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Beam instability induced by space charge oscillation during final beam bunching
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Beam instability excited by space charge effect is investigated by particle simulations during final
beam bunching in heavy ion inertial fusion. The beam current is continuously increased along the beam
transport line with longitudinal bunch compression. A transverse particle-in-cell simulation is carried
out with a simple model of beam current increase. The multiparticle simulation shows emittance
growth accompanied by the restructuring of charge distribution in the interior of the beam. An
analytical stability criterion for the high-current beam transport predicts the growth of density
fluctuation by the space charge effect. Although results indicate that an abrupt emittance growth is
induced by the space charge oscillation at critical tune depression in the final buncher, the increase of
emittance can be estimated as high as 23% at the worst case during the bunching process.
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these investigations, it is indicated that instability in-
duced by the space charge effect could cause a mismatch

periodic lattice, the beam current is fixed as a constant.
I. INTRODUCTION

For a production of inertial fusion energy, a driver
system based on heavy ion beams is one attractive option.
In a heavy ion inertial fusion (HIF), the generation and
transport of intense heavy ion beam are especially im-
portant issues. The required beam parameters are of the
order of GeV particle energy, 100 kA total current, and
10 ns pulse width for an effective implosion of a fuel
pellet. A particle accelerator can produce the heavy
ion beam with high particle energy. However these pa-
rameters in the HIF driver system have not yet been
determined, because dynamics of such a space charge
dominated beam might include a lot of unknown behav-
iors. The space charge dominated beam can be considered
to be so-called ‘‘non-neutral plasmas’’ [1,2], and there has
been increasing interest in the behavior of the intense ion
beam in recent years [3]. Consequently, the study of high-
current and a space charge dominated beam is crucial
issue in HIF [2,4].

For space charge dominated beams, the stability of
the beam transport has been investigated by theoretical
analyses and numerical simulations [5–13]. From
address: tkikuchi@cns.s.u-tokyo.ac.jp
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oscillation, a halo formation, emittance growth, and par-
ticle loss. Most of the analytical considerations have
concentrated on Kapchinskij-Vladimirskij (KV) distribu-
tion [14] in transverse phase space. In a matched KV
distribution beam, the stability analysis implies that the
instability exists in tune depressions less than 0.4 [7].
Although for the distribution of the � function in four-
dimensional phase space the KV beam is useful for the
analytical treatment; the distribution has a highly in-
verted population. For this reason, the stability analysis
with the KV distribution often tends to overestimate the
instability effect in comparison with a realistic beam.
Recently, Startsev and Davidson [15] introduced an ana-
lytical treatment with a continuous sheet beam in a water-
bag (WB) distribution [3] which is uniform in the phase
space and has a more realistic distribution than the KV
beam. In the analysis, it is found that the sheet beam WB
distribution is manifestly stable under the condition of the
matched beam transport. On the other hand, the KV and
WB beams cause the instability under the space charge
dominated beam transport with mismatch oscillations
[10–12]. While their studies discuss the axisymmetric
or nonaxisymmetric beam behavior in the continuous or

In the final stage of a HIF accelerator system, the
beam pulse must be longitudinally compressed from
�100 to �10 ns [16–19]. For this purpose, induction
2004 The American Physical Society 034201-1
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FIG. 1. Alternating periodic step function h�s� � h�s � S� of
beam transport channel by FODO lattice.
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voltage modulators, which have a precise waveform con-
trollability and repetition capability of a few MHz, are a
useful device for the high-current beam control [20]. A
beam buncher composed of the induction modulator ap-
plies bunching voltage so as to make a considerable
velocity tilt between the head and the tail of the beam
bunch [16–19,21]. Although the detailed system designs
are not yet completed, the final beam bunching is indis-
pensable in all of the suggested HIF driver systems [22].
For the effective pellet implosion of HIF, we should trans-
port and compress the bunch of heavy ion beam without
emittance growth and particle loss as much as possible.
As a final focus and beam irradiation are crucial issues
for the effective implosion of the HIF fuel pellet [23],
large emittance interferes with the tight focusing to the
small target. In a final beam bunching, the beam current is
continuously increased due to the bunch compression, and
the stability condition of the beam transport is also
changed with the increase of the space charge effect.

