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Statistical analysis of RHIC beam position monitors performance
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A detailed statistical analysis of beam position monitors (BPM) performance at RHIC is a critical
factor in improving regular operations and future runs. Robust identification of malfunctioning BPMs
plays an important role in any orbit or turn-by-turn analysis. Singular value decomposition and Fourier
transform methods, which have evolved as powerful numerical techniques in signal processing, will aid
in such identification from BPM data. This is the first attempt at RHIC to use a large set of data to
statistically enhance the capability of these two techniques and determine BPM performance. A
comparison from run 2003 data shows striking agreement between the two methods and hence can
be used to improve BPM functioning at RHIC and possibly other accelerators.
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FIG. 1. (Color) Fourier spectrum of a good RHIC BPM signal.

background of the Fourier spectrum is larger for noisier
BPMs and its dependence with other parameters is neg-

The spectral lines within the windows are used to determine
the rms noise observable.
I. INTRODUCTION

Beam position monitors (BPM) are widely used in
accelerators to record the average orbit and transverse
turn-by-turn displacements of the bunch centroid motion.
RHIC consists of two threefold symmetric rings with six
interaction regions. There are 160 BPMs per plane per
ring (yellow and blue): 72 dual-plane BPMs distributed
through the interaction regions, and 176 single-plane
BPMs distributed in the arcs [1]. Each BPM channel
acquires 1024 consecutive turn-by-turn positions.

It is imperative to understand the functioning of each
BPM to obtain reliable and consistent data crucial for any
beam dynamics analysis. In this paper we perform a first
detailed statistical analysis to evaluate the performance
of the BPM system with the aid of numerical tools. A
large set of data files recorded after applying a horizontal
kick during run 2002–2003 were analyzed using singular
value decomposition (SVD) and fast-Fourier transform
(FFT) techniques [2,3]. Both techniques were indepen-
dently employed to identify malfunctioning BPMs from
available data sets. Statistical behavior of BPM perfor-
mance was extracted to characterize each pickup and
make a comparison between the two methods.
II. FFT TECHNIQUE

The Fourier spectrum of turn-by-turn data has already
been used to determine faulty BPM signals from the
Super Proton Synchrotron of CERN [3]. This technique
relies on the fact that the Fourier spectrum of an ideal
signal has well-localized peaks while noisy or faulty
signals show a randomly populated Fourier spectrum. A
priori two observables seem to provide information in
this regard: the average and the rms of the background of
the Fourier spectrum. The average background depends
on other parameters apart from the noise of the signal,
therefore it is discarded for our purposes. The rms of the
1098-4402=04=7(4)=042801(7)$22.50 
ligible. This observable is therefore used to identify the
noisy pickups. It is estimated by computing the rms of the
amplitudes of the spectral lines within one or several
spectral windows. These windows are chosen in such a
way that an ideal pickup would not show any peak within
them. It is important to avoid including the zero fre-
quency and the betatron tunes in any window. An illus-
tration of a typical configuration for RHIC is shown in
Fig. 1, using a good signal.

A signal is considered faulty if its rms noise observable
is larger than a certain threshold. The value of the thresh-
old is extracted from statistics over a large number of
signals. A histogram of rms observables from all signals
is constructed. Typically a large peak containing the
largest percentage of the data is observed in the low
rms values of the histogram. This peak contains the set
of physical signals, while its long tail with larger rms
values contains the faulty signals. A suitable threshold is
chosen towards the end of the tail. It will be shown in
Sec. IV that particular choices of the cut do not give
qualitatively different results.
2004 The American Physical Society 042801-1
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FIG. 2. (Color) Spatial vectors and FFT of temporal vectors of
the four dominant modes from simulation data. Note that
singular vectors are normalized.
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FIG. 3. (Color) Spatial and temporal vectors of modes corre-
sponding to two noisy BPMs with correlation.
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III. SVD TECHNIQUE

The motion of the beam centroid usually depends on
several variables, and it is necessary to identify the
dominant variables of the system to understand beam
dynamics. The problem reduces to finding dominant pat-
terns in a data set containing displacements at multiple
locations around the ring for a large number of turns.
Such multivariate statistical data analysis is commonly
referred to as principle component analysis and can be
solved using many numerical tools.

SVD has proved to be a powerful numerical tool in a
wide variety of disciplines and has been recently applied
to beam dynamics under the name ‘‘model independent
analysis’’ [2]. SVD is used to identify the principle com-
ponents by maximizing the cross covariance between
time-dependent data. It is a well-established technique
for efficient and accurate numerical computation for large
data sets.

