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Transfer matrix of linear solenoid fringe superimposed magnet
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The general transfer matrix of the superimposed solenoid magnet linear fringe field is given in this
paper. It is an exact analytic matrix. The symplectic condition for the arbitrary shape solenoid will be

discussed also.
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L. INTRODUCTION

In modern accelerators, solenoid and quadrupole
magnets are often superposed, especially in the interac-
tion region. The transfer matrix of superimposed solenoid
and quadrupole magnets is given in [1]. More superim-
posed cases are given in [2]. However, the matrices in
both [1] and [2] are for the delta fringe cases. The transfer
matrix of the linear solenoid fringe without other com-
ponents is given in [3]. In this paper we will discuss a
more general case in which the field is superimposed by a
linear solenoid fringe and a quadrupole. The general
solution can cover the solution in [1,3] and some cases
of [2]. For the case of nonlinear solenoid fringe, one can
refer to [4,5].

II. MAGNETIC FIELD

Assuming
solenoid,

the magnetic field for the linear fringe

oo
=

=b, +Gy+Rx+ f(xy,2),
y=by,+Gx—Ry+ gx v, 2),
=a + 2bz,

=

)

where b, and b, are the dipole components in the hori-
zontal and vertical planes, respectively, G and R are the
normal and skew quadrupoles, respectively, a is the lon-
gitudinal field at the start point, and b is the slope of the
longitudinal fringe. For the general field form of the
solenoid, one can refer to [6].

Substituting (1) into the Maxwell equations, one can
obtain the following equations:

d.f(x,y,2) =0,

azg(xy Y, 7) =0,

—d,f(x,y,2) + 9,8(x, y,2) =0,

0, f(x, v, 2) + 9,8(x,y,2) +2b = 0.

2

Assuming f(x, v, z) and g(x, y, z) are linearly related to x
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and y, then one can get

fey,2)=—bx,  glxy2) = —by. 3)
III. EQUATION OF MOTION
From F = qV X B, the Lorentz force is
dy
F,= q((—by — Gx + by + Ry)C + (a + 2bz)— |,
dt @)

d
F, = q<(bx + Gy —bx+ Rx)C — (a + 2bz)d—);>,

where V = [(dx/dt), (dy/dt), C], C is the speed of light,
and ¢ is the particle charge. The longitudinal force is not
listed here supposing that its effect on the longitudinal
motion can be neglected.

From F = ma, the equations of the particle motion are

d’x d’y
YWOW:FW YmoW:Fy

&)
where 1y is the relativistic factor, and m, is the rest mass of
the particle.

Transforming the variable time ¢ to position z, one can
obtain

d2

d
—f =-b,—Gx+R+Dby+(a+ 2b2) 2,
& “ e
d? d
—y=bx+Gy+(R—b)x—(a+2bz)—x,
dz dz

where the factor (g/ymC) has been involved to b,, by, G,
R, a, and b.

IV. REDUCING THE EQUATION

Equation (6) is an inhomogeneous differential equa-
tion. This means that the magnet is not coaxial with the
solenoid field. Fortunately, all of the inhomogeneous
terms and the coefficients of x and y are constant. Let x =
X+ Crandy =Y + C,, then X and Y satisfy the follow-
ing equations:
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d*x

i —GX+(R+b)Y+(a+2bz)
Z

&y @)

=GY+R—-b)X—(a+ 2bz)—,
dz dz
with
b.(b+R)+b,G by(b —R) + b,G
C. = ) C. =
X b2_G2_R2’ y b2_G2_

®)

After a displacement transformation, the new Eq. (7)
becomes a homogeneous differential equation, i.e., a co-
axial case. Therefore the transfer matrix is based on an
image axis which is different from the real axis of the
solenoid. Actually, the displacement transformation is a
simple way to handle the dipole terms b, and b,, in Eq. (6).
The ideal way should be to handle them in a Frenet-Serret
coordinate system, a curved coordinate system. But in the
Frenet-Serret coordinate the analytical solution for the
linear fringe solenoid has not been found. The analytical
solution given in [2] is only for the delta fringe case.
Further, making a rotation for (X, Y), one can have

X = xcos(a) + ysin(a), Y = —xsin(a) + ycos(a),

()]

where a = larccos(R/vVG? + R?). Then Egs. (7) reduce
to
d’x dy
10)
d2 d (
= =(— b+R)x—(a+2bz)

where the notation R means vR? + G?. Equation (10) can
be explained as the case of the solenoid fringe super-
imposed skew quadrupole magnet.

