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This work is a three-dimensional stability study based on the modal analysis for a continuous beam
with an axisymmetric Kapchinskij-Vladimirskij (KV) distribution. The analysis is carried out self-
consistently within the context of linearized Vlasov-Maxwell equations and electrostatic approxima-
tion. The emphasis is on investigating the coupling between longitudinal and transverse perturbations in
the high-intensity region. The interaction between the transverse modes supported by the KV
distribution and the ‘‘usual transverse modes’’ is examined. We found two classes of ‘‘coupling modes’’
that would not exist if longitudinal and transverse perturbations are treated separately. We also found
that some transverse modes can interact among themselves through longitudinal perturbation to cause
instability. The effects of wall impedance on beam stability is also studied and numerical examples are
presented.
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in a heavy-ion fusion driver in which most particles have
appreciable betatron oscillations in the radial direction to

distributions. This can be seen in the modal structure
found in computer simulations for more realistic particle
I. INTRODUCTION

There is increasing interest in the applications of
charged-particle beams such as heavy-ion fusion, spalla-
tion neutron sources, tritium production, and transmuta-
tion of waste radioactive materials, calling for increased
beam intensity [1,2]. Experimental accelerator facilities,
like the University of Maryland Electron Ring [3] cur-
rently under construction, have been designed for higher
and higher beam intensities as well. The rise of the
demanded beam current into the space-charge dominated
regime necessitates a better understanding of beam
stability. For example, in a customary stability analysis
of a continuous beam in an accelerator or storage ring,
longitudinal and transverse effects are treated separately
[4–8], an approximation that is valid because space-
charge forces are relatively weak and characteristic fre-
quencies differ by orders of magnitude. A new situation
arises in a proposed heavy-ion fusion facility which has
a beam current several orders of magnitude higher than
that in a conventional accelerator or storage ring. Space-
charge forces are large and all frequencies are of the order
of the plasma frequency, so that the separated treatment
of longitudinal and transverse perturbations may not be
applicable. Thus, in the very high-intensity regime, an
appropriate beam stability theory should be based on a
three- or two-dimensional kinetic-theory analysis to ac-
count for the possible coupling between longitudinal and
transverse perturbations. Some three-dimensional calcu-
lations have been carried out before, but the considera-
tions were limited to laminar beams or beams with very
small radial motion of particles or modes with only
surface perturbation on the beams [7,9,10]. These kinds
of models appear too simple for a strongly focused beam
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support many transverse modes not found in a laminar or
nearly laminar beam.

Concern of the longitudinal-transverse coupling effect
was raised more than two decades ago in the heavy-ion
fusion studies. Since then, some investigations have been
exploited in attempt to address the issue by improving the
earlier stability theories for laminar beams or nearly
laminar beams [11,12]. In a study of two-dimensional,
axisymmetric perturbations in a beam with a
Kapchinskij-Vladimirskij (KV) distribution [13], an in-
stability caused by the coupling between longitudinal and
transverse motion was discovered in theory [12]. Later
computer simulations confirmed the prediction [14–16]
and found this kind of instability to be a mechanism for
energy exchange between longitudinal and transverse
motions in the beams with high anisotropy in tempera-
ture. The instability was then linked to the one investi-
gated by Harris [17] for plasmas with anisotropy
in velocity distribution. These findings and many related
fine papers published afterward [18–29] mark success in
exploring the intense beam stability. However, to date,
the rigorous three-dimensional stability analysis based on
the kinetic theory is still left in an incomplete stage and
further progress remains to be pursued. The motivation
of the present work is to revisit the classical problem
of three-dimensional beam stability by investigating a
simple model and using minimal approximation(s).

Among all models of charged-particle beams, the KV
distribution is probably the most used for self-consistent
equilibria. Because of its simplicity, it has been used for
various computations and stability analyses involving
space-charge effects. In spite of being not very realistic
and being more unstable than a realistic distribution, it
still has many characteristics similar to those of realistic
2004 The American Physical Society 024201-1
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distributions and in the warm-beam fluid models studied
recently [18]. Albeit the KVdistribution is very popular, a
punctilious, full three-dimensional stability analysis of a
KV beam still has not been carried out, even within
the context of electrostatic approximation. This is largely
due to the complexity of the mathematical manipula-
tions involved. Nonetheless, the simplicity of the KV
distribution function lends itself as yet as the most
amiable mathematical model for exact analytical calcu-
lation without too many approximations which might
neglect or smear the detail of three-dimensional effects.
Historically, the first transverse stability study of an
axisymmetric KV beam was exploited in Ref. [8] where
the radial and the azimuthal transverse modes were in-
vestigated under the assumption of no perturbation in the
axial direction. Later, the transverse stability of a KV
beam in a periodic focusing channel was analyzed under
the same assumption [30]. The investigation in Ref. [30]
was followed by several related studies including com-
puter simulations [31–35] and the stability of a breathing
axisymmetric KV beam [36,37]. The first analytical
stability study including the axial perturbation was
carried out in Ref. [12]. However, the discussion there
was limited to the azimuthally symmetric modes only.
The purpose of this work is to extend the earlier inves-
tigation of axisymmetric modes in Ref. [12] to a full
three-dimensional kinetic-theory stability study to com-
plete the analysis of the electrostatic stability of a con-
tinuous monoenergetic axisymmetric KV beam. It is
hoped that the approach and the results of this work
will be helpful in the exploring and understanding of
beam stability in nonaxisymmetric geometry.

Although the mathematical calculation involved in the
present work is substantially more elaborate, the layout of
the present paper and the development of the analysis as
well as the mathematical notations will closely follow
those in Ref. [12]. In Sec. II, the theoretical model will be
delineated and the Vlasov-Poisson equations introduced.
The dispersion relation will be derived in Sec. III. Some
special cases of the dispersion relation will be discussed
in Sec. IV. Numerical examples will be presented in
Sec. V. We shall use CGS Gauss units throughout this
paper.
II. THEORETICAL MODEL AND LINEARIZED
VLASOV-POISSON EQUATIONS

We consider an infinitely long nonrelativistic beam of
circular cross section with radius a and constant particle
density �0 propagating inside a conducting pipe of radius
b and arbitrary wall impedance. A cylindrical coordinate
system �r; ’; z� is chosen such that the beam is propagat-
ing in the positive z direction and the z axis coincides
with the central axis of the beam. The equilibrium state of
the beam is maintained by a constant linear external
024201-2
transverse focusing force which can be represented as
mb


2
or where mb is the mass of a beam particle and 
o

is the betatron frequency in the absence of the beam’s
self-field. Taking the self-field of the beam into account,
one finds the relation


2 � 
2o � �!2
p=2�; (1)

between the effective betatron frequency of particles 
,
and the plasma frequency!p � �4�q2�0=mb�

1=2 where q
is the charge of a beam particle. We assume the equilib-
rium distribution of beam particles in phase space is
described by the distribution function f0�x; v� that is a
product of the KV distribution in the transverse direction
and a distribution function fz�vz� for the longitudinal
motion, i.e.,

f0�x; v� �
�0

�
��v2? � 
2�a2 � r2��fz�vz�; (2)

where v2? � v2r � v2’, vr, v’, and vz are the particle’s
radial, azimuthal, and axial speeds, respectively, ��x� is
the delta function, and fz�vz� is normalized according toZ 1

�1
fz�vz�dvz � 1: (3)

Although it is possible to consider a more complex
distribution of longitudinal particle velocities, we will
concentrate on the discussion of the case of fz�vz� �
��vz � vo� in the following, where vo is the axial speed
of beam particles. The consideration of such a monoen-
ergetic distribution function inevitably neglects the
damping effect due to energy spread. Readers have to
keep in mind that even a moderate longitudinal energy
spread can substantially modify the growth rate as re-
ported in Refs. [27–29].

For the theoretical model considered here, one can
easily infer the particle orbit �r0; ’0; z0� in the equilibrium
state by solving the equations of motion to find

r02 � r2cos2�
t� �
�
v?



