
PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS, VOLUME 7, 034402 (2004)
Cumulative beam breakup due to resistive-wall wake

Jiunn-Ming Wang*
National Synchrotron Light Source, Brookhaven National Laboratory, Upton, New York 11973, USA

Juhao Wu†

Stanford Linear Accelerator Center, Stanford University, Stanford, California 94309, USA
(Received 20 June 2003; revised manuscript received 29 January 2004; published 25 March 2004)
*Electronic
†Electronic

034402-1
The cumulative beam breakup problem excited by the resistive-wall wake is formulated. An
approximate analytic method of finding the asymptotic behavior for the transverse bunch displacement
is developed and solved. Comparison between the asymptotic analytical expression and the direct
numerical solution is presented. Good agreement is found. The criterion of using the asymptotic
analytical expression is discussed.
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also investigate some other projects: the Linac Coherent where IB � eNB=
B, eNB � bunch charge, IA �
4�� mc3�=e � �I with I 	 17 000 A, m is
I. INTRODUCTION

The cumulative beam breakup (BBU) problem in a
periodic linear accelerator (linac) excited by the reso-
nance wake is well understood [1–4]. However, there are
no systematic studies for the corresponding problem ex-
cited by the resistive-wall impedance. This paper is a
partial attempt to fill this gap. In a cylindrical circular
metal pipe, if it is transversely offset, an electron beam
will induce both asymmetric image charges and asym-
metric image current in the metal wall. The electric field
induced by this asymmetric image charge will attract the
beam even closer to the metal wall, though the magnetic
field induced by the asymmetric image current will push
the beam back to the axis. The Lorentz forces due to the
electric field and the magnetic field will partially cancel
each other and result in a force which will attract the
beam closer to the metal wall. The magnitude of this net
force is proportional to 1=�2, with � to be the Lorentz
relativistic energy factor. Hence for an ultrarelativistic
electron beam, the instantaneous net force is negligible.
However, the magnetic field will diffuse in the metal wall;
therefore the magnetic force will decrease with time. On
the other hand, since the electric field will not decay, the
resulting net effect is a long-range wakefield [5]. In this
paper, we study the BBU problem due to this long-range
resistive-wall wakefield.

This study of the resistive-wall BBU problem is neces-
sitated by the recently proposed Photoinjected Energy
Recovering Linac (PERL) project [6]. For PERL, the light
source consists of 12 undulators, each 12 m long, totaling
144 m. The beam is shielded from the environment by
circular copper pipes with a very small radius b � 3 mm.
The proposed injection cycle is 12 h. It is crucial to
know if the PERL beam can survive the BBU. We
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Light Source (LCLS) project [7], the existing vacuum-
ultraviolet (VUV) free-electron laser (FEL) at the
Tera-electron-volt Energy Superconducting Linear
Accelerator (TESLA) Test Facility (TTF) [8], the final
focusing system (FFS) of the Next Linear Collider (NLC)
[9], and the FFS of the TESLA [10]. For these cases, we
study how the resistive-wall wake will dilute the beam.

The problem is formulated as follows: An electron
bunch train consisting of a series of identical pointlike
bunches passes through a cylindrical circular pipe of
radius b and conductivity �c. The entrance to the pipe
is located at z � 0, and the Mth bunch, M � 0; 1; 2; . . . ,
moves in the z direction according to z � ct�Mc
B,
where 
B is the bunch separation in units of seconds.
Inside the pipe, the equation of motion for a particle in
bunch M is

ÔO yM � y00M�z� � k2yyM�z� �
XM�1

N�0

S�M� N�yN�z�; (1)

where yM�z� is the transverse displace of the Mth bunch at
location z, the prime stands for d=dz, and ky is the
external focusing. The right-hand side of Eq. (1) repre-
sents the effects of the wake force. So far, we have not
specified the wake yet; hence Eq. (1) is applicable to
arbitrary wake for a beam with constant energy. In this
paper, we will focus on the resistive-wall wake, which is
[11]

S�M� � a=
�����
M

p
; (2)

with

a � 4
IB
IA

1

b3
�skin; (3)

0 Alfv�een Alfv�een

the electron mass, c is the speed of light in vacuum, �0 �
8:854
 10�12 C2 N�1 m�2 is the vacuum permittivity,
and �skin �

������������������������
2=�0�c!B

p
� the skin depth corresponding
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to the bunch frequency fB � !B=2� � 1=
B with �0 �
4�
 10�7 Hm�1, the vacuum permeability. We ignore
the effects of the wake force of a bunch on itself; as
a consequence, the upper limit of the sum in Eq. (1) is
M� 1 instead of M. The single-bunch resistive-wall ef-
fect is studied separately [12,13]. The thickness of the
beam pipe is assumed to be 1 for convenience. Also
notice that bunch N is in front of bunch M if M > N.
In writing the above equations, we assumed the linac to
be uniformly filled. For such a case, the locally averaged
current Iaverage � IB. For the case of nonuniform filling,
an example of which will be discussed in Sec. V, Eq. (1)
has to be modified.