We investigate the beam dynamics under a strong space
charge effect during the longitudinal bunch compression
in the final beam bunching of the HIF accelerator system.
In previous studies [24,25], the dilution of particle dis-
tribution in phase space has been implied by particle
simulations during the longitudinal bunch compression.
In this paper, the particle simulations show the emittance
growth accompanied by localized charge distribution.
The comparison with the analytical estimation for the
growth rate of axisymmetric flute perturbation confirms
an important role of space charge oscillation on the
emittance growth.

II. TRANSVERSE BEAM DYNAMICS
SIMULATION USING THE PARTICLE-IN-CELL

METHOD WITH A LONGITUDINAL BUNCH
COMPRESSION MODEL

In the final beam bunching of the HIF accelerator
system, the high-current and high-energy beam is trans-
ported using a magnetic quadrupole focusing channel.
Based on a strong focus theory [1,3,26], we can construct
the quadrupole channel as a form composed of focus-
drift-defocus-drift (FODO) lattice [1,3]. Generally, the
beam transport by FODO lattice with magnetic quadru-
pole causes a nonaxisymmetric behavior in the beam
cross section. For numerical simulation studies, a large
number of the calculation grids (mesh) should be prepared
for observation of the physics with a Debye length scale.
In addition, we are interested in the beam dynamics with
longitudinal bunch compression, so that the simulation
for beam dynamics requires a self-consistent fully three-
dimensional numerical scheme. However, such full cal-
culations are quite difficult from the viewpoint of the
computational cost for the present, i.e., calculation time
and required memory size in the computer system.

While the longitudinal bunch length is of the order of a
meter, the scale of the transverse cross section is only
034201-2
approximately a centimeter in the final beam bunching
stage [27]. Consequently, the small-scale phenomena by
the space charge structure will be dominated by the
transverse beam dynamics. For this reason, we deal
with the particle dynamics in the transverse cross section
of the beam by multiparticle simulation, and the effect of
longitudinal compression is introduced as the beam cur-
rent increase [28].

The scale of the cross section and its space charge field
should change with the longitudinal position in the beam
bunch [19]. Although the lattice condition could be ad-
justed to a part of the beam cross section, a perfect
matching condition throughout the whole cross section
of the beam bunch is considered to be difficult to realize.
In this study, we fix the lattice condition and concentrate
our attention on the effect of the initial transverse distri-
bution on the emittance evolution during the bunching
process.

A. Particle simulation implementations

We use a particle-in-cell (PIC) method [29,30] for
descriptions of the transverse behavior of the beam bunch
with the longitudinal compression, the effect of which
was evaluated by assuming a linearly increasing beam
current model. In the PIC method, the single ion behavior
is replaced as a superparticle one, so that the superpar-
ticle is a representative of many real ions. For the particle
positions xp and yp of index p, the equations of motion
along the transport distance s are written as [31,32]

d2xp

ds2
� �kthxp �

qe


3m0v2
z

@�
@x

; (1)

d2yp

ds2
� kthyp �

qe


3m0v
2
z

@�
@y

; (2)

where kt is the transverse confinement force by the FODO
lattice, h � h�s� is an alternating periodic step function
in the FODO lattice of period length S as shown in Fig. 1,
034201-2
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q is the charge state of the beam ion, e is elementary
charge, m0 is the rest mass of the beam ion, 
 is the
relativistic factor at the center of the longitudinal beam
position, vz is the longitudinal beam velocity, and � is the
self-electrostatic potential of the beam, respectively.

In this study, we simply assume the effect of the self-
magnetic field as a factor of 1=
2 [26,32,33]. The self-
electrostatic potential is calculated by

@2�

@x2
�

@2�

@y2
� �

�
�0

; (3)

where � is the (area) charge density given by the beam
particle positions and �0 is the permittivity of free space,
respectively. The above Poisson equation (3) can be solved
with the multigrid method using the successive overre-
laxation solver [34,35].