�
2
sin2�
t� �

rv?



sin�2
t� cos�;

(4)

’0 � ’�
1

2

(
sin�1

2
4h? � 2v2’�r=r0�2��������������������������������

h2? � 4�
rv’�2
q

3
5�sin�1

�

2
4 h? � 2v2’��������������������������������

h2? � 4�
rv’�
2

q
3
5)
; (5)

and

z0 � vzt� z; (6)

where t is the time, � � cos�1�vr=v?�, h? � v2? � 
2r2,
and the initial conditions of r0�t � 0� � r,’0�t � 0� � ’,
z0�t � 0� � z, and v0�t � 0� � v were assumed. From the
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equilibrium orbit, one can derive a useful relation

ei’
0
�

�
ei’

r0

�
��1e

i� � �2�; (7)

where

�1 �
�
v?



�
sin�
t�; (8)

�2 � r cos�
t�; (9)

and i �
�������
�1

p
.

Our stability study will be carried out within the
context of theVlasov-Maxwell equations and the electro-
static approximation [7,38]. Thus the electric field will
follow the description of the Poisson equation and the
corresponding magnetic field will be approximately given
by B � v� E=c, where c is the speed of light in the
vacuum. Further, we limit our discussions of the beam
stability to the linear regime. That is we consider small
perturbations in the distribution function f1�x; v; t� and in
024201-3
the electric potential �1�x; t� described by the linearized
Vlasov-Poisson equations

@f1
@t

� v 

@f1
@x

�
dv
dt



@f1
@v

�
q
mb

r�1 

@f0
@v

; (10)

and

r2�1 � �4�q�1 � �4�q
Z 1

�1

Z 1

�1

Z 1

�1
f1�x; v; t�d3v;

(11)

where �1 is the perturbed particle density.
Assuming the perturbed quantities vary in space and

time according to

ff1; �1; �1g � f~ff; ~��; ~��gei�!t�m’�kz�

� f~ff�r�; ~���r�; ~���r�gei�!t�m’�kz�; (12)

the linearized Vlasov equation can be treated by integrat-
ing over the unperturbed particle orbit to yield
~ff �
2qn0
�mb

�
��vz � vo� ~��

d�?

dv2?
�



ik�?
2

d��vz � vo�
dvz

� i�!� kvz���vz � vo�
d�?

dv2?

�Z 1

0

~��0eim�’
0�’��i
!d!

�
; (13)

where �? � ��v2? � 
2�a2 � r2��,

! � t� t0 (14)

is the duration between the present time t and the past time t0, and the prime indicates the dependence on ! or t0, e.g.,
~��0 � ~���r0�!��. Performing the Fourier transformation to Eq. (11) according to Eq. (12), making a substitution of
Eq. (13), and applying Eqs. (7)–(9), we derive the following differential-integral equation:

1

r
@
@r

�
r
@ ~��
@r

�
�

�
m2

r2
� k2

�
~�� �

!2
p

a
2
~���a���r� a�

�
2!2

p

�



i


Z 1

�1

Z 1

�1
dvrdv’

d�?

dv2?

Z 1

0

~���r0�
�
1

r0

�
m
��01e

i� � �02�
me�i
!d!

�
k2

2

Z 1

�1

Z 1

�1
dvrdv’�?

Z 1

0
! ~���r0�

�
1

r0

�
m
��01e

i� � �02�
me�i
!d!

�
; (15)
where


 � !� kvo; (16)

is the Doppler-shifted frequency, and use has been made
of the relations

Z 1

�1

Z 1

�1

~��
d�?

dv2?
dvrdv’ � �

�


2
~����r2 � a2�; (17)

and

Z 1

�1
dvz

d��vz � vo�
dvz

Z 1

0

~��0e�i
!d!

� �ik
Z 1

0
! ~��0e�i
!d!: (18)
Solving Eq. (15) led to a dispersion relation which we will
pursue in the next section.

III. DISPERSION RELATION

We consider the solution of Eq. (15) outside the beam
first. Letting ~��o � ~��o�r� be the perturbed electric poten-
tial outside the beam and Z be the wall impedance in units
of Z0 � 377 
 at the surface of the beam pipe, the
boundary condition at r � b, in accordance with the
electrostatic approximation, can be written as

~��o�b� �
i!Z

ck2
d ~��o

dr

�������r�b
: (19)

This implies that the solution for ~��o�r� is
024201-3
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~��o�r� � �

�
Im�kr�Km�kb� � Im�kb�Km�kr�

�

�
i!Z

ck2

�

Im�kr�

dKm�kb�
db

� Km�kr�
dIm�kb�
db

��
; (20)

where � is a constant, and In�x� and Kn�x� are the nth
order modified Bessel functions of the first and the second
kinds, respectively.

To find the solution of Eq. (15) inside the beam, we
expand the perturbed electric potential as a sum of Jacobi
024201-4
polynomials P�m;0�
l �x� according to

~���r� �
�
r
a

�
mX1
l�0

GlP
�m;0�
l

�
1�

2r2

a2

�
; (21)

where r � a, and m � 0; 1; 2; . . . , denotes the azimuthal
harmonic number. The choice of expanding ~�� in terms of
Jacobi polynomials is suggested by the solutions for the
special case of k � 0 (see the discussion in the next
section). The analysis then proceeds by substituting
Eq. (21) into the left-hand side of Eq. (15) to derive
1

r
@
@r

�
r
@ ~��
@r

�
�

�
m2

r2
� k2

�
~�� � �

�
r
a

�
mX1
l�0

�l�m� 1�



4�2l�m� 2�Al�1

a2

� k2
�

Gl�1

2l�m� 3
�

Gl

2l�m� 1

��
P�m;1�
l

�
1�

2r2

a2

�
; (22)

where

Al �
X1
j�l

��1�l�jGj; (23)

and use has been made of Eqs. (C1) and (C16) in Appendix C as well as the relation

X1
l�1

Xl�1

j�0

Flj �
X1
j�0

X1
l�j�1

Flj �
X1
l�0

X1
j�l�1

Fjl; (24)

for any Flj. Note that from Eq. (23) we have

Gl � Al � Al�1: (25)

Next, substituting Eq. (21) into the right-hand side (RHS) of Eq. (15) and carrying out the lengthy calculation outlined
in Appendix A yield

RHS �
!2
p

a
2
��r� a�

X1
l�0

��1�lGl



1� i


Z 1

0
e�i
!cosm�
!�P�0;m�

l �T�d!
�

�
2i
!2

p

a2
2

�
r
a

�
mX1
l�1

GlP
�m;1�
j

�
1�

2r2

a2

�Xl�1

j�0

��1�l�j�m� j� 1�
Z 1

0
e�i
!cosm�
!��P�0;m�

j �T� � P�0;m�
j�1 �T��d!

�!2
pk

2

�
r
a

�
mX1
l�0

GlP
�m;0�
j

�
1�

2r2

a2

�Z 1

0
!e�i
!cosm�
!�P�0;m�

l �T�d!; (26)
where

T � cos�2
!�: (27)

Substituting Eqs. (22) and (26) into Eq. (15) leads to a
recursion relation for Al:

WlAl�1 � �Wl �Wl�1 �Ul�Al �Wl�1Al�1 � 0; (28)

where l � 1; 2; 3; . . . ,

Ul � 2�m� 2l� �
�
!p




�
2
.�Bl�1�m;.� � Bl�m;.��;

(29)
Wj �
a2k2

2�m� 2j� 1�



1�

�
!p




�
2 @
@.

Bj�m;.�
�
; (30)

. � 
=
 � �!� kvo�=
; (31)

Bj�m;.� � i
Z 1

0
e�i.xcosmxP�0;m�

j �cos2x�dx; (32)

and j � 0; 1; 2; 3; . . . ; . In arriving at Eq. (28), we have
applied Eqs. (23)–(25), (C1), and (C10) and the orthogon-
ality of Jacobi polynomials, Eq. (C8). We notice that the
integration in Eq. (32) can be carried out to give
024201-4
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Bl�2n; .� �
1

.

Xl
j�0

��1�l�j�2n� j� 1�l�2n� 2j�!

j!�l� j�!�22 � .2� 
 
 
 ��2n� 2j�2 � .2�

�
1�

.2

2!
�
.2�22 � .2�

4!
� 
 
 


�
.2�22 � .2� 
 
 
 �4�j� n� 1�2 � .2�

�2j� 2n�!

�
; (33)

and

Bl�2n�1;.��.
Xl
j�0

��1�l�j�1�2n�j�2�l�2n�2j�1�!

j!�l�j�!�1�.2��32�.2�


��2n�2j�1�2�.2�

�
1�

1�.2

3!
�
�1�.2��32�.2�

5!
�




�
�1�.2��32�.2�


��2j�2n�1�2�.2�

�2j�2n�1�!