The paper is organized as follows: In Sec. II, we set up
the related eigenvalue problem of Eq. (1). Physically, the
eigenfunction so obtained describe the beam coherent
oscillation of an ‘‘extended problem’’ [14]. In Sec. III,
we give a formal solution for the initial value problem.
The solution consists of an integral representation for the
transverse position of the Mth bunch at a longitudinal
position z in terms of the eigenfunctions obtained in the
previous section [14]. The asymptotic limit, M ! 1, of
the transient solution is then obtained in Sec. IV for two
extreme cases: the no focusing (NF) case and the strong
focusing (SF) case. In Secs. II, III, IV, and V, we treat the
case where only one bunch is offset initially. While in
Secs. II, III, and IV, we treat the case where every bucket
of the linac is filled by the same amount of charge, we
treat in Sec. V the case where the filling pattern is such
that the beam has periodically unfilled gaps. The results
of Sec. V are compared to the results of the preceding
sections. The conclusion we draw from the comparison is
that the asymptotic resistive-wall cumulative BBU is a
locally averaged current problem. In Sec.VI we go back to
the problem where each bucket is uniformly filled. The
difference between this section and Sec. IV is that here we
treat the case where initially the transverse position of
every bunch is offset by the same amount —injection
error. By comparing the results of Sec. VI with those of
Sec. IV, we observe a screening effect for the injection
error case. The analytical asymptotic solutions are
checked against the directly numerical solution in
Sec. VII. Good agreement between the asymptotic ana-
lytical expression and the direct numerical solution is
found. We then apply the analytical results to the PERL
project, the final undulator of LCLS and TTF VUV FEL,
and also the FFS of the NLC and TESLA in Sec. VIII.
Discussion and conclusion are also presented there.
II. THE EIGENVALUE PROBLEM

In this section, let us formulate the eigenvalue problem
of Eq. (1). The right-hand side of Eq. (1) is a convolution
sum, therefore, it can be diagonalized by a Fourier trans-
form. Define
034402-2
F� � �
X1
M�1

1�����
M

p eiM ; (4)

and

"� ; z� �
X1
M�0

yM�z�e
iM ; (5)

then

yM�z� �
1

2�

Z �

��
d e�iM "� ; z�; (6)

and
"00� ; z� � k2y"� ; z� � aF� �"� ; z�: (7)

The last equation is an eigenvalue equation, with the
parameter  playing the role of distinguishing different
eigenvalues. For the coherent mode  , we see from Eq. (5)
that the parameter  is the phase difference of the adja-
cent bunches in this mode. Recall that in a storage ring, a
symmetric coupling bunch mode n is characterized by the
Courant-Sessler phase factor exp�i2�n=h� [15], where h
is the number of bunches in the ring. We can think of the
phase exp�i � as the limit of the Courant-Sessler factor
when both n and h ! 1, while 2�n=h �  remains finite.
The eigenvalue for the mode  is, from Eq. (7),

kc� � �
������������������������
k2y � aF� �

q
; (8)

and the corresponding eigenvectors are

coskc� �z� or sinkc� �z�: (9)

The function F� � can be written as [16]

F� � �

������
i�
 

r
�

X1
n�0

%Riemann

�
1

2
� n

�
�i �n

n!

	

������
i�
 

r
� 1:460� 0:208i �O� 2�; (10)

where %Riemann�x� is the Riemann’s zeta function. The
function F� � has a branch point at  � 0, therefore,
through Eq. (7), "� ; z� also has a singular point at the
same position. Since Eq. (6) is the inverse of Eq. (5) and
we look for yM with M > 0, causality requires this sin-
gularity to lie below the contour of Eq. (6) on the  plane.
In order to explain this point more clearly, let us intro-
duce

% � ei : (11)

In terms of this variable, Eqs. (4)–(7) become

F�%� �
X1
M�1

1�����
M

p %M; (12)

"�%; z� �
X1
M�0

yM�z�%
M; (13)
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FIG. 1. The contour used for the definition in Eq. (14).
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yM�z� �
1

2�i

I
d%%��M�1�"�%; z�; (14)

and

"00�%; z� � k2y"�%; z� � aF�%�"�%; z�: (15)

When expressing a function of  , for example, the func-
tion F� �, in terms of % , we write F�%� � F� � instead
of creating a new symbol; this should not introduce
any unnecessary confusion. We adopt this convention
throughout this paper. The singularity of F� � at  � 0
corresponds to a singularity of F�%� at % � 1. The singu-
lar part of F�%� is

F�%� �
������������
�

1� %

r
for % ! 1: (16)

Equation (13) is a power series expansion of the func-
tion " in the variable % . The radius of the convergence
circle of this series is 1, since the closest singularity of "
is at % � 1, i.e., at  � 0. From the residue theorem,
Eq. (14) is clearly the inverse of Eq. (13) provided that
the integration contour lies inside of the convergence
circle, and the contour encircles the origin % � 0 counter-
clockwise. The contour is shown in Fig. 1. It is convenient
to deform the contour to be the unit circle and place the
singularity at % � 1� � with a small and positive �. On
the % plane, we make a cut on the real axis from % �
1� � to % � 1, and make all the following calculations
on the first sheet of the Riemann surface. In terms of the  
variable, the singularity is at  � � i log�1� �� 	 �i�,
i.e., below the contour of Eq. (6). The cut on the  plane
is at the lower half of the imaginary axis, i.e.,  from �i�
to �i1.
034402-3
We solve in the next section the transient BBU problem
by relating it to the coherent solutions given by Eqs. (8)
and (9).

III. INITIAL VALUE PROBLEM

One can carry out the BBU calculations in terms of
either the % or the  variable. We choose to use the
variable % .