The ratio per unit length of the real ion number to the
superparticle number Nb=Nsp is initially given by

�
Nb

Nsp

�
i
�

Ib

qevzNsp
; (4)

where Nb is the ion number in a beam bunch, Nsp is the
particle number for simulation (i.e., number of superpar-
ticle), and Ib is the beam current, respectively. The
subscript i means initial condition. Considering the lon-
gitudinal bunch compression, the ratio Nb=Nsp increases
linearly during the transport as

Nb

Nsp
�

�
Rcf � 1

Lt
s � 1

��
Nb

Nsp

�
i
; (5)

where Rcf is the final compression ratio, and Lt is the
total length of the beam buncher which consists of the
FODO lattice with induction modulators, respectively.
According to Eq. (5), the charge and mass of the super-
particles are increased during the final beam bunching,
and the ratio Nb=Nsp performs the reweighting of the
superparticle with the beam transport [28].

The parameters of one beam bunch were assumed as in
Table I [36].

We must adapt the transverse beam confinement system
to the above beam parameters for the stable beam trans-
port. The FODO lattice parameters are related by [3]
TABLE I. Parameters of one beam for the final bunching
stage in HIF [36].

Ion species Pb�1

Particle energy 10 GeV
Beam current 400 A ! 10 kA
Pulse duration 250 ns ! 10 ns
Ion number 6:25	 1014
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cos�0 � cos� cosh� �
L
‘

��cos� sinh� � sin� cosh��

�
1

2

�
L
‘

�
2
�2 sin� sinh�; (6)

and

kt �

�
�
‘

�
2
; (7)

where �0 is the phase advance per one lattice period
without space charge, ‘ is the length of the quadrupole
lens space (F and/or D in FODO), L is the length of the
drift space (O in FODO), and � is the focusing strength of
the magnetic quadrupole lens, respectively. The phase
advance is selected as �0 � 72� for avoiding unstable
transport in space charge dominated beams [37]. As the
policy of the smaller beam radius, we choose kt �
1:282 082 m�2 under the conditions of ‘ � L � 0:75 m
by Eqs. (6) and (7). In this paper, the transport distance is
assumed as Lt � 450 m [24,27], and the final compres-
sion ratio is Rcf � 25 as shown in Table I [36].

The number of total simulation particles Nsp is from
5	 104 to 1	 106. The superparticles are initially placed
with KV or WB distributions [38,39]. For the initial
particle arrangement, we use the Mersenne Twister pseu-
dorandom number generator [40].

The transverse calculation region is fixed at 10 cm	
10 cm, and the boundary condition is given as a conductor
wall, i.e., � � 0 at the edges of the calculation region. To
confirm the spatial resolution, we have tested from 64	
64 to 1024	 1024 mesh numbers for the solver of the
Poisson equation in two-dimensional transverse space.
Debye length is an important physical parameter for
the evaluation of collective effects in the space charge
dominated beam. In two-dimensional WB distribution,
the Debye length !D is approximately expressed by [41]

!D

rb
�

1

2

#
#0

; (8)

where rb is the beam edge radius, and #=#0 is tune
depression which is the ratio of the wave number of
transverse particle motion (betatron oscillation) with
and without space charge, respectively. For the resolution
of the Debye length scale, it is recommended that the
calculation mesh size is set as 0:23!D [29,30]. As a result,
the mesh number over 256	 256 is required at the final
state of the parameters in Table I. Test calculations are
carried out, and the results also ensure the criterion of
mesh size based on the above expression in the Debye
length. For this reason, we use 512	 512 meshes for the
accurate simulation.

B. Results of particle simulation

At first, we show the calculation results as the contour
maps of charge distribution. Figure 2 shows the charge
034201-3
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FIG. 2. (Color) Normalized charge density maps in real (top panels) and phase (bottom panels) spaces during transport with
increasing beam current for initially KV distributed beam, (a) at initial condition, (b) at 50 lattice periods, (c) at 87 lattice periods,
(d) at 96 lattice periods, (e) at 108 lattice periods, and (f) at 150 (last) lattice periods, respectively. The width and height correspond
to 10 cm	 10 cm in real space maps, and 10 cm	 10 mrad in phase space maps. The charge density in the contour map
is normalized by the maximum value at each lattice period, and the value is expressed by the bar of the color level placed at the
right side.
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density maps in physical and phase spaces at each lattice
period for the initially KV distributed beam.