�
;

(34)
where n � 0; 1; 2; . . . ; �x�j � ��x� j�=��x�, ��y� is the
Gamma function, and the imaginary part of ! is as-
sumed to be negative. The recursion relation (28) reduces
the number of unknowns in the expansion coefficients Al
from infinity down to two, say A0 and A1. One should
keep in mind that the quantities Al, Ul, and Wl are all
functions of the harmonic number m. Also, since we are
analyzing the beam stability in the linear regime, there
should be no mixing of azimuthal mode numbers in
Eq. (28).

Matching the electric potential inside the beam to the
exterior solution ~��o�r� at r � a yields

~��o�a� � ~���a� � A0; (35)

and

d ~��o

dr

�������r�a
�
d ~��
dr

�������r�a
�
!2
p

a
2
X1
l�0

��1�lGl�1� .Bl�m;.��:

(36)
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Differentiating Eq. (21) and using Eqs. (C6), (C9), and
(C10), we evaluate the derivative of ~�� at the surface of the
beam as

d ~��
dr

�������r�a
�
m
a
A0 �

2

a

X1
l�0

��1�l�1l�m� l� 1�Gl: (37)

Adding Eqs. (36) and (37), dividing the result by Eq. (35),
and then applying Eqs. (23), (25), and (28), we derive the
dispersion relation

a
~��o�a�

d ~��o

dr

�������r�a
�m�

�
!p




�
2
�1�.B0�m;.���W0

�
1�

A1

A0

�
;

(38)

where the ratio A1=A0 can be expressed in terms of
infinite determinants or a continuous fractions as
A1

A0
��

���������������������������

W0 W1 0 0 


 




0 W1�W2�U2 W2 0 


 




0 W2 W2�W3�U3 W3 


 




0 0 W3 


 


 




0 0 0 


 


 







 


 


 


 


 




���������������������������

,
���������������������������

W0�W1�U1 W1 0 0 


 




W1 W1�W2�U2 W2 0 


 




0 W2 W2�W3�U3 W3 


 




0 0 W3 


 


 




0 0 0 


 


 




... 


 


 


 


 




���������������������������
��

W0j

j�W0�W1�U1�
�

W2
1 j

j�W1�W2�U2�
�

W2
2 j

j�W2�W3�U3�
�


: (39)
In order to perform a practical numerical computation, it
is necessary to truncate the determinants in Eq. (39) at a
certain finite rank.
IV. SPECIAL CASES
A. Axisymmetric (m � 0) perturbations

For axisymmetric perturbations, m � 0, we then have
[12]
Ul � 4l�
�
!p




�
2
.�Bl�1 � Bl�.��; (40)

Wl �
a2k2

2�2l� 1�



1�

�
!p




�
2 @
@.

Bl�.�
�
; (41)

and the dispersion relation (38) becomes

a
~��o�a�

d ~��o

dr

�������r�a
� W0

�
1�

A1

A0

�
; (42)
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where

Bl�.� � Bl�0; .� � i
Z 1

0
e�i.xPl�cos2x�dx; (43)

Pl�x� � P�0;0�
l �x� is the Legendre polynomial, and A1=A0

is given in Eq. (39). Readers are referred to Ref. [12] for
detailed discussions on the axisymmetric modes.

B. Axially uniform (k � 0) modes

This is the case studied previously by Gluckstern [8].
Here, we will derive Gluckstern’s results by setting k � 0
in our solution.

When k � 0, we find Wl � 0 and the recursion relation
(28) is reduced to

UjAj � 0; (44)

for j � 0 and j � 1; 2; 3; . . . ; . The nontrivial solutions are
A0 � 0, and Uj � 0 when Aj � 0. In the case where only
one of Ajs is nonzero, we have Gj�1 � Gj � Aj and the
Vlasov-Poisson equations admit the eigenfunction

~�� j�r� � Aj

�
r
a

�
m


P�m;0�
j

�
1�

2r2

a2

�
�P�m;0�

j�1

�
1�

2r2

a2

��
;

(45)

with Uj � 0 as the corresponding eigenvalue equation.
This solution implies ~���a� � ~��o�r� � 0, i.e., the per-
turbed field vanishes outside the beam. Further, the per-
turbed field is nonzero at the center of the beam only for
m � 0. We notice that for k � 0, one has . � 
=
 �
!=
 and Bl�m;.� � Bl�m;!=
�. Then, using Eqs. (29),
(C9), and (C11) we can show that the eigenfunction given
in Eq. (45) and the eigenvalue equation Uj � 0 (the dis-
persion relation) can be expressed in terms of the hyper-
geometric function 2F1�a; b; c; z� as

~��j�r� �Aj
�m� 2j��m� j� 1�!

m!j!

�
r
a

�
m

� 2F1��j;m� j;m� 1; r2=a2�; (46)

andZ 1

0
e�i�!=
�xcosmx 2F1��j; m� j;m� 1; cos2x�dx

�
2

i!



��1�jm!j!
2

�m� j� 1�!!2
p

�
; (47)

respectively, for j � 1; 2; 3; . . . , and m � 0; 1; 2; 3; . . . ; .
Equations (46) and (47) were obtained previously by
Gluckstern via a series solution approach.

Now consider the solution for k � 0, j � 0, andm � 0.
The recursion relation (28) then admits the solutions
G0 � A0 � 0 and Gl � Al � 0 for l � 0. Hence, differ-
ing from the j � 0 modes, the perturbed field does not
vanish outside the beam in this case. Applying the bound-
ary conditions (35) and (36) together with the expansion
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in Eq. (21), we derive the following dispersion relation for
the particular case of k � 0, j � 0, and m � 0:

a
~��o�a�

d ~��o

dr

�������r�a
� m�

�
!p




�
2


1�

�
!



�
B0�m;!=
�

�
:

(48)

If the outer boundary is at r � 1, and the boundary
condition is ~��o�r! 1� � 0, then the solution of the
Poisson equation in the region outside the beam is

~��o�r� � A0

�
a
r

�
m
: (49)

The dispersion relation (48) is then simplified toZ 1

0
e�i!x=
cosmxdx �



i!

�
1�

2m
2

!2
p

�
: (50)

Since P�m;0�
0 �x� � 1, the solution for the perturbed field

inside the beam is given by

~���r� � A0

�
r
a

�
m
: (51)

The perturbed charge density is nonzero only on the
surface of the beam. Equations (49)–(51) were also de-
rived by Gluckstern. Readers are referred to Ref. [8] for
more discussions of the axially uniform modes. For a
beam propagating inside a perfect conducting pipe of
radius b, the external solution is

~��o�r� � Ao

�
a
r

�
m


1�

�
r
b

�
2m
�
; (52)

and the dispersion relation (48) can be rewritten as

B0�m;!=
� � i
Z 1

0
e�i!x=
cosmxdx

�


!

�
1�

2m
2

!2
p�1� �a=b�2m�

�
: (53)

C. Cold-beam (
 � 0) limit

The model we are studying approaches the cold-beam
limit when 
! 0. To explore this special case, we first
consider some limits when 
 approaches 0. From Eqs. (33)
and (34) we find

lim

!0

.Bl�m;.� � 1; (54)

and

lim

!0

@
@.