We show in this section that the transient solution to the
equation of motion (1) is

yM�z� � yM0 cos�kyz� � y0M0 sin�kyz�=ky

�
1

2�i

XM�1

N�0

yN0
I
d%%��M�N�1� coskc�%�z�

�
1

2�i

XM�1

N�0

y0N0
I
d%%��M�N�1� sinkc�%�z�

kc�%�
; (17)

where yM0 and y0M0 are, respectively, the initial values
(values at z � 0) of yM�z� and y0M�z�.

First, we find the transient solution of Eq. (15). This
equation yields

~""�%; s� �
s"�%; 0� � "0�%; 0�

s2 � k2y � aF�%�
; (18)

where

~""�%; s� �
Z 1

0
dz"�%; z�e�sz: (19)

After carrying out the inverse Laplace transform of (19),
using (18), we obtain

"�%; z� � "�%; 0� coskc�%�z� � "0�%; 0�
sinkc�%�z�

kc�%�
: (20)
034402-3
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In order to obtain (17), we substitute the above result
(20) into (14) and then use "�%; 0� �

P
1
M�0 yM;0%

M and
"0�%; 0� �

P
1
M�0 y

0
M;0%

M. The result is (17). We shall now
apply the solution (17) to some specific cases in the next
section.

IV. INITIAL SINGLE-BUNCH OFFSET

We study in this section Eq. (17) for the case where
only the first bunch M � 0 is initially offset transversely
from the center of the chamber, yM0 � y00�M;0, and
y0M0 � 0; 8 M. Then, Eq. (17) becomes, for M � 0,

yM�z� �
1

2�i
y00

I
d%%��M�1� coskc�%�z�

�
y00
4�

(���
M �z� � (���

M �z��; (21)

where

(���
M �z� �

1

i

I
d% expf*���

M �%�g; (22)

with

*���
M �%� � �ikc�%�z� �M� 1� log�%�: (23)

We wish to find the asymptotic behavior of yM as given by
Eq. (21) when M ! 1; we shall use the well-known
saddle point method for this purpose.

The asymptotic behavior of the integral (21) is
determined by the behavior of coskc�%�z� near % � 1 or
 � 0, where the phase difference between adjacent
bunches approaches zero. In other words, the saddle point
%saddle ! 1, or equivalently,  saddle ! 0 in the limit of
M ! 1. The behavior of coskc�%�z� near % � 1 is,
from Eq. (8), controlled by the behavior of F�%� in the
same neighborhood. We shall use the approximation
Eq. (16) for F�%� throughout the rest of this paper.
Combining the expression (16) with Eqs. (8) and (15),
we have

kc�%� �
���������������������������������������
k2y � a

����������������������
�=�1� %�

pq
; (24)

and

"00�%; z� � k2y"�%; z� � a
������������
�

1� %

r
"�%; z�: (25)

The last equation together with Eq. (14) makes up the
basis for the remainder of this section.

We shall carry out below the asymptotic analysis of the
following two cases:

First case: This is the case where either ky � 0, or M is
so large that the a

����������������������
�=�1� %�

p
term dominates over k2y in

Eq. (24). As a consequence, we can use the approximate
expression

kc�%� � a1i�1� %��1=4; (26)

where a1 �
����������
a

����
�

pp
. This case will be referred to as the no
034402-4
focusing case. Clearly, in order for this approximation to
be valid, the condition ja1�1� %NF�

�1=4j � ky, has to be
satisfied, where %NF is the saddle point.

Second case: This is the case where M is so large that
Eq. (16) is valid, and yet k2y in Eq. (24) dominates over the
a

����������������������
�=�1� %�

p
term. As a consequence,

kc�%� � ky � 2a2�1� %��1=2; (27)

where a2 � a
����
�

p
=�4ky�. We shall refer to this case as the

strong focusing case. The condition for the validity of this
approximation is ky � ja1�1� %SF��1=4j, where %SF is the
saddle point.

The remainder of this section is devoted to the detailed
treatment of these two cases. Some of the results in this
section have been briefly reported in Ref. [17].

A. No focusing case

We wish to carry out the saddle point analysis to the
integrals (21) and (22) with

*���
M �%� � �M� 1��4)1�1� %��1=4 � log�%��; (28)

_** ���
M �%� � �M� 1��)1�1� %��5=4 � 1=%�; (29)

and

.** ���
M �%� � �M� 1���5=4�)1�1� %��9=4 � 1=%2�;

(30)

where ‘‘�’’ stands for d=d% , and )1 � a1z=4�M� 1��.
The function*���

M �%� has branch points at % � 0 and % �
1. Let us draw cuts in the % plane from % � �1 to 0, and
from % � 1 to 1. The integral (21) is performed on the
first sheet of *���

M �%� which is defined to be the sheet
where *���

M �%� � real for 0< % < 1. The contour of the
saddle point integral is shown in Fig. 2.