The SVD of an arbitrary matrix A is given by

A � U�VT �
X
i

ui�iv
T
i ; (1)

where ui and vi are normalized eigenvectors of AAT and
ATA, respectively, and are also referred to as left and right
singular vectors of A. � is a diagonal matrix of singular
values �i with �1 � �2 � � � ��n � 0. The number of
nonzero singular values gives the effective rank of the
matrix. For a matrix containing turn-by-turn data from
several BPMs, the singular vectors represent the temporal
and spatial variation of physical modes characterizing the
motion of the beam. One should note that singular vectors
may not uniquely correspond to the real physical modes
of the beam.

The potential scope of SVD analysis in accelerators
runs deep. This paper attempts to exploit one facet that
aids in identifying malfunctioning BPMs. Figure 2 shows
typical plots from the application of SVD to simulated
BPM data (after subtracting the average orbit), with only
linear elements and two noisy BPMs at arbitrary loca-
tions. The singular value spectrum shows two dominant
modes (‘‘mode 1’’ and ‘‘mode 2’’) corresponding to the
betatron oscillation in the plane of observation. The
Fourier transform of the temporal mode yields the beta-
tron tune.‘‘Mode 3’’ and ‘‘mode 4’’ show sharp spikes in
their spatial vectors. The signal manifested in this mode
is localized to a particular BPM location indicating a
potentially noisy BPM. The Fourier transform of their
temporal modes yields all frequencies, confirming that
these are noisy BPMs. In this situation of relatively ideal
conditions, we find distinct peaks localized at corre-
sponding noisy BPM locations and a flat signal elsewhere.
However, from real data, we observe multiple peaks in the
spatial vectors, due to random correlations between the
noisy BPMs. One such possibility was simulated by set-
ting the noise amplitudes in the two pickups to be ap-
042801-2
proximately equal. We observe two dominant modes as
above, but the spatial vectors now contain two peaks in
each mode, as shown in Fig. 3.

A simple approach to identify faulty BPMs would en-
tail finding modes with spatial vectors consisting only of
localized peaks. A localized peak threshold value of 0.7
or greater might be sufficient to tag them as noisy BPMs
[4]. However, we explore a statistical approach to under-
stand the characteristics of BPM signals from which we
choose the appropriate thresholds. A histogram of the
largest peaks in each spatial mode for a large set of
data is constructed to determine these thresholds. It will
042801-2



PRST-AB 7 R. CALAGA AND R. TOMÁS 042801 (2004)
also be shown from statistics that an alternate approach
using the norm of n largest peaks in each mode is a more
accurate procedure to determine threshold values. One
should note that the SVD method is insensitive to flat
signals. Some preprocessing of BPM data, using peak-to-
peak signal information, will be effective before applying
such techniques. This is discussed below.
IV. ANALYSIS

About 2000 data sets (1000 for each ring) taken during
run 2003 of deuteron-gold collisions were used in this
statistical approach. Statistical cuts were applied during
data preprocessing before using the two techniques. These
data are then used to determine independent thresholds
for each technique, to identify noisy BPMs. We discuss
each statistical cut in detail to explore the advantages and
limitations of such an approach.
A. Hardware cut

RHIC BPM hardware internally determines the status
for each turn-by-turn measurement in a data set. Status bit
information acquired in this way allows us to identify
obvious hardware failures. We make a simple histogram
of all BPMs that fail (status � 0), as shown in Fig. 4.
BPMs failing this cut are removed from the data and are
not included in further analysis. This histogram also
helps us identify any consistent hardware problems. We
also find a number of files in which fewer than 30 BPMs
were present, and these files were excluded for this analy-
sis separately for each plane.
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FIG. 4. (Color) Percentage of occurrences of system failure per
BPM versus longitudinal location. A representation of the
lattice (dipoles in black and quadrupoles in red) is shown in
the bottom graph.
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B. Peak-to-peak thresholds

A peak-to-peak cut is necessary because both tech-
niques become less sensitive as signal oscillations become
small. Peak-to-peak signal values for all BPMs in all data
sets were calculated and plotted in a histogram in Fig. 5.
One has to be careful to choose an appropriate cut. If
optics and machine conditions were static, it would be
easier to determine the best threshold. However, this is
not true in regular operation. A very low cut might help
retain good BPMs with a small signal, but it will also
retain BPMs that are faulty. A large cut removes faulty
BPMs, but will also identify many good BPMs as faulty.