Bl�m;.� � �lim

!0

�
1

.2

�
; (55)

form � 0; 1; 2; . . . , where use has been made of Eq. (C10).
Then, from Eq. (54) we know that when 
! 0, the limit
of .�Bl�1�m;.� � Bl�m;.��=
2 approaches that of
@�.Bl�1�m;.� � .Bl�m;.��=@
2. Therefore, using the
relation
024201-6
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lim

!0

@

@
2
�.Bl�m;.�� �

1


2 �m� 2l�l�m� 1��; (56)

we find

lim

!0

f.�Bl�1�m;.� � Bl�m;.��=

2g �

�2�2l�m�


2 :

(57)

Next, we discuss the limits ofUl, Vl, and Eq. (28) when

! 0. Using Eqs. (28)–(30), (55), and (57), one can
show that when 
 � 0,

Ul � 2�2l�m�


1�

�
!p




�
2
�
; (58)

Wl �
a2k2

2�m� 2l� 1�



1�

�
!p




�
2
�
; (59)

and

�ak=2�2

m�2l�1
Al�1�



�ak=2�2

m�2l�1
�

�ak=2�2

m�2l�1
�m�2l

�
Al

�
�ak=2�2

m�2l�1
Al�1�0: (60)

Comparing Eq. (60) with the recursion relation of Bessel
functions, we infer that

Al � h��1�lI2l�m�ak�; (61)

where h is a constant. Using Eqs. (54), (59), and (61), one
can show that the dispersion relation (38) can be rewritten
as

a
~��o�a�

d ~��o

dr

�������r�a
�



1�

�
!p




�
2
�

m�

akIm�1�ak�
Im�ak�

�
:

(62)

This is the familiar dispersion relation for a cold-beam
[39,40]. Applying Eqs. (21), (25), (61), and (C18), one can
also show that the cold-beam limit for the electric po-
tential inside the beam is given by ~���r� / Im�kr�—an-
other familiar result.

D. Long-wavelength surface perturbations

In the long-wavelength (0< ka < kb� 1) region, we
expect that many characteristics of the pure transverse
modes described in Eqs. (44) and (48) are not altered very
much by the longitudinal perturbation. Here, we narrow
our concentration on the m � 1 and 2 harmonics (the
dipole and the quadrupole modes) for the surface pertur-
bations, the modes associated with the ones described in
Eq. (48), in the long-wavelength region. It should be noted
here that although the perturbed charge density peaks
near the beam surface, the wave we are studying here is
different from the ‘‘surface wave’’ in a neutral-plasma
column [41]. Our purpose is to compare our dispersion
relation of the dipole and the quadrupole modes in the
long-wavelength region with those derived from using the
024201-7
approximation of no radial-density fluctuation inside the
beam and the approximation of neglecting the longitu-
dinal electric field due to the perturbed charge distribu-
tion [4–6,10]. Thus, neglecting the right-hand side of
Eq. (38) that contains the information of radial modes
with j � 1, we obtain

a
~��o�a�

d ~��o

dr

�������r�a
�m�

�
!p




�
2
�1� .B0�m;.�� � 0:

(63)

Equation (63) is almost identical to Eq. (48) except that .
takes the place of!=
. It has two roots for 
 whenm � 1
or 2. For m > 2, Eq. (63) has more than two roots.
Substituting Eq. (20) into Eq. (63) and applying the small
argument expansions of Bessel functions yields


2

.B0�m;.� � 1
�

!2
p

2m �1�
a2m

b2m �
imZ
kb �1� a2m

b2m��

1� imZ=�kb�
; (64)

where

Z �
!Z
ck

: (65)

When Z � 0 and k � 0, Eq. (64) reduces to Eq. (53).
For the dipole mode, we make the substitution m � 1

in Eq. (64) and use Eq. (34) to derive

�!� kvo�
2 � 
2 �

!2
p

2 �1� a2

b2 �
iZ
kb �1�

a2

b2��

1� iZ=�kb�
: (66)

For Z � 0, Eq. (66) becomes the customary dispersion
relation of the dipole mode for a continuous nonrelativ-
istic beam having zero axial momentum spread in a
perfect conducting pipe. For the quadrupole mode, tak-
ingm � 2 and substituting Eq. (33) into Eq. (64), we have

�!� kvo�
2 � 4
2 �

!2
p

2 �1� a4

b4
� 2iZ

kb �1�
a4

b4
��

1� 2iZ=�kb�
: (67)

The dispersion relations given in Eqs. (66) and (67) are
similar to the dispersion relations for the dipole and the
quadrupole modes derived previously [4–6,10]. In the
following, the modes described in Eq. (63) will be re-
ferred to as the usual transverse modes.

E. Low-frequency coupling modes

As will be discussed more in the next section, our
three-dimensional analysis reveals two new classes of
coupling modes originated from the interaction between
longitudinal and transverse degrees of motion. It is diffi-
cult to explore the coupling modes in general via analyti-
cal calculation. However, in the limited parameter range
considered below, it is possible to find the approximate
analytical solutions for the ‘‘low-frequency coupling
modes.’’ We proceed with the discussion by considering
the special case of l � 2n (n � 0; 1; 2; 3; . . . ; ) with m and
024201-7
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l are not simultaneously equal to zero in the recursion
relation (28). We assume the expansion coefficients Al are
normalized in such a way that the magnitude of Al and
Al�1 is about 1 and jAij � 1 for i < l or i > l� 1. Let us
concentrate on the regime of �ak�2 < 2�m� 4n� 3�,
.2 � 1, and !2

p � 
2. Using the limits

lim
.!0

.B2i�1�2j; .� � lim
.!0

.Bn�2j� 1; .� � 0; (68)

lim
.!0

.2 d
d.

B2n�1�j; .� � 0; (69)

and

lim
.!0

.2 d
d.

B2n�2j;.��� �PP�0;2j�
2n

�
�1

2�

Z 2�

0
cos2jtP�0;2j�

2n �cos2t�dt

�
X2n
i�0

��1�i�1�2j� i�1�2n�2j�2i�!

i!�2n� i�! 
22 
42 


�2j�2i�2
;

(70)

for zero and positive integers i, j, and n, we find that

lim
.!0

Ul � 2�m� 2l�; (71)

lim
.!0

W2n �
��ka!p�

2 �PP�0;2j�
2n

2�2j� 4n� 1�
2 ; (72)

and

lim
.!0

W2n�1 �
�ka�2

2�m� 4n� 3�
� 1: (73)

Then from the recursion relation, Eq. (28), we can derive
WlAl�1 � �Ul �Wl�Al � 0; (74)

and
�Ul�1 �Wl�Al�1 �WlAl � 0: (75)

For nonzero Al and Al�1, one has the approximate solution

Wl �
�UlUl�1

Ul �Ul�1
; (76)

for Eqs. (74) and (75). Substituting the limits in Eqs. (71)–
(73) into Eq. (76) yields


2 �
�ka!p�

2 �PP�0;m�
l

2�m� 2l��m� 2l� 2�
; (77)

where l and m are non-negative even integers and are not
simultaneously equal to zero. Equation (77) gives the
approximate 
2 of the low-frequency coupling modes
in the parameter range described earlier. The result in
Eq. (77) indicates that the value of 
 vanishes at zero
beam intensity, i.e., 
 ! 0 when !p ! 0. Using either
Eq. (74) or (75), we can show that

Al�1 �
UlAl
Ul�1

�

�
m� 2l

m� 2l� 2

�
Al (78)
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at the frequency given in Eq. (77). For this kind of modes,
when l > 0, the perturbed potential almost vanishes at
the edge of the beam. We note that perturbations of odd
azimuthal harmonics do not have the low-frequency cou-
pling modes.
V. NUMERICAL RESULTS

The discussion in this section is based on the numerical
solution of Eq. (38). As mentioned earlier, the infinite
determinants in Eq. (39) have to be truncated at a certain
finite rank for a practical numerical computation. Such an
approach has been proven to give reasonably good results
[12,15,16]. When finite-rank determinants are used in
Eq. (38), the dispersion relation is then reduced to a
finite-order algebraic equation and hence the number of
roots or modes can be counted. The rank of truncation is
mainly determined by the number of modes to be exam-
ined and the desired accuracy. We notice that when k � 0,
only the transverse modes described by Uj � 0 exist.
Therefore, if one wishes to study the modes contained
in Un � 0, then the truncated determinants have to in-
clude Un. That is, one has to truncate the infinite deter-
minants at rank of at least n. However, the relation
between the accuracy of root computation and the rank
of truncation is much less apparent. In principle, one
could truncate the determinants at a rank much higher
than n to achieve better accuracy in computing the roots.
But, the bigger the determinants used in the computation,
the larger the number of roots that will be found and the
smaller the separations between roots, so that discerning
of modes becomes more complicated. In practice, the
identification of modes turns tedious when the infinite
determinants are truncated to any rank higher than three
for root computation. The approaches adopted to identify
modes are (a) comparing the solutions between the k > 0
and the k � 0 cases, (b) comparing the solutions among
different ranks of truncation, and (c) checking the radial
mode structure. Since the roots, and hence the radial
mode structure can not be very accurately computed by
using finite determinants, the first two approaches are the
primary methods used.

