�K� such
that g�A;B� � G�K�A;B�	. To see this consider Fig. 9
which shows the Hamiltonian through a line containing
both the origin and the center of the soliton for both
0
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0.02

0.025

-1 -0.5 0 0.5 1

K
(A

,0
)

A

FIG. 9. (Color) Schematic plot of K�A; B � 0�. The solid red
line corresponds to a defocusing impedance with ‘ > 0 and the
soliton centered at A � 1, B � 0. The blue dashed line corre-
sponds to a focusing impedance with ‘ < 0 and the soliton
centered at A � 1, B � 0.
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positive (solid red line) and negative (blue dashed line)
values of ‘. For the moment consider the defocusing
(solid red line) case, which has ‘ > 0. There are four
values of A for which K � 0:01 but the density g�A;B�
need not have the same value at all four points. The key is
the separatrix, on which K � Ks, which is shown in
Fig. 10.

In each of the three regions bounded by the separatrix
one is free to choose a different functional form g �
Gi�K�. There are limitless possibilities but we take the
fairly simple prescription

g�A;B��C4

8<
:
G1�x��C0x

2�C1; in region 1;
G2�x��C1�

��������������
C2�x

p
�

������
C2

p
; in region 2;

G3�x��C1�
��������������
C2�x

p
�

������
C2

p
; in region 3;

(33)

with x � K � Ks, and the C1; . . . ; C4 are constants. With
g given by (33) the contours of constant g and K coincide,
satisfying theVlasov equation. However, the Hamiltonian
depends on the density yielding the additional constraint

K�A;B� � R�A;B�

�
‘
�

Z
dA1dB1

g�A1; B1�������������������������������������������������
�A� A1�

2 � �B� B1�
2

p ;

(34)

where R�A;B� is the single particle generator defined in
Eq. (14).

We obtain self-consistent solutions for ‘ > 0 using the
following procedure:
FIG. 10. (Color) Schematic contour plot of K�A;B� with ‘ > 0
and a soliton present. The dashed line represents the separatrix,
K � Ks. The particles are divided into three different groups:
particles that belong to the soliton (region 1), particles inside
the inner separatrix (region 2), and particles outside the outer
separatrix (region 3).
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FIG. 12. (Color) Relationship between C0 and the soliton
potential, �. The red circles (outer curve) correspond to ~rr �
0:025 and the blue crosses (inner curve) correspond to ~rr �
0:030.
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(1) Choose ~rr. Set n � 0. Choose initial parameters C0
0,

C1, and C2. Set up an initial line density g0�A;B� which is
symmetric around B � 0.

(2) Use gn�A;B� to calculate Kn�A;B� through (34).
Find the separatrix on which Kn�A;B� � Kn

s . In
region 1, Kn�A;B� is maximum at the stable fixed point
(A � An

0 ; B � 0) and minimum at the unstable fixed
point. Both fixed points always lie on the line B � 0.

Define the electrostatic amplitude �n � Kn�O� �
Kn�X� where O and X denote the stable and unstable fixed
points, respectively.

(3) If n > 0 change C0 through the formula

Cn�1
0 � Cn

0

�
1 � *

�n � �n�1

�n

�
; (35)

where * is an input parameter.
If n � 0 use C1

0 � C0
0.

(4) Calculate gn�1 using Eq. (33) with Kn�A;B� and Cn
0 .

Calculate the global normalization constant C4 and in-
crease n.

(5) Repeat the iteration steps (2)–(4) until g�A;B�
converges.

The variation in C0, defined through Eq. (35), greatly
increases the initial parameter space leading to interest-
ing solutions; typically, *� 1. Figure 11 shows the evo-
lution of the density as the iteration proceeds.