The saddle point %NF satisfies _**���
M �%NF� � 0, or

�1� %NF�5=4 � �)1%NF: (31)

This equation cannot be solved algebraically. However
noting that )1 � O�1=M� is small in the limit of M ! 1,
we solve the equation by perturbation. In terms of the
variable ~%% � 1� % , Eq. (31) becomes, to the lowest order
in )1,

~%% 5=4NF � �)1: (32)

Taking the fourth power of this equation, we have

~%% 5NF � )41; (33)

yielding the solutions

%NF � �1� )4=51 ; 1� )4=51 e�i2�=5; 1� )4=51 e�i4�=5�;

(34)

where we write the five solutions of Eq. (33) as a compact
034402-4



FIG. 2. The contour used for the saddle point calculation. The dashed curve indicates that the contour is closed at j%j ! 1.
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row matrix. The condition (33) is a necessary but not a
sufficient condition for saddle points. [We took the fourth
power of Eq. (32) in order to obtain Eq. (33); we might
in doing so have introduced spurious solutions.] Each
of the solutions (34) has yet to be verified to be a
relevant saddle point. It is straightforward to verify that
% ���
NF � 1� )4=51 is the only saddle point of (��� and

% ���
NF � 1� )4=51 e�i4�=5 are the only saddle points of
(��� we have to consider. These saddle points are also
indicated in Fig. 2.

The saddle point contribution to (��� satisfies

(���
M / exp*����% ���

NF ��: (35)

Routine calculation gives the following results for the
exponents:

*���
M �% ���

NF � � 5�M� 1�)4=51 ; (36)

and

*���
M �% ���

NF � � 5�M� 1�)4=51 exp��i4�=5�: (37)

Notice that the real part of *���
M above is negative; there-

fore, (���
M ! 0 in the limit of M ! 1. We shall ignore the

(���
M term in Eq. (21).
In order to perform the saddle point integral for (���

M
we need, in addition to (36), the following expression:

.** ���
M �% ���

NF � �
5�M� 1�

4)4=51
: (38)

We notice that .**���
M % ���

NF � / )�9=5
1 / M9=5 ! 1 rapidly,

as M ! 1. Such sharp dependence of the integrand of
(22) in the neighborhood of the saddle point validates the
saddle point approximation.

From the above discussion, the equation

yM�z� �
y00
4�

(���
M �z� / exp*���

M �% ���
NF �� (39)

together with Eqs. (36) and (38) are all we need for the
034402-5
saddle point estimate of the present BBU problem.
However, before stating the results, let us have a discus-
sion on the growth time tNF of the mode under discussion.

The Mth bunch reaches the linac at time t � M
B. The
quantity )1 in the expression (36) can be written in terms
of M and a. If we replace M or M� 1 (recall that M � 1)
in the resulting *���

M by t=
B, we obtain

*���
M �% ���

NF � �

�
t
tNF

�
1=5
; (40)

where the growth time

tNF �

B
4�

�
4

5

�
5 1

z4
1

a2
; (41)

and the result of the saddle point integral is

yM�z� �
y00
4�

(���
M �z� �

y00
5

�������
2�

p

�
tNF
t

�
9=10 
B

tNF
exp

��
t
tNF

�
1=5

�
:

(42)

So far we have been dealing with the case of a uni-
formly filled linac. If the filling is not uniform (some
buckets not filled) the above results do not hold. In Sec. V,
we shall treat an example of such a nonuniform case. In
order to facilitate later comparison, let us write Eq. (41)
for tNF in another form. Using Eq. (3), Eq. (41) becomes

tNF �

B
�
16

55
b6

z4
1

�2skin

I2A
I2B
: (43)

For the case of uniform filling, the IB � eNB=
B above
equals the locally averaged current Iaverage. Therefore the
above equation can be expressed as

tNF �

B
�
16

55
b6

z4
1

�2skin

I2A
I2average

: (44)

We shall compare later the above expressions (43) and
(44) with the corresponding results for a nonuniformly
filled beam.
034402-5
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B. Strong focusing case

The treatment of this case is similar to the NF case.
Having given all the calculation details for the NF case,
here we present the results directly. The asymptotic result
for the displacement of the Mth bunch is

yM�z��
2y00
3

�������
2�

p

�
tSF
t

�
5=6
B
tSF
exp

��
t
tSF

�
1=3

�
cos

 ���
3

p �
t
tSF

�
1=3

�kyz�
�
6

�
;

(45)

where the growth time for this mode is

tSF � 
B

�
2

3

�
3 1

a22z
2 ; (46)

and again t � �M� 1�
B, or M
B since M is large. For
readers who are interested in the calculation details,
please refer to Appendix A.

V. BEAM WITH PERIODIC GAPS

The bunch filling pattern considered in this section is
as follows: The beam is made of repetitive identical
sequences where each sequence consists of p adjacent
filled buckets followed by q empty buckets; there are in
total r � p� q buckets in a sequence.

A. Equations of motion

If all the buckets are filled, then the equation of motion
is given by Eq. (1), i.e.,

ÔOyM �

�
d2

dz2
� k2y

�
yM �

XM�1

N�1

S�M� N�yN;

where S�M� is the wake function given in Sec. I; S�M� �
0 for M � 0, and S�M� N� � a=

���������������
M� N

p
for M > 0.

The parameter a is given by Eq. (3). Note that we have
made here a slight change of convention. We designated
the bunches as M � 1; 2; 3; . . . above instead of M �
0; 1; 2; . . . as was done in Sec. I. We adopt this new con-
vention throughout this section.

We have to generalize the above equation to include the
case of a beam with periodic empty buckets. Let us use
the notation u � 1; 2; 3; . . . for the sequence number, and
m � 1; 2; . . . ; p for the bunch number in a sequence. It is
convenient to define, corresponding to each u, a p
 p
matrix S�u� with its elements given by

S
�u�
m;n � S

�u�
m�n � Sur� �m� n��; (47)

where the range of u for S�u� is u � 0; 1; 2; . . . .
Corresponding to the above matrix, we define 1
 p
column vector
034402-6
Y�u� �

0
BBB@
yu;1
yu;2
..
.

yu;p

1
CCCA; (48)

where yu;m is the transverse displacement of the mth
bunch in the uth sequence.