The roots of the dispersion relation (38) fall into three
classes: (i) the T modes are the ones that approach the
solutions of Uj � 0 (the pure transverse modes) when
k! 0, (ii) the ‘‘high-frequency coupling modes’’ having
the limit of 
 ! n
o > 0 when !p ! 0, and (iii) the
low-frequency coupling modes with 
 ! 0 when !p !
0 as discussed in Sec. IV E. Both types of coupling modes
are due to the coupling between longitudinal and trans-
verse motions and therefore vanish when k � 0 or when
the betatron motion is neglected or when longitudinal and
transverse perturbations are treated separately. The high-
frequency coupling modes do not exist in the axisymmet-
ric perturbations. The low-frequency coupling modes ex-
ist only in the perturbations of even and zero azimuthal
024201-8
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FIG. 1. Absolute value of the real part of 
=
o for the first
nine dipole modes as a function of 
=
o for k � 0, b=a � 1:5,
and zero wall impedance (Z � 0).
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harmonics. The usual transverse modes found in the cus-
tomary analyses [4–7] correspond to density perturba-
tions on the beam surface and hence are similar to the
lowest radial modes in class (i) as discussed earlier in Sec.
IV D. In the study here, we shall concentrate on some low
radial modes, i.e., the modes found in the dispersion
relation with the infinite determinants truncated at low
ranks. Hence for simplicity, when there is no strong
necessity to make the distinction, we shall use the nota-
tion Tm;j (j > 0) to represent the whole family of T modes
in the mth azimuthal harmonic which are related to Uj �
0 when k! 0. The usual transverse modes in Eq. (63)
will be referred to as Tm;0 modes and the high-frequency
coupling modes will be designated as Cm;j modes. The
low-frequency coupling modes will be referred to as Lm;n
modes for n � 1, in the order of their first appearance in
the dispersion relation using �2n� 1� � �2n� 1� deter-
minants for approximation.

There are five parameters involved in the dispersion
relation: the azimuthal harmonic number m, the ratio
between the radii of the surrounding pipe and the beam
b=a, the axial wavelength parameter ka, the tune depres-
sion 
=
o, and the wall impedance parameter Z �
!Z=�ck�. We limit our numerical studies here to the
azimuthal harmonics m � 1 and 2 (the dipole and the
quadrupole modes). Readers should consult Ref. [12] for
the numerical results for the m � 0 modes. To narrow the
parameter space further, we consider only the cases of
ka � 0:0 and 2.0 for b=a � 1:5. The wall impedances
investigated are of perfect conductor and resistive types
with Z � 0:2. For each one of the eight combinations of
these five parameter values, we have computed 
=
o, for
the full range of tune depression from 
=
o � 0 to

=
o � 1. The radial structures of the modes were esti-
mated using the approximation

~���r��
�
r
a

�
m
�
1�

Xn
l�1

�
Al
A0

�

P�m;0�
l�1

�
1�

2r2

a2

�

�P�m;0�
l

�
1�

2r2

a2

���
; (79)

derived from Eqs. (21) and (25). For a given tune depres-
sion, the expansion coefficients Al=A0 here were com-
puted by using the recursion relation (28) and by
substituting the computed mode frequency into Eq. (38).
Because the value of roots cannot be precisely computed
by using determinants of finite rank, and iterating the
recursion relation augments errors, the coefficient Al=A0,
and hence the radial mode structure, cannot be accurately
estimated, especially when l is greater than the rank of
truncation. Nonetheless, we will present some examples
to give readers a crude picture of the radial modes. The
numerical results for the cases of m � 1 and 2 will be
discussed separately in the following.
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A. Dipole modes (m � 1)

In the case of m � 1, if the determinants in Eq. (39)
are truncated at rank n (n > 1), one obtains �n� 1�2

roots for .2. Among these roots, n�n� 3�=2 originate
from the solutions ofUj � 0 for j � 1; 2; . . . ; n, including
one root for the mode discussed in Eq. (63), and the
remaining �n2 � n� 2�=2 roots belong to the class of
high-frequency coupling modes. When k � 0, only the
n�n� 3�=2 roots associated with the pure transverse
modes are nontrivial solutions. We limit our study to the
first sixteen m � 1 modes, i.e., up to the T1;3 modes,
obtainable from truncating the determinants at a rank
equal to or higher than 3. We choose to use 4� 4 deter-
minants for improved accuracy and easy identification of
modes. The solutions of the dispersion relation then also
include nine roots associated with T1;4 and C1;4 modes.
These roots are ignored because of poor accuracy. For
zero wall impedance, the absolute value of the real part of

=
o, jRe�
=
o�j, is depicted in Figs. 1 and 2 as a
function of tune depression 
=
o for the cases of k � 0
and ak � 2, respectively. The absolute value of the cor-
responding imaginary part of 
=
o, jIm�
=
o�j, is
shown in Figs. 3 and 4 where only the modes with non-
zero Im�
=
o� are displayed. Also shown in Fig. 4 is the
jIm�
=
o�j of T1;0 mode for the wall impedance of Z �
0:2. Figure 5 displays the detail of the real part of 
2=
2o
as a function of 
=
o in the high-intensity region for the
case of ak � 2.

As shown in Figs. 1 and 3, that for all modes, the values
of jRe�
=
o�j start from the solutions of Uj � 0 (j � 1,
2, and 3), that is, from 1, 3, 5, and 7, at 
 � 
o, and
024201-9



FIG. 4. Absolute value of the imaginary part of 
=
o for the
first 16 dipole modes as a function of 
=
o for ak � 2:0, b=a �
1:5, and zero wall impedance. Only the modes with none-zero
Im�
=
o� are labeled. Also shown is the absolute value of
the imaginary part of 
=
o of the T1;0 mode for the case of
Z � 0:2.
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decrease when the beam intensity increases.When 
! 0,
the T1;0 mode approaches the cold-beam limit, while the
jRe�
=
o�j of the upper T1;2 and T1;1 modes end near 1.4.
In the case of k � 0, the Doppler-shifted frequency of all
other modes, except for the highest T1;3 modes, decreases
to zero at 
 � 0. A kind of obvious mode interaction
appears in the high-intensity region as confluences of
0.0

1.0

2.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6

|Im
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/ν
o)|
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FIG. 3. Absolute value of the imaginary part of 
=
o for the
first nine dipole modes as a function of 
=
o for k � 0 and
b=a � 1:5. Here, only the modes with none-zero Im�
=
o� are
labeled.
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modes where two or more modes have the same real
part of 
. The frequencies in the confluence regions are
complex conjugate pairs indicating possible instability. A
general characteristic of mode confluence is that both the
span of the confluence region and the maximum growth
rates in the region increase with increasing k. For k � 0, a
confluence occurs between the two upper T1;3 modes in
the region of 0:115 � 
=
o � 0:515. The highest growth
rate in this region, about 0:72
o, occurs at the higher-
intensity end of the confluence. The real part of the 
 of
these two modes falls to zero near 
 � 0:112
o. The
highest T1;3 modes have the largest growth rate ( �
1:36
o at 
 � 0) among all the dipole modes studied.

In the case of ak � 2, two more confluences emerge:
the confluence of T1;0 and T1;2 near 
 � 0:46
o, and the
-2
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FIG. 5. The real part of 
2=
2o for the first 16 dipole modes as
a function of 
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o for ak � 2:0, b=a � 1:5, and zero wall
impedance.
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confluence of C1;1 and T1;2 between 
 � 0 and 
 �
0:38
o. Although the confluence of T1;0 and T1;2 has a
relatively small growth rate of 0:02
o, it demonstrates
that two originally independent, stable transverse modes
can interact through longitudinal perturbation to become
unstable. The lower T1;1 mode is the one among all the T
modes affected most by the longitudinal perturbation.
For ak � 2, it becomes unstable with a maximum growth
rate around 0:2
o when 
 � 0:37
o, and the real part of
its Dopper-shifted frequency falls to zero near 
 �
0:56
o. The frequencies of all T1;3 modes are very close
to those in the k � 0 case indicating that these modes are
not sensitive to the longitudinal perturbation. When k �

0, only the T1;0 mode and those highest T modes, i.e., the
highest T1;1, T1;2, and T1;3, have nonzero 
 when 
 � 0.
For ak � 2, the Re�
2=
2o� of the two lower C1;2 drop to
below zero separately in the regions of 
 < 0:133
o and

 < 0:267
o indicating these two modes are unstable in
the high-intensity regime as shown in Figs. 4 and 5. We
note that the highest growth rate found in dipole modes is
substantially higher than that of the axisymmetric T3
mode ( � 0:21
o) studied in Ref. [12].