The data sets being analyzed are mostly horizontally
kicked data, hence we will discuss horizontal plane fea-
tures in detail. There is a distinct minimum at 0.3 mm and
peaks below that value which we believe are BPMs that
do not respond to beam current. If a 0.3 mm cut removes
good BPMs for a specific set of unexcited data, they will
appear as background in the final identification, and will
not be tagged as faulty BPMs. We observe a large peak
around 1 mm indicating the typical oscillation amplitude
for most pickups. Two smaller peaks are also observed
between 1.5 and 2.2 mm, and two more between 0.5 and
1 mm, possibly indicating signals from different sets of
optics or different kick amplitudes.

The vertical plane signals appear at smaller amplitudes
because the data analyzed are mostly kicked in the hori-
zontal plane. In such cases smaller peak-to-peak thresh-
olds must be chosen. A summary of thresholds and files
analyzed are given in Table I.

C. FFT analysis

The histograms of the FFT rms observable for the two
rings and two planes are shown in Fig. 6. It is remarkable
that the four peaks show almost identical features. This
confirms the fact that the hardware system of the pickups
is very similar for the two rings and planes. From these
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FIG. 5. (Color) Peak-to-peak values for all BPMs in all
data files.
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showing qualitatively similar results.

TABLE I. Thresholds for peak-to-peak values

Plane Ring Peak-to-peak No. of files analyzed

H Yellow 0.3 678
V Yellow 0.15 815
H Blue 0.3 708
V Blue 0.15 833
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plots it is concluded that suitable cuts lie in the range
between 1.5 and 3 �m. Signals with rms noise above the
cut are labeled faulty.

To study the performance of particular BPMs, we
record the number of faulty signals provided by each
pickup. Figure 7 shows these occurrences plotted versus
longitudinal locations for two different cuts (1.5 and
2:7 �m). Pickups that perform worse than the others are
clearly identified from either cut.

To obtain more information on the performance of
particular BPMs, the average of the rms noise observables
coming from each pickup is computed and plotted in
Fig. 8 versus the longitudinal location of the pickup.
The picture shows few spikes that correspond to those
systematically bad pickups. These spikes happen to be
dense in the interaction regions. Figure 8 also shows that
the BPMs within certain sextants of the machine have
consistently larger rms noise than in the rest of the ring.
This will be discussed in Sec. V.
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D. SVD analysis

The SVD of BPM data with oscillations above the
peak-to-peak threshold can be processed to determine
spatial modes with localized peaks as shown in Fig. 3.
The largest peak values of all modes were determined for
a large set of data and plotted in the histogram shown in
Fig. 9. This figure shows a Gaussian-like distribution
representing a coherent signal in good BPMs and a sharp
peak close to 1 indicating obviously faulty BPMs. In the
absence of any correlations between noisy BPMs, the
second peak unambiguously identifies the complete set
of faulty BPMs. However, for machine data we observe
multiple peaks in each mode due to correlations between
noisy BPMs. There exist many faulty BPMs between 0.6
and 1. Figure 9 does not provide a clear way to determine
a good threshold value. A large threshold might be too
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FIG. 8. (Color) Average rms observable versus longitudinal
position of the BPM.
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pessimistic, leaving unidentified faulty BPMs, while a
smaller threshold might risk losing good data.

Since the singular vectors are normalized, we explore
an alternate approach taking advantage of the unit norm
of spatial vectors. In the presence of multiple peaks, the
norm of the n largest peaks for noisy BPMs,

�������������
Xn

j�1

v2
ij

vuut ; (2)

is close to 1, where 2 � n � 5. However, a mode consist-
ing of coherent signals usually has a norm <0:85 for the
same n. Thus, the range of the choice of threshold values
is considerably smaller than in the largest peak approach.
The norms of each mode using the n largest peaks were
calculated for all data sets and plotted in the histograms
shown in Fig. 10. As we increase n, a clear minimum
becomes apparent helping to determine the threshold
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values more accurately. Thus, this approach is more reli-
able than using the largest peak approach, where the
optimum threshold value is ambiguous. One can deter-
mine a suitable threshold value from inspection. For the
horizontal plane in the yellow ring, we find the threshold
value lies between 0.85 and 1. It is important to note that
signals from all four peaks contribute to fail a chosen cut,
but we tag only the BPM with the largest amplitude in the
norm as faulty to exclude degeneracies. The other corre-
lated BPMs will appear dominant in subsequent modes
and will be identified. A similar analysis for both planes
and both rings was performed.