In the real space maps, the horizontal and vertical
scales correspond to the full calculation region, i.e.,
10 cm	 10 cm. The charge density is normalized by
the maximum value at each map (refer to a bar of the
color level placed at the right side in the figure). The beam
radius is extended with the beam current increase due to
the longitudinal bunch compression. As shown in Fig. 2,
localized charge distribution in real space and the dilu-
tion of the beam particle in phase space are indicated
during the final beam bunching. Figure 3 shows the
charge density maps in real and phase spaces for the
initially WB distributed beam.

In WB distribution, qualitatively similar behaviors
with the KV beam are observed as shown in Fig. 3. In
these cases, the lattice parameters are fixed during the
beam transport, so that the mismatch oscillations are not
suppressed to zero.
y

x

(a) Initial (b) (c) (d

x'

x

FIG. 3. (Color) Normalized charge density maps for real (top pa
increasing beam current for initially WB distributed beam, (a) at in
(d) at 96 lattice periods, (e) at 108 lattice periods, and (f) at 150 (las
to 10 cm	 10 cm in real space maps, and 10 cm	 10 mrad in
is normalized by the maximum value at each lattice period, and th
right side.
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Next, the emittance growth during the bunch compres-
sion is discussed from the particle simulation results. The
root-mean-square (rms) transverse emittances are de-
fined by

�x;rms � �hx2ihx02i � hxx0i2�1=2; (9)

�y;rms � �hy2ihy02i � hyy0i2�1=2; (10)

where each second moment is given by [42]

hx2i �
1

Nsp

XNsp

p�1

x2p; (11)

hy2i �
1
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XNsp

p�1

y2p; (12)
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FIG. 5. History of emittance growth with initially WB
distributed beam. Solid curve shows the emittance growth
ratio with the beam current increase due to the longitudinal
compression, and the dashed line indicates one without the
compression.
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hx02i �
1

Nsp

XNsp

p�1

x02p ; (13)

hy02i �
1

Nsp

XNsp

p�1

y02p ; (14)

hxx0i �
1

Nsp

XNsp

p�1

xpx0p; (15)

hyy0i �
1

Nsp

XNsp

p�1

ypy0p: (16)

Here the prime denotes d=ds. We define the average of
transverse rms emittances as � � ��x;rms � �y;rms�=2 and
assume the initial rms emittance to be �i � �x;rms �
�y;rms � 10 mmmrad. Figure 4 shows the evolution of
the emittance growth ratio �=�i, which indicates the ratio
of the average emittance to the initial one at each lattice
period.

The simulation results of the beam transport with and
without the increase of the beam current are shown in
Fig. 4, which implies that the emittance is maintained
during the beam transport without the compression. In
the case of the KV beam, the radius is gradually diffused
with the increasing beam current, but the emittance has
not changed until 80 lattice periods in Fig. 4. As a result,
the beam bunch is transported under the adiabatic match-
ing condition down to the 80 lattice periods, even in the
periodic lattice with constant lattice parameters and the
continuous increase of the beam current. However, as
shown in Fig. 4, the emittance abruptly increases after
80 lattice periods. Figure 5 shows the history of the
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FIG. 4. Evolution of the emittance growth ratio with the
initially KV distributed beam. Solid curve shows the emittance
growth ratio with the beam current increase due to the longi-
tudinal compression, and the dashed line indicates one without
the compression.
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emittance growth with and without longitudinal bunch
compression in initial WB distribution.

In contrast to the KV distributed beam, continuous
emittance growth occurs until 90 lattice periods, probably
due to the small mismatch induced by the current in-
crease. Similar to the result of the KV distribution, the
emittance steeply increased over 90 lattice periods as
shown in Fig. 5. After the longitudinal compression of
the beam bunch, final emittance growth ratios at 150
lattice periods are around 1.23 and 1.15 in the initially
KV and WB distributed beams, respectively.
III. ANALYTICAL EVALUATION OF
INSTABILITY INDUCED BY SPACE CHARGE

OSCILLATION

Unstable beam transport is caused by the instability
due to the strong space charge effect [1,7,9,10]. As men-
tioned earlier, the beam physics is dominated by the space
charge effect rather than the thermal motion in the beam
transport line for the HIF driver system. The space charge
dominated beam behaves as non-neutral plasma and can
shield the external potential for the transverse beam
confinement [1,5,41]. The collective behavior causes the
restructuring of the space charge distribution. In the
previous section, we showed that localized particle dis-
tribution in the beam interior is observed in the charge
distribution maps, and the abrupt increase of emittance is
also confirmed. In this section, we investigate theoreti-
cally the instability induced by the strong space charge
effect, and previous simulation results are compared to
the analytical consideration.