Intuitively, we expect that only the mode(s) with ap-
preciable field intensity outside the beam can be influ-
enced by the wall impedance. We investigated the effect
of resistive wall impedance and found that only the usual
dipole mode, the T1;0 mode, is appreciably affected by the
resistive wall impedance. The highest growth rate occurs
near 
 � 0. For Z � 0:2, the maximum growth rate of
the T1;0 mode is about 0:023
o as shown in Fig. 4. The
approximate radial structures of the modes studied are
depicted in Fig. 6 where the results were computed by
using the expansion coefficients up to A4 for ak � 2:0,

 � 0:697
o, and zero wall impedance.
B. Quadrupole modes (m � 2)

Form � 2, if determinants of nth rank are employed in
Eq. (38) to solve for .2, one finds �n� 2��2n� 1�=2 roots
for even n and �n� 1��2n� 3�=2 roots for odd n. Among
these roots, n�n� 3�=2 originate from the solutions of
Uj � 0 (j � 1; 2; . . . ; n) including one root associate with
the mode described in Eq. (63), and the remains belong to
the coupling modes. For quadrupole modes, there are n=2
and �n� 1�=2 low-frequency coupling modes for even
and odd n, respectively. When k � 0, all the roots asso-
ciated with the coupling modes degenerate into trivial
solutions.

Here, we concentrate on the first 18 roots, i.e., the
transverse modes up to T2;3 found in using the 3� 3 or
higher truncations of the infinite determinants in the
dispersion relation. The results presented in the following
were actually computed by employing 4� 4 determi-
nants in Eq. (38). For zero wall impedance, jRe�
=
o�j
is depicted in Figs. 7 and 8 as a function of 
=
o for the
024201-11
cases of k � 0 and ak � 2, respectively. The correspond-
ing jIm�
=
o�j is shown in Figs. 9 and 10. Also shown in
Fig. 10 is the jIm�
=
o�j of the T1;0 mode for the wall
impedance of Z � 0:2. Figure 11 displays the detail of the
real part of 
2=
2o as a function of 
=
o in the high-
intensity region for the case of ak � 2:0. The approxi-
mate radial structures of the modes investigated are given
in Fig. 12 where the results were computed by including
the coefficients up to A3 for ak � 2:0, 
 � 0:6976
o, and
zero wall impedance.

As shown in Figs. 7 and 8, that when 
! 
o, the values
of 
=
o approach zero and the solutions of Uj � 0 (j �
1, 2, and 3), i.e., 0, 2, 4, 6, and 8. As 
 increases, the
values of the Doppler-shifted frequencies of the T modes
and the high-frequency coupling modes decrease. For
k > 0, the 
 of the low-frequency coupling modes starts
from 0 at 
 � 
o and increases to maxima in the region of
0:27< 
=
o < 0:35 before decreasing toward zero.
Similar to the m � 1 case, when 
! 0, the T2;0 mode
approaches the cold-beam limit, while the 
=
o of the
highest T2;3, T2;2, and T2;1 modes approaches 1.4, and the

 of all other modes approaches zero.
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b=a � 1:5. Here, only the modes with none-zero Im�
=
o� are
labeled.

0

2

4

6

8

0.0 0.2 0.4 0.6 0.8 1.0

|R
e(

Ω
/ν

o)|
  

ν/νo

T2,3

T2,0

T2,2

T2,1

T2,3

T2,2 T2,3

m =  2

k =  0
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nine quadrupole modes as a function of 
=
o for k � 0, b=a �
1:5, and zero wall impedance.
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In the k � 0 case, the T2;2 mode becomes unstable
when 
 < 0:177
o and we find a confluence of the two
lower T2;3 modes in the region of 0 � 
 < 0:258
o with
the highest growth rate around 0:15
o. For ak � 2, more
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FIG. 8. Absolute value of the real part of 
=
o for the first 18
quadrupole modes as a function of 
=
o for ak � 2:0, b=a �
1:5, and zero wall impedance.
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confluences take place: the confluence of T2;2 and L2;1
(0:28< 
=
o < 0:34), the confluence of C2;2 and L2;1
(0 � 
 < 0:28
o), the confluence of T2;2 and L2;3
(0:132< 
=
o < 0:265), and the confluence of T2;0 and
T2;3 near 
 � 0:357
o. The real part of 
 in the conflu-
ence of T2;2 and L2;3 decreases to zero near 
 � 0:133
o.
These mode interactions are detailed in Figs. 10 and 11.
We found that the confluence of the two lower T2;3 has the
highest growth rate ( � 0:153
o) among the m � 2
modes studied. This highest growth rate, at the same
order of magnitude of that of the m � 0 modes [12], is
considerably lower than the highest growth rate of the
FIG. 10. Absolute value of the imaginary part of 
=
o for
the first 18 quadrupole modes as a function of 
=
o for ak �
2:0, b=a � 1:5, and zero wall impedance. Only the modes with
none-zero Im�
=
o� are labeled. Also shown is the absolute
value of the imaginary part of 
=
o of the T2;0 mode for the
case of Z � 0:2. The kink in the L2;3 mode near 
 � 1:1
o is
due to a confluence of L2;3 and T2;4 modes.
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FIG. 12. Examples of the approximate radial mode structure
as a function of r=a for the three classes of quadrupole modes:
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The case considered here is for ak � 2:0, b=a � 1:5, 
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0:6976
o, and zero wall impedance. The maximal amplitude
is normalized to 1.
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m � 1 modes. We also found that only the usual quadru-
pole mode, the T2;0 mode, is appreciably influenced by the
resistive wall impedance. The highest growth rate occurs
near 
 � 0. For Z � 0:2, as shown in Fig. 10, the maxi-
mum growth rate of the T2;0 mode is about 0:016
o,
approximately 70% of that of the usual dipole mode. A
comparison between the k � 0 and ak � 2 cases reveals
that the modes with more radial nodes are affected less by
the longitudinal perturbation.

VI. CONCLUSIONS

We have carried out a three-dimensional stability
analysis for a continuous beam with axisymmetric KV
distribution within the context of linearized Vlasov-
Maxwell equations and electrostatic approximation.
Although the model considered is simple, the coupled
Vlasov-Poisson equations have been solved rigorously
and the results should give a qualitative indication of
the coupling between longitudinal and transverse pertur-
bations. A dispersion relation has been derived to
facilitate the investigation of the stability of any three-
dimensional mode. Several special cases and limits of the
dispersion relation were discussed. Examples of numeri-
cal studies were presented for some lower radial modes of
dipole (m � 1) and quadrupole (m � 2) perturbations.

It is found that in addition to the transverse modes
discovered previously in the axially uniform perturba-
tions, there also exist two classes of coupling modes due
to the interaction between transverse and longitudinal
motions. It was also found that the longitudinal perturba-
tion affects the lower radial modes most. The dominant
instabilities in the high-intensity region are originated
from the pure transverse modes T1;3 and T2;2 as well as
the confluence of T1;3 modes and the confluence of
T2;3 modes. Our results show that the highest growth
rate of the dipole modes is larger than that of the axi-
symmetric modes studied before. The interaction between
024201-13
longitudinal and transverse perturbations causes more
mode confluences besides those mentioned. The frequen-
cies in the confluent regions are complex conjugate pairs
indicating possible instability. We discovered that some
originally independent, stable transverse modes, e.g., the
modes T1;0 and T1;2, can interact through longitudinal
perturbation to cause instability. In the medium- and
low-intensity regions, the interaction between longitu-
dinal and transverse perturbations appears to be insig-
nificant. Thus, except for the high-intensity regime,
separate consideration of longitudinal and transverse
modes tends to be a very good approximation. The effect
of resistive wall impedance was also studied for dipole
and quadrupole modes. We found that only the modes that
involve surface motion, the usual dipole and quadrupole
modes, are appreciably influenced by the resistive wall
impedance.