The equation of motion for a beam with periodic gaps
can now be written in a compact form similar to Eq. (1),

ÔOY�u� �
Xu
v�1

S�u�v�Y�v�: (49)

We solve this equation in the next subsection.

B. Solutions

The mth component of the equation of motion (49) is

ÔOyu;m �
Xu
v�1

Xp
n�1

S
�u�v�
m�n yv;n: (50)

The following generalization of Eqs. (12) and (13) is
convenient:

"m�%� �
X1
u�1

%uyu;m; (51)

0m�%� �
X1
u�0

S
�u�
m %u: (52)

Then the above three Eqs. (50)–(52) lead to

ÔO"m�%� �
Xp
n�1

0m�n�%�"n�%�: (53)

Once the solution of the last equation is found, the dis-
placement of the individual bunch is found by substituting
the solution into the inverse of (51), namely,

yu;m �
1

2�i

I
d%%��u�1�"m�%�: (54)

The method we use to solve Eq. (53) is a generalization
of the method of Sec. IV. Note that for u ! 1, the
contribution to the integral (54) is dominated by the
behavior of the integrand near % � 1. Therefore we shall,
in analogy to what we did in Sec. IV, approximate 0m by
its singular part near % � 1. The singular part is from
[16]

0m�%� �
a���
r

p

������������
�

1� %

r
8 m; (55)

and the corresponding approximation to Eq. (53) is

ÔO"m�%� �
ap���
r

p

������������
�

1� %

r
"m�%�; 8 m: (56)
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This equation together with Eq. (54) gives us the asymp-
totic behavior, u ! 1, of yu;m.

Observe the similarity of Eqs. (54) and (56) above to
the following equations we obtained earlier for the uni-
form filling case, i.e., Eqs. (14) and (25):

ÔO"�%; z� � a
������������
�

1� %

r
"�%; z�;

yM�z� �
1

2�i

I
d%%��M�1�"�%; z�:

The variablem appears as a passive parameter in Eqs. (54)
and (56). Also, these equations can be obtained from
Eqs. (14) and (25) by the following substitutions:

M; or �M� 1� ! u; (57)

a ! ap=
���
r

p
: (58)

Therefore, we can obtain the results for Eqs. (54) and (56)
from the corresponding results for the uniform filling
case. We treat here the NF case corresponding to
Sec. IVA. We specifically consider the growth time tgapNF
for the beam with periodic gaps. The SF case can be
treated in a similar way.

We start from the exponent *���
M as given by (36).

Expressing )1 in terms of a, this equation is equivalent to

*���
M �% ���

NF � � 5�1=5�M� 1�1=5�z=4�4=5a2=5: (59)

Now applying the substitution rules (57) and (58) to
Eq. (59), we obtain

*���
gap;u�%

���
NF � �

�
u
uNF

�
1=5

; (60)

where
034402-7
uNF �
1

4�

�
4

5

�
5 1

z4
r

a2p2
(61)

is the growth time in units of sequences.
We have to translate u into time t. The bunch �u;m�

reaches the linac at t � �ur�m�
B � ur
B. Therefore
we should set u ! t=r
B and

tgapNF � r
BuNF (62)

�

B
4�

�
4

5

�
5 1

z4
1

a2
r2

p2
(63)

�

B
�
16

55
b6

z4
1

�2skin

I2A
I2B

r2

p2
: (64)

This expression differs from Eq. (41) or (43) by a factor of
r2=p2. However, this difference is superficial. Let us
calculate the average current of a sequence. It is clearly

Iaverage �
p
r
IB: (65)

In terms of Iaverage, the growth time becomes

tgapNF �

B
�
16

55
b6

z4
1

�2skin

I2A
I2average

: (66)

This is identical to Eq. (44). We therefore conclude that
the cumulative resistive-wall BBU is a locally averaged
current effect.

VI. INJECTION ERROR AND SCREENING
EFFECT

In this section, we study Eq. (17) for the case where
BBU is started up by an injection error, i.e., all the
bunches are initially offset by the same amount, yM0 �
y00, and y0M0 � 0; 8 M � 0. Then, Eq. (17) becomes
yM�z� � y00 cos�kyz� �
1

2�i
y00

I
d%%�1�1� %��1 coskc�%�z� �

1

2�i
y00

I
d%%��M�1��1� %��1 coskc�%�z�

� y00 cos�kyz� � y00 coskc�0�z� �
y00
4�

(���
M �z� � (���

M �z��; (67)
where (���
M �z� is given by Eq. (22) with

*���
M �%� � �ikc�%�z� �M� 1� log�%� � log�1� %�:

(68)

Compared with Eq. (23), Eq. (68) has an additional term
� log�1� %� on the right-hand side.We shall see presently
that this term does not change the eigensolutions as given
in Secs. II, III, IV, and V, but it will change the transient
solutions. We shall also see that this term leads to an
interesting screening effect. From kc�0� � ky, Eq. (67)
simplifies to

yM�z� �
y00
4�

(���
M �z� � (���

M �z��;
which is the same decomposition as in Eq. (21). Let us
discuss as before two extreme cases: the NF case and the
SF case.