An unstable condition caused by the growth of the
azimuthally symmetric flute perturbation is one
possible instability due to the space charge effect
[9–13]. The perturbed density of the beam interior
034201-5
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produces the fluctuation of the self-electrostatic potential.
If the amplitude of the potential perturbation grows
above a threshold level during the beam transport, the
localized space charge field generates significant nonlin-
ear force, thereby inducing a mismatched oscillation and
increase of emittance. Also, the mismatch oscillations of
the beam radius cause the further emittance growth. The
Vlasov-Poisson equations with KV distribution can pre-
dict the growth rate of the axisymmetric flute perturba-
tion [1,9–13].

The instability condition has the threshold value on
strength of the space charge effect. The tune depression is
often used as the figure of merit of the transportability of
space charge dominated beams. The tune depression #=#0

(same as �=�0 in the periodic lattice case) is given by
[10,11]

#
#0

�

���������������
1�

$2

4

s
�

$
2

: (17)

Here

$ �
K

4�n
����
kt

p ; (18)

K is the perveance and �n � '
� is the normalized rms
emittance with ' � vz=c defining the ratio of the longi-
tudinal beam velocity and speed of light c, respectively.
The perveance is defined by

K �
2

'3
3

Ib

I0
; (19)
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where I0 � 4)�0m0c3=qe is the characteristic current [3].
Equation (19) shows that the perveance is proportional to
the beam current. Figure 6 shows the estimated tune
depression from Eq. (17) during the perveance increase
due to the longitudinal bunch compression.

The unnormalized rms emittance of � � 10 mmmrad
is assumed for the estimation. It is predicted that the tune
depression will decrease from the initial 0.9 to 0.16 after
the pulse compression.

At each mode number m, the growth rate of the ax-
isymmetric flute perturbation can be evaluated by the
dispersion relation in the case of the KV distribution
[10,11]. The normalized mode frequency !=#0 of the
dispersion relation is calculated by [13]
�!=#0�
4 � 2�1� 9�#=#0�

2��!=#0�
2 � 4�1� 17�#=#0�

2��#=#0�
2 � 0; (20)

in case of m � 2. For m � 3, the dispersion relation is written as�
!
#0

�
6
�2

�
1� 27

�
#
#0

�
2
��

!
#0

�
4
�8

�
1� 97

�
#
#0

�
2
��

#
#0

�
2
�

!
#0

�
2
�96

�
1� 23

�
#
#0

�
2
��

#
#0

�
4
� 0; (21)

and�
!
#0

�
8
�2

�
1� 59

�
#
#0

�
2
��

!
#0

�
6
�52

�
1� 83

�
#
#0

�
2
��

#
#0

�
2
�

!
#0

�
4
�32

�
19� 1621

�
#
#0

�
2
��

#
#0

�
4
�

!
#0

�
2
�

288

�
9� 521

�
#
#0

�
2
��

#
#0

�
6
� 0; (22)
in the case of m � 4. Equations (20)–(22) indicate that
the dispersion relation depends on the tune depression.
The m � 4 mode is the most serious, because it gives the
largest threshold value of the tune depression #=#0 [7]. In
general, high-order instabilities are considered to be a
consequence for the singularity of the KV distribution, so
that the higher-order modes will not cause serious insta-
bilities in realistic beams [1,13]. Although this is a
formula for the continuous electrostatic focusing, it is
often used to model the average focusing properties of
an alternating-gradient lattice of magnetic quadrupoles
[1,3,13].
According to the tune depression given in Fig. 6, we
can calculate the dispersion relation given by Eqs. (20)–
(22). The higher-degree equations of the dispersion rela-
tions can be solved using Bairstow’s method [43]. Figure 7
shows the imaginary part Im!=#0 of the normalized
mode frequency, which indicates the growth rate of
each flute perturbation mode, during the final beam
bunching.