Making a displacement transformation of z, i.e., z —
z — a/2b, Eq. (10) holds still. Actually this is equivalent
toa = 0:

d*x dy
2 — b+ Ry +2b22,
e ( )y ‘L -
d’y dx
b+ R)x —2bz—.
dz? = ) “dz

V. SOLVING THE EQUATION
Eliminating y and dy/dz in Eq. (11), one can get

2 4y
papdE I

dx
_ + + 2
(b — R)(5b + R)x + 16b°z d a2 i

(12)
Making a transformation for z — (v/2//b)s'/4,
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(b—R)(5b+R) 3 +56sdx 51s+16s2@
64b? 32 ds 16 ds®
O Ldx_
2 ds? ds*
(13)
Further making a transformation for s — —s,
(R=D)(5b+R) 3 —56sdx 51s—16s2@
64b? 32 ds 16 ds®
95 d*x d4x
———+s =0.
2 ds? ds*
(14)

Actually, ,F5(ay, ay; p1, p2, p3; 5), the generalized hyper-
geometric function satisfies the following function (see
Ref. [7]):

dx
—ajarx +[p1pps — (1 +a; + az)s]a‘*‘

d’x
s*(3+ py +P2+P3)F+
s
d*x
s(1+py + py+ p3 + p1p2+ p1p3 + pap3 _S)W‘F
d*x
34X _
s>—=0.
ds*
(15)
Comparing Eq. (14) with (15), one can solve out
b—R 5b +R 1
a, = —(—/—, a, = 5 P1= 7>
85 ST ¥ (e
P2 ~ p3 T
In fact, s' P! ,F;(1+a; —p, 1 +a, —p32—p, 1+
pr—pul+ps—pis), s R (1+a—pyl+
ay — pyl +pi—p22— py 1+ p3 — pris), and s' 773
Fi(1+ay—ps, 1+ay—=p3;1+py—ps3, 1+py—p3, 2=

p3; s) are also the solutions of Eq. (15).
Substituting s back to z, then the general solution of
Eq. (12) is

_F<b R5h+R 113 b2z4>c
YT\ TRy T8 a4 2a a4 !
3b—R7Tb+R 135 b2z

+ F —)—;_)_)_ C

Z“( 8b ' 8b 244 4)2

Sh—RO9b+R 353 bz
+2%,F , s c
Z“( 8h ' 8b ‘4472 4)3

7b—R 11b+R 537 b2
+ 73 ooTRS2 c. (7
Z“(sz) 8h ‘424 )4()

Let the initial conditions for x, x/, y, and y’ be x(0), x(0),
y(0), and y'(0), then the initial values of x" and x"' are
x"(0) = (b + R)y(0), x"'(0) = (3b + R)y’(0). So one can

get
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c, = x(0), C, = x'(0), Cy = (b + R)y(0)/2, VI. TRANSFER MATRIX

C, = (3b + R)y'(0)/6. (18) From Egs. (17)—(20), one can obtain the transfer ma-

If b— —b and x < y, Eq. (11) will keep the same form. trix M(z, 0) of the particle motion from 0 to z for Eq. (11):

So the solution for y is My M, M; My,
My My My My

b+R5S5Shb—R 113 b
= Z S S . M(z,0) = , 22
Y2 3( 8 '~ 8 4’2’4 4 ) 3 @0 Mz Mz Mzz My 22)
N F<3b+R 7—-R 135 b2z4>c My My My My
“20\Tgp T 8p 244 4 )6 where
Sh+R 9%—R 353 b
+222F3<—,7——— —Z>7 _ +113_b214
8b 8b 44 2 4 Mll —2F3 Qg , Ay ’Z,E’Z’ T B
LA F(7b+R 11b—R 537 _b2z4>c
C2\Tsy 8 424 ) 135 2t
M 2, Fyar, atiz, 2,0 -2
(19) 12 23\ A1y X305 7 7 )
where
Cs = y(0), Cs = y'(0), C; = (R—b)x(0)/2, Mo = 1022 Fo e aJ_é 53 _b2Z4 ot
= (R — 3b)x'(0)/6. (20) 13 23\ @ Qg 5 T T %o
For the special case R = 0,
4 537 b
15113 3 1/4 M, =-b7 F(a_,a+;—,—,—;——>a+,
2F3<§,§21,§,Z,_22)=’)’<Z><§> J—1/4(Z)COS(Z), 43 a2t s 424 4 :
21 5 4
5 3 _ 1537 bz -
where v is the gamma function, and J is the modified My = Tb 2 Fs ey, ag 4’24 g Yo%
Bessel function. The solution will be reduced to the
case in [2]. |
135 b\ 32 3713 b2\ _
M22 2F3<a],a:{;§,z,z;_ 2 > Bb2242 (aS’a7 5 Z Z,_T>a1 CY;—,

My = 8bz2F3<a2_, ai%r%%? _¥>a§ %b%szi’}(“(} a§;4’§’; - 44>a6’a2_a4,
My, = 4bZ22F3<a§, a;;g,%,%, —ﬁ>cvfL - 256b3162F3<a7,a;;§,§2%; —#)arcgag,
My, = —4bz 2F3<a2,a1,%,§,%,—#>,

M3, —T4bz 2F3<“3:a5 % %’Z?_#)al’