Since not all instabilities predicted for a KV beam are
realized in real beams, computer simulations are sug-
gested for further investigation. In particular, the insta-
bility related to the confluences of modes of higher radial
024201-13
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or azimuthal harmonics, e.g., the confluence of the two
upper T1;3 modes and the confluence of T2;3 modes, per-
haps can be found only in the KV distribution. This kind
of instability or mode may not exist in beams with any
phase space that differs from the KVdistribution even at a
small deviation. Since the growth rate of dipole modes is
substantially higher than that of quadrupole modes, un-
stable dipole modes like T1;0 or T1;1, or the confluence of
T1;2 and T1;0, have higher chances to be observed in
simulations. The instability in the T1;0 mode is driven
by external impedance. It therefore can be seen at any
beam intensity provided the impedance is sufficiently
high. For zero external impedance, T1;1 is more unstable
than the confluence of T1;2 and T1;0. Simulations are
more likely to find a growing T1;1 mode. Take the result
shown in Fig. 4 as an example, i.e., a perturbation of
the T1;1 mode structure with wavelength 6 � �a.
Instability with near zero or very-low Doppler-shifted
frequency (
 � 0 in the beam frame) may occur when
the betatron frequency is depressed to below 0:55
o. The
unstable oscillation in the laboratory frame has a fre-
quency near 2vz=a. For perturbations of shorter wave-
length, one can expect to find the instability at lower
beam intensity with increased oscillation frequency and
growth rate. Because of its relatively low growth rate, the
instability due to the confluence of T1;2 and T1;0 modes
may have to be seen in simulations with the mode struc-
ture seeded in the initial condition. For 6 � �a, if this
instability is observable, growing oscillations with 
 �

o should occur when the betatron frequency is depressed
to near 0:46
o.

As mentioned before, the model we have studied ne-
glects the damping caused by energy spread that may
substantially modify the growth rates reported here.
Generalization of the present analysis to non-KV distri-
bution and the effects of longitudinal velocity spread are
still being pursued.
024201-14
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APPENDIX A

In this appendix, we evaluate the Fourier component of
the perturbed charge density shown in the right-hand side
of Eq. (15) in the main text. Substituting Eq. (21) into the
RHS of Eq. (15) yields

RHS �
!2
p

a
2
��r� a�

X1
l�0

��1�lGl

�
2!2

p

�

X1
l�0

Gl

Z 1

0
e�i
!

�
i
J 2 �

k2!
2

J 1

�
d!;

(A1)

where

J 1 �
Z 1

�1

Z 1

�1
dvrdv’�?

�
�01
a
ei� �

�02
a

�
m
P�m;0�
l �s0�;

(A2)

J 2 �
Z 1

�1

Z 1

�1
dvrdv’

�
d�?

dv2?

��
�01
a
ei� �

�02
a

�
m
P�m;0�
l �s0�;

(A3)

�? � ��v2? � 
2�a2 � r2��, �01 and �02 are given in
Eqs. (8) and (9), respectively, � � cos�1�vr=v?�, v? �
�v2r � v2’�1=2, s0 � 1� 2�r0=a�2, r0 is given in Eq. (4), and
the prime indicates the dependence on the unperturbed
particle orbit.

We consider J 1 first by rewriting it as
J 1 �
1

2

Z 2�

0
d�

Z 1

�1
dv2?��v

2
? �
2�a2 � r2��

�
�01
a
ei��

�02
a

�
m
P�m;0�
l

�
1�

2r02

a2

�

�
1

2

Z 2�

0
d���

����������������������
1��r=a�2

q
sin�
!�ei���r=a�cos�
!��mP�m;0�

l �scos�2
!�� 2�r=a�
����������������������
1��r=a�2

q
sin�2
!�cos��; (A4)

where s � 1� 2�r=a�2. Letting  � �� �, r=a � sin9, and x � 
!, the integration in Eq. (A4) is then performed with
the aid of Eq. (B1) in Appendix B to give

J 1 �
1

2

Z 3�

�
d �cos9 sinxei � sin9 cosx�mP�m;0�

l �cos�2x� cos�29� � sin�2x� sin�29� cos �

�
1

2

Z 3�

�
d eim =2

Xj
:��j

e�i: sin.19cos;19sin.2xcos;2xP�.1;;1�
j1

�cos29�P�.2;;2�
l �cos2x�

� �
�
r
a

�
m
P�m;0�
l �s�cosm�
!�P�0;m�

l �T�; (A5)

where j1 � l� �m=2� � :, .1 � :� �m=2�,;1 � :� �m=2�, j � l� �m=2�, .2 � �m=2� � :,;2 � �m=2� � :, and
T � cos�2
!� has been defined in Eq. (27) in the main text.
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Next, we consider J 2. Using integration by part, we can derive from Eq. (A3) that

J 2 �
��1�l�1�

2a
2
��r� a�cosm�
!�P�0;m�

l �T� �
1

2



m sinx
a


J 3 � �1� �l0�J 4

�
; (A6)

where

J 3 �
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0
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�
�01
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ei� �

�02
a

�
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l �s0�; (A7)

and

J 4 �
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�
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�02
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�
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@P�m;0�

l �s0�
@s0

: (A8)

Applying Eqs. (B1) and (C14) to Eq. (A7), we have

J 3�
Xl
j�0

�m�2j�l!�m�j�1�!
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j!�m�l�!
�m�2j�P�m;1�

j�1 �s�P
��1;m�
j �T�; (A9)

where  � �� �, j and m are not simultaneously equal to zero, n1 � j� :� ��m� 1�=2�, .1 � :� ��m� 1�=2�,
;1 � :� ��m� 1�=2�, n � j� ��m� 1�=2�, .2 � ��m� 1�=2� � :, and ;2 � ��m� 1�=2� � :. The integral J 4 can
be treated by using Eq. (C15) to yield
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(A10)
where J 1 is given in Eq. (A5),

J 5 � r cosx
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and

J 6 � r
Z 2�

0
d�

Z 1

0
dv?�? cos�

�
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a
ei� �

�02
a

�
m
P�m;0�
j �s0�

�
��r

2
a sinx

�
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cosm�1xP�m�1;1�
j�1 �s�P��1;m�1�
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�a2

2
�a2 � r2�

�
r
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�
m
cosmx sinxP�m�1;�1�

j�1 �s�P�1;m�1�
j �T�: (A12)

Applying the results in Eqs. (A9)–(A12) to Eq. (A6) and then using Eqs. (C1), (C2), (C4), (C5), and (C17), we evaluate
the integral J 2 as

J 2 �
��1�l�1�

2a
2
��r� a�cosm�
!�P�0;m�

l �T�

�
��1� �l0�

a2
2

�
r
a

�
m
cosm�
!�

Xl�1

j�1

��1�l�j�m� j� 1��P�0;m�
j �T� � P�0;m�

j�1 �T��P
�m;1�
j �s�: (A13)

Substituting Eqs. (A5) and (A13) into Eq. (A1) leads to Eq. (26) in the main text.
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APPENDIX B

Here, we prove the relation: if cos� � cos�1 cos�2 � sin�1 sin�2 cos�, for 0 � � � �, 0 � �1 � �, 0 � �2 � �, and
0 � � � 2�, then

�cos��1=2� cos��2=2�e
�i�=2 � sin��1=2� sin��2=2�e

i�=2�;

� �sin��1=2� cos��2=2�e
�i�=2 � cos��1=2� sin��2=2�e

i�=2�.P�.;;�
k �cos��

�
Xl
:��l

e�i:�sin.1��1=2�cos;1��1=2�sin.2��2=2�cos;2��2=2�P
�.1;;1�
k1

�cos�1�P
�.2;;2�
k �cos�2�; (B1)

where k1 � k� :� �.� ;�=2, l � k� �.� ;�=2, .1 � :� �;� .�=2, .2 � �:� �.� ;�=2, ;1 � :� �;�
.�=2, and ;2 � :� �.� ;�=2.

The proof in the following invokes an addition relation of the generalized spherical function developed in the group
representation theory [42]. The generalized spherical function defined by

Plmn�z� �
in�m��1�l�n

2l



�l�m�!

�l� n�!�l� n�!�l�m�!

�
1=2

�1� z���m�n�=2�1� z���m�n�=2 d
l�m

dzl�m
��1� z�l�n�1� z�l�n�; (B2)

has the symmetry property Plmn�z� � Plnm�z�, and is related to Jacobi polynomials by

Plmn�z� � 2�ni.