Depending on the initial parameters, a large range of
stable solutions can be obtained. An outcome of this
numerical procedure is that there is a definite relationship
between ~rr and the converged quantities C0 and �, denoted
by � � ��C0; ~rr� shown in Fig. 12. It can be considered as
a nonlinear dispersion relation (as in the standard soliton
cases [1–4]), since it relates the soliton amplitude � and
the trapping parameter C0 with the phase speed ~rr. As seen
from (33), C0 can be expressed by

C0 �
g�O� � g�X�

N�2 ; (36)

where g�0� [g�X�] is the distribution function at the stable
(unstable) fixed point. It is clear that C0 is positive for a
FIG. 11. Evolution of the density along B � 0 during the
iteration. Convergence is reached after about 30 iterations.
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hump in region 1 of Fig. 10, zero for a flattopped and
negative for a notch, and hence C0 reflects the status of
trapped particles. We learn from Fig. 12 that C0 is strictly
positive, corresponding to a hump (hot spot), and that
there are two different values for �(for a given ~rr and C0).
For the larger � the majority of particles is residing in the
hot spot (as in Fig. 13), whereas for the smaller value of �
the particles are mostly contained in the background.

Figure 13 shows the phase space density and accom-
panying line density for a bunch with most of the beam
trapped in the soliton, while Fig. 14 shows a small soliton.
Both solutions have ‘ � 0:01 and A0 � 0:025 showing
the broad range of stable solutions that are possible for the
same bunch charge and machine impedance. This is
qualitatively consistent with Figs. 2–5. In the next section
we will compare the results of the iterative solutions with
simulations and with the approximate analytic solution.

VII. COMPARISON WITH SIMULATIONS

Longitudinal simulations were carried out with the
update equations:

pn�1 � pn � � sin�n � �Fc��n�; (37)

�n�1 � �n � �pn�1; (38)

where � � 2�=1000 is the update in s.
The coherent force Fc��� was obtained by (i) using

linear interpolation to allocate the particle charges to a
fine grid, (ii) smoothing the finely gridded data, (iii)
applying a centered difference numerical differentiation,
and (iv) using linear interpolation to get the forces.

For some of the simulations all the test particles had the
same charge and for others the values of the test charge
differed with the particle [22]. All particles had the same
charge to mass ratio. In all cases the force of particle i on
particle j was equal and opposite to the force of particle j
on particle i. Since the simulation is in one dimension
044402-8



FIG. 14. (a) Phase space density (gray scale) and contours of
constant energy K�A;B� (particle trajectories). (b) Simulated
wall current monitor data. The solution was obtained with * �
1:2, ~rr � 0:025, C1 � 0:1, C3 � 0:005, ‘ � 0:01, C0 � 92 191,
and � � 0:0022. This solution has comparable density in the
soliton and the background.

FIG. 13. (a) Phase space density (gray scale) and contours of
constant energy K�A;B� (particle trajectories). (b) Simulated
wall current monitor data. The solution was obtained with * �
0:3, ~rr � 0:025, C1 � 0:1, C3 � 0:005, ‘ � 0:01, C0 � 21975,
and � � 0:014. This solution consists of a large soliton with
little background, i.e., almost all particles are trapped in the
soliton.
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there were no problems associated with thermalization
effects so that having a range of particle charges pro-
duced no secular evolution.

Figure 15 compares the simulations to the analytic
formula (32). The initial conditions were set up using
Eq. (32) although a small amount of curvature was in-
cluded by using the mapping � � A cos�B=A�, p �
A sin�B=A�. The simulation parameters are shown in
Table I. Simulations 3 and 5 have ‘ < 0 while the others
have ‘ > 0. For ‘ > 0 one has a < b and all the simula-
tions but 7 show no filamentation. Simulations 3 and 5
both show some filamentation. Examining the blue,
dashed curve in Fig. 9 suggests an explanation. The curves
in Fig. 9 were obtained from Eq. (13) using V�A;B�
numerically integrated from a solution of Eq. (32). The
solutions of (32) had

������
ab

p
� 0:08 and ‘ � �8 � 10�4.

For ‘ > 0, a=b � 0:833; for ‘ < 0, a=b � 1:33. Consider
044402-9
the potential difference between the edge of the soliton
and the separatrix. For ‘ > 0 this value was 5.1 times
larger than its value in the ‘ < 0 case. In other words,
with all else equal, ‘ > 0 solitons make deeper buckets
than ‘ < 0 solitons. These simulations confirm the accu-
racy of Eq. (32) for isolated solitons. Next we consider the
utility of this equation for the case when a background
beam is present.