M3; —2F3<a0,a;;1,1,§,—ﬁ>,

4°2°4 4
Msy = Z2F3<a1 » A3 ’%’%é» #)
M, = —8bz2F3<a2+, a@i,i,i;—b?z‘)ao + 128b3z5 2F3<a6,a8;z,z,;, bif)aoa;aé‘,
My, = —4bz 2F3<ag+, ag;g,%,%; _¥>“1 + 256b3162F3<a7, agy; Z,%,%;—#)a;a;as,
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32 537 b
My =—-b 132F3<“4’%31’§’Z§_7>a3“2+r
135 b4\ 128 3713 b _
M44—2F3<al»a3,§,1,1; T>_Fb2Z42F3<a;’ 0‘7;§’Z’ZQ_T>“1+“3’ (23)

and the notations a; = [(2i + 1)b = R/8b].
The transfer matrix from 0 to z for Eq. (10) can be |
expressed as

a
Mequ(Z, 0) = eqll(Z + o 2h’ 2b>
. (a
= Meq”(Z + — 2b 0>Meqlll<ﬂ’ 0) (24)

VII. SYMPLECTIC CONDITION

Mg (z, 0) is the transfer matrix related to b and R; we
write it down in the explicit form M., (b, R; z, 0). Let the
longitudinal field be B, at position z, then z = B_/b, and
the matrix is Mg (b, R; B./b,0).

For the delta fringe case, b — oo, —b%z*/4=
—B2/4b> — 0. Since ,F;(ay, ay; py, pa, p3;0) is equal to
1 for any a4, a,, p;, p2, and p3, one can get the matrix for
delta fringe as

ME(BZ’ O) = [}L%Meqll(b’ R,Bz/b, 0)
1 0 0 O
0 1 B. 0
0O 0 1 O (25)
B, 0 0 1

From Eq. (25), one can see that for the delta fringe the
transfer matrix is independent of the quadrupole gradient.
The transfer matrix from z to O can be obtained with that
from O to z according to the following:

Meqll(b;R;O; Z) = eqll( b R Z, O)K
1 0 0 O
0 -1 0 O
where K = (26)
0 0 1 O
0 0 0 -1

Equation (26) can be explained as changing the direction
of motion from 0 — z to z — 0 leading to changing the
signs of b, R, x', and y'. |

From Eq. (26), one can get the delta fringe matrix
z—0

B
M5(O, BZ) = bli_l;l;)loMeq“(b, R,O, f)

1 0 0 0

o 1 -B 0
00 1 0 @7
B, 0 0 1

Considering a triangle-type solenoid superimposed
constant gradient quadrupole magnet, i.e., the solenoid
field linearly increases from O to B, (with a slope of b)
and then drops to 0 with a delta function, the transfer
matrix being

1 0 0 0
0 1 —bz O

M=10 o 1Z o [Meqi (b, R;2,0). (28)
bz 0 0 1

By doing some complicated calculations, one can prove
the transfer matrix in Eq. (28) satisfies the symplectic
condition, i.e., M satisfies MTJM = J, where

0 1 0 0
-1 0 0 0

I = 0 0 0 1 (29)
0 0 -1 0

For any complex shape solenoid field, one can divide
the solenoid into many pieces (). Assuming the solenoid
field for the n + 1 points are by, by, ..., b, the lengths of
n pieces are L, L,, ..., L,, and the quadrupole strengths
in n pieces are Ry, R,, ..., R,. All b;, L;, and R; can be

different. The transfer matrix is
M=Mmn—1)---M(2, 1)M(1,0), (30)

where M(i, i — 1) is the transfer matrix of the ith piece as
follows:

. b — b;— b;L; bi—\L;
M@, i—1) =Meq11< T I’Ri’b-—b- 1’b._1b‘ 1)
b, — b, b,L, (b — b,_, b, (L, >
— M 1 L ,R', 1 L ’0 M 1 1 1 ,Ri, 1 1 ,0
eqll( Li i bi _ bi—l ) eqll( Li bi _ bi—l
b, — b;_, b,L,
—M (b,-,O)[M 0, b)M, ( -1 g, ik ,0)}
S S qll Li bi — bi—l
bi - bi* bi* Li -1
X [Ma((), bi—l)Meqll< LR, _1 ,Oﬂ Ms(0, b;y). (3D
Li bi bi—l
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Substituting Eq. (31) into Eq. (30), one can get
M = Ms(b,, )M, , My, - - My, 1My {M5(bo, 0),  (32)

where

bi - bi— biLi
M,; = M;5(0, bi)Meqll( T ~ R, P ],0>,

bi - bi— bi— Li
Moy = M5(0,by- )Mo (2L R 5220 0),

(33)

Since Eq. (28) satisfies the symplectic condition, all the
terms M, ;, M, satisfy the symplectic condition except
the two terms My(b,, 0), Ms(by, 0). When b, and b, are
equal to 0, M is symplectic. So for any shape of the
solenoid the transfer matrix is symplectic as long as the
solenoid field is from O to 0.
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