A. No focusing case

Similar to what was done in Sec. IV, the asymptotic
result for the NF case is

yM�z� � GNF
y00
5

�������
2�

p

�
tNF
t

�
9=10 
B

tNF
exp

��
t
tNF

�
1=5

�
; (69)

where t � M
B; the growth time is the same as what was
given by Eq. (41), i.e.,
034402-7
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tNF �

B
4�

�
4

5

�
5 1

z4
1

a2
;

and

G NF � 5

�
t

B

�
4=5

�
tNF

B

�
1=5

� 4

�
1

4�a2

�
1=5

�
M
z

�
4=5
: (70)

The calculation details can be found in Appendix B. It is
very interesting to compare the above result (69) to the
result (42) of the initial single-bunch offset case. We find
the following: (i) The growth time tNF is the same for both
cases, as it should be, since tNF should depend only on the
eigensolutions; (ii) the only difference between the tran-
sient solutions is the factor GNF which is proportional to
M4=5 instead of to M (recall that t / M). This is surpris-
ing: Since  saddle � 0, we would expect all the bunches
preceding the bunch M to excite this bunch by the same
amount leading to GNF / M. Clearly, the preceding
bunches are screening each other. (It can actually be
shown that for large but not too large M, the function
GNF / M.)

B. Strong focusing case

Similar to those of Secs. IV and VI A, we find the
asymptotic result for the SF case as

yM�z� �GSF
2y00
3

�������
2�

p

�
tSF
t

�
5=6
B
tSF
exp

��
t
tSF

�
1=3

�


 cos

 ���
3

p �
t
tSF

�
1=3

�kyz�
�
6

�
; (71)

where t � M
B, the growth time is again the same as
what was given in Eq. (46), i.e.,

tSF � 
B

�
2

3

�
3 1

a22z
2 ;

and

GSF �
3

2

�
t

B

�
2=3

�
tSF

B

�
1=3

�

�
16k2y
�a2

�
1=3

�
M
z

�
2=3

:

It is worth noting that, besides the overall factor GSF,
there is also an overall phase shift of ��=3 between the
above solution in Eq. (71) and that given by Eq. (45).

VII. COMPARISON WITH NUMERICAL
RESULTS

To check the analytical results, we compare them with
direct numerical results. As what we comment after
Eq. (66), the results for beams with periodic gaps in
Sec. V can be obtained by proper variable transformation
given in Eqs. (57) and (58). We will check only the results
for the case of the initial single-bunch offset in Sec. IV
and the case of the injection error in Sec. VI.
034402-8
A. Initial single-bunch offset

The general solution is given in Eq. (21), i.e., for
M � 0,

yM�z� �
1

2�i
y00

I
d%%��M�1� coskc�%�z�

�
y00
4�

(���
M �z� � (���

M �z��:

This time we write

(���
M �z� �

1

i

I
d%%��M�1� expf�ikc�%�zg; (72)

where the contour is shown in Fig. 1, as the unit circle in
the % plane and the singularity to be located at % � 1� �
with a small positive �. In so doing, the integral is just the
residue at % � 0. To be more explicit, since % � 0 is a pole
of order �M� 1�, we have

(���
M �z� �

2�
M!


dM

d%M
expf�ikc�%�zg

��������%�0

�
2���1�M

M!


dM

d%M1
expf�ikc�%1�zg

��������%1�1
; (73)

where we have introduced %1 � 1� % , since kc�%� is in-
deed a function of 1� % .

B. Injection error

For the case of injection error, the general solution is
given in Eq. (67), i.e., for M � 0,

yM�z� �
1

2�i
y00

I
d%%��M�1��1� %��1 cosfkc�%�zg

�
y00
4�

(���
M �z� � (���

M �z��:

Similarly, this time we write

(���
M �z� �

1

i

I
d%%��M�1��1� %��1 expf�ikc�%�zg

�
2�
M!

�
dM

d%M


expf�ikc�%�zg

1� %

���������%�0

�
2���1�M

M!

�
dM

d%M1
%�11 expf�ikc�%1�zg�

��������%1�1
:

(74)

Equations (73) and (74) are now ready for direct nu-
merical calculation, and the results could be used to check
the analytical expression in Eqs. (42), (45), (69), and (71).

Before we go into detail of the calculation, let us make
some comments. First, according to the general solution
in Eq. (17), and the focusing strength in the NF limit
given in Eq. (26), we conclude that the solution is a
universal function of a1z, hence, the result stays the
same as long as the product a1z stays constant. In the
SF limit, then according to Eq. (17) and the focusing
strength in Eq. (27), the independent variables are kyz
034402-8
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FIG. 4. (Color) The ratio yM�z�=y00 for the case of single-bunch
offset as a function of the bunch number M � t=
B. The solid
curve stands for the result obtained numerically from Eq. (73)
and the dashed curve for the asymptotic result from Eq. (45).
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and a2z. Second, according to the solutions given in
Eqs. (42), (45), (69), and (71), the results depend only
on the ratio of t=tNF and t=tSF. We know that these are the
long-time asymptotic behaviors, hence, in the numerical
calculation, we only need calculate once according to the
universal variable t=tNF or t=tSF, and then rescale various
cases according to their own tNF and tSF. So, in the
following, we will do calculations for some arbitrary
chosen parameters, but the conclusion drawn from these
examples is universal, based on the above analysis.