As shown in Fig. 7, the growth rates in the cases of
modes 2, 3, and 4 increase along the beam transport,
because the tune depression is also decreased by the space
034201-6



FIG. 7. Growth rate of axisymmetric flute perturbation as a
function of transport lattice period for mode numbers m � 2, 3,
and 4 during final beam bunching.
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charge effect with the perveance increase. It is found that
the emittance growth indicated by the previous section
corresponds to the regime of the large growth rates of the
axisymmetric flute perturbation.

Furthermore, we compare the perturbation of the
charge density with the calculated one. The normalized
body-wave density perturbation �n=�n�r � 0� for mode
number m � 4 (1� 15r2=r2b � 45r4=r4b � 35r6=r6b, where
r and rb are the radius and the beam edge radius) [13] with
highest growth rate is shown in Fig. 8.
δn
/δ

n
(r

=
0

)

y /Y

δn
/δ

n
(r

=
0

)

-1

 0

 1

 2

-1

 0

 1

 2

-1 -0.5  0  0.5  1

FIG. 8. (Color) Normalized density for flute perturbation in m � 4
normalized perturbed density in transverse (10 cm	 10 cm) real
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Here the total density is expressed by n � n0 � �n
as the equilibrium density of n0. On the other hand,
we show a typical density perturbation given by
the particle simulation with the initial KV beam as in
Fig. 9.

The envelope radii X and Y can be calculated from X �
2

��������
hx2i

p
and Y � 2

��������
hy2i

p
, which are total beam radii in

the KV distribution [3]. The envelope radii X � Y �
1:9136 cm are given at 86� 1=4 lattice period.
(According to the lattice configuration as shown in
Fig. 1, the beam envelope X is maximized at s � S
in one lattice period, while the envelope Y has a
minimum radius at s � S as shown in Figs. 2 and 3.
To this end, the envelope X is equal to Y at s � S=4.)
The perturbed density distribution is normalized by
the difference from the average density in the beam.
It is found that normalized perturbations obtained
by the theoretical estimation shown in Fig. 8 and
that by numerical simulation shown in Fig. 9 are
similar. Consequently, it is suggested that the growth
of the perturbed distribution inside the beam during
the final bunching is induced by the instability. Al-
though the analytical estimation assumes the KV
distribution, the WB distribution also causes the in-
stability in the mismatched beam transport [12]. These
results suggest that the emittance growth observed
in the multiparticle simulation is attributed to the insta-
bility due to the collective behavior in the space charge
dominated beam.
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IV. CONCLUSION
We investigated the transverse beam dynamics during

the final beam bunching in the HIF accelerator system.
Beam transverse PIC simulation with the increasing beam
current, as a model of the longitudinal bunch compres-
sion, was carried out for the study of beam transport
suffered from space charge oscillations.

The numerical simulation results indicated that the
beam is bunched accompanied by the restructuring of
charge density distribution and emittance growth during
the final beam bunching and transport. For theoretical
consideration, the growth rate of the axisymmetric flute
perturbation was evaluated, and the comparison of the
growth rate implied the unstable beam transport with the
perturbation of m � 4 mode during the final beam bunch-
ing. The regime of the large growth rate corresponded to
the situation of the eventual emittance growth observed
in the particle simulation. Although nonaxisymmetric
instability modes were also implied by PIC results, the
main cause of the emittance growth can be attributed to
the instability excited by the strong space charge effect.
Simulation results show that not only the KV distribution
but also the WB beam undergoes the rapid emittance
growth at around 80 lattice periods during the final trans-
port. Analytical result also predicts that the space charge
field significantly affects the beam transport in the pa-
rameter region of the HIF buncher under the condition
with continuous increase of the beam current.

We summarize that the mechanism of the emittance
growth during the final beam bunching is as follows: the
034201-8
space charge effect and mismatched oscillations cause the
instability due to the space charge oscillation, and the
density perturbations grow due to the instability. The
nonuniform density distribution creates the nonlinear
field, so that the emittance growth can be induced at the
lattice position corresponding to the highest growth rate
of the flute perturbation.

In this paper, particle simulations of the final beam
bunching were carried out without adjusting lattice pa-
rameters along the beam current increase; nevertheless
the emittance growth was 20% at the highest. We can
conclude that even though the estimated emittance
growth might not be negligible for the final focus and
effective pellet irradiation, the space charge instability in
the final buncher does not seriously affect the basic HIF
concepts.
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