Figure 16 shows simulation results for a soliton with a
background beam. To obtain the initial conditions we used
a modified form of Eq. (32):

�
2a33
=‘

� Gb�r�=r2 �Ga�r� � �0:77r ln�r�=�1 � r�;

(39)

where = was the fraction of the total bunch charge in the
hump, and ‘ is calculated using to total charge in the
bunch. The parameters a, r, and 3 were calculated using
044402-9



FIG. 15. (Color) Simulations using update equations (37) and
(38) for isolated solitons. The initial states (top panel) are
centered on p � 0 and are indexed with increasing values of
�. The initial values of a, b, A0, and ‘ obey Eq. (32), with a
slight modification for curvature. In each simulation all the test
particles had the same charge. Plots of the final phase space are
shown on the bottom. Simulation 2 was run for 1000 synchro-
tron oscillations while the others ran for 100 synchrotron
oscillations.

TABLE I. Simulation parameters for Fig. 15. The number of
macroparticles used in the simulation is denoted by Nmacro, and
Nbin is the number of statistically independent longitudinal bins
used for the coherent force calculation.

Nmacro ‘
Run 104 Nbin A0 a b 10�6

1 3 20 0.25 0.05 0.10 5.4
2 3 20 0.50 0.01 0.10 0.2
3 3 20 0.75 0.10 0.03 �120
4 3 20 1.00 0.05 0.10 87
5 28 40 1.25 0.10 0.05 �560
6 3 20 1.50 0.05 0.10 190
7 3 20 2.00 0.05 0.10 640
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the soliton parameters. In this case we used initial con-
ditions with the macroparticles evenly spaced on a rect-
angular grid, and each macroparticle was assigned a
charge proportional to the value of f��;p� at the 1:1 �
106 macroparticle locations. The coherent force was cal-
culated using 600 fine bins and smoothed to obtain 50
statistically independent bins within the bunch. There was
no sign of thermalization, probably because the simula-
tion was in one dimension. From Fig. 16 it is clear that
Eq. (39) does not yield an exact match, but the two
mountain range plots are quite similar even for = as small
as 1%. Larger values of = produced better agreement
between the simulations and Eq. (39). This is reminiscent
of the coasting beam result in the introduction, where the
soliton parameters were close to the self-bunching con-
dition for the density difference.

Comparable simulations have been done using the so-
lutions of the iterative code as initial conditions. The
044402-10
iterative code produced solitons that were well matched,
providing an additional check to the correctness of the
theory. The theory, of course, considers a smooth phase
space distribution but actual beams are composed of
particles. We go on to consider the long time evolution
of these solitons when the discrete nature of the distribu-
tion is included.

VIII. COLLISIONAL EFFECTS

The proton bunches in Figs. 2–5 show well-defined
solitons. RHIC also accelerates and stores gold ions, but
no long-lived solitons have been observed in gold beams.
The present section considers a possible reason for this
discrepancy. The Coulomb collision rate for a single spe-
cies plasma is [23]

>coll �

�
�
2

�
3=2nZ4r2

pc
4

A2�3
v

ln!;

where n is the number of ions per unit volume, rp is the
classical proton radius, Z is the atomic number of the ion,
A is the atomic mass, c is the speed of light, �v is the rms
velocity, and ln! is the Coulomb logarithm. Assuming
fixed bunch charge, spatial size, and velocity distribution,
the collision rate scales as Z3=A2, which is 13 for gold and
1 for protons.