In our calculation for the NF limit, we choose a �
0:5 m�2, z � 1:8 m, this yields tNF=
B 	 0:01 for the
case of only a single bunch is initially offset. While for
the injection error case, we choose a � 0:05 m�2, z �
1:8 m, this yields tNF=
B 	 1:0. We further introduce the
relative error as

�M�z� �
yNumM �z� � yAsyM �z�

yNumM �z�
; (75)

where yNumM �z� is the numerical result given by Eq. (73) or
Eq. (74), and yAsyM �z� is the asymptotic result given by
Eq. (42) or Eq. (69) for the case of single-bunch offset or
the injection error, respectively.

The results are given in Fig. 3. As we find, the asymp-
totic result agrees with the numerical result within 20%
for bunch number M > 5 and M > 1 for the case of
single-bunch offset and injection error, respectively.
Recall that we set tNF=
B 	 0:01 and 1 for the case of
single-bunch offset and injection error, respectively.
Hence, the general conclusion will be the following: our
asymptotic results given in Eqs. (42) and (69) agree with
the numerical solution within 20%, when t > 500tNF and
t > tNF for the case of single-bunch offset and injection
error, respectively. Shown in Fig. 3, the relative error is
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FIG. 3. (Color) The relative error defined in Eq. (75) as a
function of the bunch number M � t=
B. The solid curve
stands for the case of single-bunch offset and the dashed curve
for the case of an injection error.
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only a few percent when M > 80 (i.e., t > 8000tNF) and
M > 2 (i.e., t > 2tNF) for the single-bunch offset and the
injection error case and monotonically decreasing beyond
that. This gives the general conclusion of how good the
agreement is between the asymptotic analytical expres-
sion and the direct numerical solution. In real projects, a
and z will vary from case to case, which result in various
tNF, but the statement stays true with respect to tNF.

For the SF limit, we choose a � 1:46 m�2, z � 10 m,
and ky � 12 m�1, and we have tSF=
B 	 1. Since the
results are oscillatory solutions, a relative error as in
Eq. (75) is not very instructive. Every time when
yAsyM �z� � 0, we would get 100% relative error which is
really misleading. Hence, we instead plot yM�z�=y00 as a
function of bunch number M � t=
B.

The results are given in Figs. 4 and 5 for the case of
single-bunch offset and injection error, respectively. As
we find, as long as t > tSF, the asymptotic results in
Eqs. (45) and (71) agree well with the numerical results
obtained from Eqs. (73) and (74). Recall that in our
calculation, we have set tSF 	 
B. In Fig. 4, there exists
discrepancy between the result of the asymptotic analyti-
cal expression and that of the direct numerical solution
around the turning points of the two curves at M� 190
(i.e., t� 190tSF) and M� 450 (i.e., t� 450tSF). However,
the relative error decreases with M (i.e., t=tSF) increases.
Again, this general statement stays true with respect to
tSF, though in real projects, a, z, and ky will vary from
case to case, which results in various tSF.
VIII. APPLICATION AND DISCUSSION

Now let us study the projects we mentioned in Sec. I.
For the PERL project, we hope to know whether the
PERL beam can survive the entire injection period of
034402-9
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FIG. 5. (Color) The ratio yM�z�=y00 for the case of injection
error as a function of the bunch number M � t=
B. The solid
curve stands for the result obtained numerically from Eq. (74)
and the dashed curve for the asymptotic result from Eq. (71).
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12 h. A preliminary parameters list of the PERL beam is
given in Table I. For simplicity, we assume that there are
no gaps between the insertion devices; in other words, we
approximate the 12 insertion devices with gaps in be-
tween by a continuous pipe of 144 m. The parameters of
the other projects are also given in Table I.

For convenience, let us introduce

1NF � ja
��������������������������
�=�1� %NF�

p
j=k2y; (76)

and

1SF � k2y=ja
��������������������������
�=�1� %SF�

p
j; (77)

where %NF and %SF are the saddle points given in Eqs. (34)
and (A5), respectively. For the NF limit to be applicable,
we require 1NF � 1, and for the SF limit, 1SF � 1.

For the PERL project, if we use a conventional planar
wiggler, then there is no horizontal focusing. Hence, the
TABLE I. Summary of the parameters and res
the existing TTF VUV FEL, the FFS of the NL
‘‘NG’’ in the table stands for negligible growth.