These threshold values and the peak-to-peak cut pre-
sented earlier are applied to data to construct a final
histogram showing the number of occurrences of BPMs
failing these cuts. Figure 11 shows such a histogram with
two different SVD thresholds (0.85 and 0.95) for the blue
ring horizontal data. This comparison allows us to under-
stand the sensitivity of the SVD cut and hence determine
an optimum range. It is clear from Fig. 11 that the regions
corresponding to more noisy BPMs (mostly interactions
regions) are significantly enhanced with a lower thresh-
old compared to that of the arc regions. However, certain
arc regions show different behavior from the others. This
disagreement will be discussed in Sec. V.
E. SVD and FFT comparison

To compare the SVD and FFT techniques, the number
of identified faulty signals provided by each BPM is
plotted versus its location, in Fig. 12. This plot contains
the horizontal BPMs of the yellow ring. The reader can
also compare the results for horizontal BPMs of the blue
ring from Figs. 7 and 11. For a set of optimized cuts, the
agreement is excellent between the two different tech-
niques. This confirms the feasibility of identifying non-
physical signals provided by beam position monitors.
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FIG. 13. (Color) Percentage of occurrences of system failure
per BPM versus longitudinal location for run 2004. A repre-
sentation of the lattice (dipoles in black and quadrupoles in red)
is shown in the bottom graph.
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V. OBSERVATION OF SYSTEM IMPROVEMENTS

As seen in Figs. 7, 8, and 11 BPMs in the arc regions
between 0–0.5 km and 3.2–3.8 km have a strikingly
larger background than the rest of the arcs. It was found
that BPMs in these arcs were exhibiting sporadic noise
(‘‘hairs’’) of ten to thousands of �m on BPM position
data. This effect was caused due to unforeseen and un-
tested conditions in the low-level digital signal processing
(DSP) code leading to noise jumps on some raw sampled
data [5].

Low-level software upgrades were implemented as a
part of BPM system improvement during the commis-
sioning period of run 2004. A change of DSP timing
parameters was particularly important in resolving the
phenomena of hairs. Kicked data during run 2004
were regularly recorded for the analysis of BPM perfor-
mance. A large set of data similar to the one from 2003
was analyzed using the above numerical techniques
to understand the behavior of the BPMs after system
improvements.

Figure 13 shows the percentage of occurrences of sys-
tem failure per BPM versus longitudinal location for run
2004. These percentages of system failure are in general
larger than those observed in the previous year as seen in
Fig. 4. This is partly due to the fact that the system
improvements lead to a better recognition of system fail-
ures. The abnormal abundance of system failures at the
location of 3 km is presently under investigation.

Figure 14 shows the average of the rms noise observ-
ables coming from each BPM plotted versus the longitu-
dinal location of the BPM for run 2004. This figure is to
be compared to Fig. 8 from the previous year.We observe a
clear improvement in BPM resolutions. The larger back-
ground at particular sextants has disappeared yielding a
consistent BPM performance in all the arcs. This confirms
042801-6
that the problem of hairs has been resolved. Nevertheless
BPMs located within the interaction regions still show a
poorer performance than the rest.

Figure 15 shows faulty BPMs identified by FFT
and SVD techniques with two different thresholds.
The thresholds for the FFT technique are smaller than
the previous year since the rms observable is smaller.
These histograms help us determine the sensitivity of
the cuts in each method. It is again clear from both
techniques that the problem of hairs in the two sextants
has been resolved.
042801-6
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FIG. 15. (Color) Comparison between two different rms and
SVD cuts for run 2004.
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VI. CONCLUSION

Two numerical algorithms, the Fourier transform and
the singular value decomposition, have been used to
identify faulty BPM signals. Appropriate observables
characterizing the noise content of a BPM signal have
been defined for both techniques. The observables’
042801-7
thresholds above which a signal is identified as faulty
are obtained from statistics over a large set of RHIC
BPM data. These cuts are used to assess the global per-
formance of every BPM, thus identifying those BPMs that
systematically provide faulty data. A comparison between
the results from both independent techniques has been
presented showing an excellent agreement. The analysis
of run 2004 data shows clear improvements in the BPM
system and the successful elimination of hairs.
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