A more sophisticated approach employs the Fokker-
Planck equation to describe the evolution of the particle
distribution due to this intrabeam scattering [24]. The
code assumes that the transverse distributions are
Gaussian with equal emittances, and that the longitudinal
distribution is a function of action alone. The initial
longitudinal distribution was set to be a smooth back-
ground with a density enhanced core and a Fokker-Planck
solver was used to evolve the system. Figure 17 shows the
fraction of the bunch charge remaining in the density
enhanced core as a function of time for both gold and
protons and for a range of intensities. As one can see from
the curves, the gold bunch always smooths out more
044402-10



FIG. 16. Simulated wall current monitor data for a soliton with fractional charge = � 0:01. The parameters of the hump were
A0 � 1, a � 0:1, and b � 0:2. The intensity parameter was ‘ � 0:07. The plot on the left shows the evolution for the first
synchrotron oscillation and the plot on the right shows the evolution over the last of 100 synchrotron oscillations. There are 9 � 105

macroparticles of varying charge and the smoothing length for the coherent force calculation is 1=50th of the bunch length.
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quickly than the proton bunch, and the factor of 13
obtained earlier seems reasonable.

Along with the difference in collision rates the values
of ‘ were usually quite different for protons and gold,
with the proton values being larger by about an order of
magnitude. This was predominantly due to the low rf
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FIG. 17. (Color) Evolution of the fraction of particles in the
high density core as a function of time for typical values of
Lorentz factor (�) and 95% normalized transverse emittance
(?) during a RHIC store. For protons the design intensity is
N � 1011 particles per bunch while there are typically N � 109

gold ions per bunch. All the proton curves lie above all the gold
curves.
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voltage required for protons, which were injected just
above the transition energy. Hence, for a given value of
=, the dimensions of a soliton in a proton bunch would be
about twice as large as a soliton with the same = in a gold
bunch. If we take a simple diffusion model, the rate at
which a soliton dissipates will scale as >coll=a

2, with a
being a typical dimension of the soliton. With this extra
factor, the dissipation rate for solitons in a gold bunch is
about 50 times faster than the dissipation rate for a
comparable soliton in a proton bunch. Deuterons have
not been studied as carefully as protons, but the data
are roughly consistent with this picture.

IX. CONCLUSIONS

A theoretical framework for understanding stable sol-
itons in bunched beams has been presented. A key result is
that a defocusing impedance can lead to humps, while
such an impedance can only give holes in coasting beams.
Data from RHIC show that humps with a defocusing
impedance are present in actual bunches. An analytic
formula describing isolated solitons has been presented
and verified using numerical simulations. Iterative solu-
tions of the Vlasov equation also agree with simulations
so there are three different theoretical approaches that are
in agreement with the data.
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APPENDIX: SPACE CHARGE FORCES WITH
GAUSSIAN BEAMS

For a round Gaussian beam with rms radius � in a
round pipe of radius b the radial electric field is given by

Er�r; z� vt� �
Z0Ie

j!�t�z=v�

2�
r
�1 � e�r2=2�2

�: (A1)

Setting Er � �@$=@r, the leading order term for the
longitudinal field is [25]

Ez�r; z� vt� �
�1

�2

@$

@z

�
j!Z0I

2�
2�2c

Z b

r

dr1

r1
�1 � e�r2

1=2�2
�: (A2)

The longitudinal impedance per unit length is found by
averaging this field over the radial distribution, Z0

k
�

�hEzi=I,

Z0
k
� �

j!Z0

2��2
2c

Z b

0

r2dr2

�2 e�r2
2=2�2

Z b

r2

dr1

r1
�1 � e�r2

1=2�2
�

(A3)

� �
j!Z0

4��2
2c

Z b2=�2

0

dx
x
�1 � e�x=2�2 (A4)

� �
j!Z0

4��2
2c



ln�b2=�2��1 � e�b2=2�2

�2

�
Z b2=�2

0
ln�x�e�x=2�1 � e�x=2�dx

�

(A5)

� �
j!Z0

4��2
2c
fln�b2=�2� � 2 ln2 � �Eg; (A6)

where �E � 0:577 is Euler’s constant. Using Z=n �
2�
cZ0

k
=! and approximating the numerical factors in
044402-12
Eq. (A6) leads to Eq. (1). The approximation is accurate to
better than 1% for b=� > 3.
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