PERL LC

Rep rate fB (GHz) 1.3 1:2

Pipe radius b (cm) 0.3 0.
Pipe length (m) 144 15
Conductivity �c (107 2�1 m�1) 6 6
ky (m�1) 3 1=1
Beam energy (GeV) 3 14.
Bunch charge (nC) 0.15 1
t � M
B 12 h 12
yM�z�=y00: single-bunch offset NG NG
yM�z�=y00: injection error 2
 1011 NG
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NF limit is applied. Given the parameters in Table I
but ky � 0, we get tNF 	 17 ns, and the operation period
of 12 h is much larger than 500tNF. Hence, according
to the analysis in Sec. VII, we could safely use the
asymptotic expressions in Eqs. (42) and (69). In the
case of a single-bunch offset, we already get yM�z�=y00 �
1
 1069, so without focusing, the beam will not sur-
vive the entire injection period. We therefore assume
that we add strong focusing in the horizontal plane
to have ky � 3 m�1. Given this, we find tSF 	 2 s, and
the injection period of 12 h is much larger than tSF.
So according to the analysis in Sec. VII, the asymptotic
expression is applicable. Next, 1NF 	 0:1 and 1SF 	 6,
hence the SF limit is marginally applicable. We then
apply the SF limit to get yM�z�=y00 � 1 for the single-
bunch offset case. While for the case of injection error,
we have yM�z�=y00 � 2
 1011. Hence a feedback system
is necessary, and should be easy to implement, since
the growth time tSF 	 2 s is large enough. For the
LCLS parameter, calculation shows that the beam
can safely survive an assumed 12 h injection period,
even with injection error. The very reason is the low
rep rate, though other parameters are similar to the
PERL project. A similar conclusion is found for the
existing TTF VUV FEL. Because of the very low rep
rate, even if the undulator is up to kilometers long, the
effect is still negligible. For the NLC project, in the final
focusing section, the averaged 2 function is about 50 km,
which introduces negligible betatron phase advance dur-
ing the 300 m long section, hence we take the NF limit.
We investigate a train of 192 bunches with bunch separa-
tion of 1.4 ns. Calculation shows that the cumulative
resistive-wall effect is small. This time, it is because of
the large beam pipe radius, since both tNF and tSF / b6.
Also, this is only a single pass train of 192 bunches.
Similar results are obtained for the FFS of TESLA,
where we investigate a train of 2820 bunches with bunch
separation of 337 ns. The results are summarized in
Table I.
ults for the PERL project, the LCLS project,
C project and the FFS of the TESLA project.

LS TTF VUV FEL NLC TESLA

10�7 7
 10�8 0.714 2:97
 10�3

3 0.495 2 2
0 13.5 300 700

3.47 3.47 3.47
8 1 0 0

35 0.24 250 250
2.8 1.2 3.2

h 12 h 267.4 ns 0.95 ms
NG NG NG
NG NG NG
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In our calculation, we neglect the single-bunch effect,
which is treated separately [12,13].
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APPENDIX A: DETAILS FOR DERIVING EQ. (45)

For the SF case, the exponent of the integrand in
Eq. (22) is

*���
M �%� � �ikyz� i2a2z�1� %��1=2 � �M� 1� log�%�:

(A1)

This function has branch points at % � 0 and % � 1. We
cut the complex % plane from % � �1 to 0, and from % �
1 to 1. The same contour is chosen as in Fig. 2. The first
two derivatives of *���

M �%� are

_** ���
M �%� � �ia2z�1� %��3=2 �

M� 1

%
; (A2)

and

.** ���
M �%� � �i

3

2
a2z�1� %��5=2 �

M� 1

%2
: (A3)

The saddle point condition _**���
M �%SF� � 0 leads to

�1� %SF�
3=2 � �i)2%SF; (A4)

with )2 � a2z=�M� 1�. Since )2 ! 0, as M ! 1, we
could again find the saddle points by a perturbation
method. The result is, to the leading order of )2,

%SF � �1� )2=32 ei�=3; 1� )2=32 ; 1� )2=32 e�i�=3�; (A5)

where we write the solutions of Eq. (A4) as elements of a
1
 3 row matrix.

The Eq. (A5) is a necessary but not a sufficient con-
dition for the saddle points. Simple algebraic calculations
show that the first element of the matrix (A5) is a saddle
point of (���

M , and that the third element is a saddle point
of (���

M . The second element of (A5) which is > 1 and lies
on the branch cut is not accessible to the integration
contour.

We need to evaluate *���
M and .**���

M at the appropriate
saddle points. They are

*���
M �%SF;3� � �ikyz� 3�M� 1�)2=32 exp

�
�
i�
3

�
;

034402-11
.**���
M �%SF;3� �

3�M� 1�

2)2=32
exp

�
i�
3

�
;

*���
M �%SF;1� � �ikyz� 3�M� 1�)2=32 exp

�
i�
3

�
;

and

.**���
M �%SF;1� �

3�M� 1�

2)2=32
exp

�
�
i�
3

�
:

Using these results, we obtain the asymptotic expression
in Eq. (45).

APPENDIX B: DETAILS FOR DERIVING EQ. (69)

We carry out the saddle point analysis to the integral
(22) with the exponent

*���
M �%� � �a1z�1� %��1=4

� �M� 1� log�%� � log�1� %�: (B1)

The first two derivatives of the exponent are

_** ���
M �%� � �

1

4
a1z�1� %��5=4 �

M� 1

%
�

1

1� %
; (B2)

and

.** ���
M �%� � �

5

16
a1z�1� %��9=4 �

M� 1

%2
�

1

�1� %�2
:

(B3)

The saddle points are determined by _**���
M �%NF� � 0, i.e.,

0 � �
1

4
a1z�1� %NF��5=4 �

M� 1

%NF
�

1

1� %NF
; (B4)

which cannot be solved algebraically. However, since the
saddle points %saddle ! 1 in the limit of M ! 1, we could
solve Eq. (B4) by a perturbation method. In terms of ~%% �
1� % , Eq. (B4) becomes

�
1

4
a1z~%%

�5=4
NF �

1

4
a1z~%%

�1=4
NF � ~%%�1NF � 1 � M� 1: (B5)

Keeping the leading term in Eq. (B5), we get

�
1

4
a1z~%%

�5=4
NF � M� 1: (B6)

The last equation is identical to Eq. (32), and therefore it
yields the same first-order solution given in Eq. (34). In
other words, the positions of the saddle points are inde-
pendent of the initial condition. We select now the rele-
vant saddle points by repeating what we did before
following Eq. (34), and then carry out the saddle point
integral corresponding to the exponent (B1). We finally
reach the expression in Eq. (69).
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