�l� n�!�l� n�!
�l�m�!�l�m�!

�
1=2

�1� z�.=2�1� z�;=2P�.;;�
l�n �z�; (B3)

where . � n�m and ; � n�m. The addition relation of the generalized spherical functions [42], quoted here
without proof, states that if

cos� � cos�1 cos�2 � sin�1 sin�2 cos�; (B4)

ei�
0
� �sin�1 cos�2 � cos�1 sin�2 cos�� i sin�2 sin��= sin�; (B5)

and

cos��=2�ei��
0� �=2 � cos��1=2� cos��2=2�e

i�=2 � sin��1=2� sin��2=2�e
�i�=2; (B6)

for 0 � �, �1, �2, �, �0 � 2�, and �2� �  � 2�, then

e�i�m�
0�n �Plmn�cos�� �

Xl
s��l

e�is�Plms�cos�1�P
l
sn�cos�2�: (B7)

To prove Eq. (B1), we notice that if relation (B4) is true, then

cos��=2� � �1=2�cos��1=2� cos��2=2�e�i�=2 � sin��1=2� sin��2=2�ei�=2�1=2; (B8)

and

sin��=2� � �1=2�sin��1=2� cos��2=2�ei�=2 � cos��1=2� sin��2=2�e�i�=2�1=2; (B9)

where

� � cos��1=2� cos��2=2�e
i�=2 � sin��1=2� sin��2=2�e

�i�=2; (B10)

and

� � cos��1=2� sin��2=2�ei�=2 � sin��1=2� cos��2=2�e�i�=2: (B11)

One can also show that if relations (B5) and (B6) are true, then

sin��=2�ei��
0� �=2 � �: (B12)

From Eqs. (B6) and (B8)–(B12) we derive

1� w � 2��cos��1=2� cos��2=2�e�i�=2 � sin��1=2� sin��2=2�ei�=2�; (B13)

1� w � 2��sin��1=2� cos��2=2�e
i�=2 � cos��1=2� sin��2=2�e

�i�=2�; (B14)
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and

e�i�m�
0�n � �

�
1� w

2�2

�
�m�n�=2

�
1� w

2�2

�
�m�n�=2

; (B15)

where w � cos�. Letting x � cos�1, y � cos�2, and using Eqs. (B3)–(B6), we can rewrite Eq. (B7) as

e�i�m�
0�n ��1� w��n�m�=2�1� w��m�n�=2P�.;;�

k �w� �
Xl
s��l

e�is�2�s�1� x��s�m�=2�1� x��s�m�=2�1� y��n�s�=2

� �1� y��n�s�=2P�.1;;1�
k1

�x�P�.2;;2�
k2

�y�; (B16)

where k1 � l� s � k� s� �.� ;�=2, k2 � k, .1 � s�m � s� �;� .�=2, .2 � n� s � �s� �.� ;�=2, ;1 �
s�m � s� �;� .�=2, ;2 � n� s � s� �.� ;�=2, k � l� n, . � n�m, and ; � n�m. Applying Eqs. (B13)–
(B15) to the left-hand side of Eq. (B16), and then making the substitutions of 1� x � 2sin2��1=2�, 1� x � 2cos2��1=2�,
1� y � 2sin2��2=2�, and 1� y � 2cos2��2=2� on the right-hand side of the resulted equation leads to Eq. (B1).

APPENDIX C

In this appendix, we list the identities of Jacobi polynomials used in the main text and in the appendices. The
following basic relations among Jacobi polynomials are included here without proof [43,44]:

�.� ;� 2n�P�.;;�1�
n �x� � �.� ;� n�P�.;;�

n �x� � �.� n�P�.;;�
n�1 �x�; (C1)

�.� ;� 2n�P�.�1;;�
n �x� � �.� ;� n�P�.;;�
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n�1 �x�; (C2)
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n�1 �x� � �n� 1� ;�P�.;;�

n �x�; (C3)
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�
1� x
2

�
P�1;m�
l �x� �

l
m� 2l

�P�0;m�
l�1 �x� � P�0;m�

l �x��; (C5)

d
dy
P�.;;�
n �y� �

1

2
�.� ;� n� 1�P�.�1;;�1�

n�1 �y� �
1

2
��n� ;�P�.�1;;�

n�1 �y� � �n� .�P�.;;�1�
n�1 �y��; (C6)

�y� 1�
d
dy
P�m;0�
l �y� � lP�m;0�

l �y� � �m� l�P�m;1�
l�1 �y�; (C7)

Z 1

�1
�1� x�.�1� x�;P�.;;�

n �x�P�.;;�
m �x�dx �

(
0; for n � m;
21�.�;��1�.�n���1�;�n�
n!�1�.�;�2n���1�.�;�n� ; for n � m;

(C8)

P�.;;�
n ��x� � ��1�nP�;;.�

n �x�; (C9)

P�.;;�
n �1� � �1� .�n=n!; (C10)

and

P�0;m�
j �cos2x� � P�0;m�

j�1 �cos2x� �
��1�j�m� 2j��j�m� 1�!

m!j! 2F1��j;m� j;m� 1; cos2x�; (C11)

where ��x� is the Gamma function, �x�j � ��x� j�=��x�, and 2F1�a; b; c; z� is the hypergeometric function.
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The next seven identities, used in this work, will be proved in this appendix:

P�m;1�
l �x� �

Xl
j�0

��1�l�j�m� 2j� 1�

m� l� 1
P�m;0�
j �x�; (C12)

P�m;2�
l �x� �

Xl�1

j�0

��1�l�j�1�m� 2j� 2��m� j� 1�

�m� l� 1��m� l�
P�m;1�
j �x�; (C13)

P�m�1;0�
l �x� �

Xl
j�0

l!�m� j�!
j!�m� l� 1�!

�m� 2j� 1�P�m;0�
j �x�; (C14)

d
dx
P�m;0�
n �x� �

1

2

Xn�1

j�0



n!�m� j�!
j!�m� n�!

� ��1�n�j
�
�m� 2j� 1�P�m;0�

j �x�; (C15)

d
dy



mP�m;0�

l �y� � �y� 1�
dP�m;0�

l �y�
dy

�
�

1

2

Xl�1

j�0

��1�l�j�1�2j�m� 2��j�m� 1�P�m;1�
j �y�; (C16)

P�m�1;�1�
l�1 �x� �

�m� l��1� x�
2�l� 1��m� 2l� 1�

��m� l� 1�P�m;1�
l �x� � �l� l�P�m;1�

l�1 �x��; (C17)

and

Im�kr� �
1

2

�
r
a

�
mX1
l�0

��1�l�I2l�m�ak� � I2l�m�2�ak��P
�m;0�
l

�
1�

2r2

a2

�
; (C18)

for r � a, where In�x� is the modified Bessel function of the first kind.
To proof Eq. (C12), we apply Eq. (C1) iteratively to obtain

P�m;1�
n �x� �

1

m� n� 1
��m� 2n� 1�P�m;0�

n �x� � �m� n�P�m;1�
n�1 �x��

�

�
m� 2n� 1

m� n� 1

�
P�m;0�
n �x� �

1

m� n� 1
��m� 1� 2n� 2�P�m;0�

n�1 �x� � �m� n� 1�P�m;1�
n�2 �x��

�
Xn

k�n�1

��1�n�k�2k�m� 1�

m� n� 1
P�m;0�
k �x� �

�
m� n� 1

m� n� 1

�
P�m;1�
n�2 �x�


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


�
Xn
k�0

��1�n�k�2k�m� 1�

m� n� 1
P�m;0�
k �x�: (C19)

Thus Eq. (C12) is proved. Equation (C19) shows a procedure of expanding P�m;1�
n �x� in terms of P�m;0�

k �x�. Using the same
procedure, we can expand P�m;2�

n�1 �x� in terms of P�m;1�
k �x� to derive Eq. (C13). Similarly, one can prove Eq. (C14) by

applying Eq. (C2) to P�m�1;0�
n �x� and the subsequent results repeatedly. Equation (C15) can be verified simply by

substituting . � m, ; � 0, Eqs. (C12) and (C14) into Eq. (C6).
The proof of Eq. (C16) is proceeded by applying Eq. (C7) to derive

d
dy



mP�m;0�

l �y� � �y� 1�
dP�m;0�

l �y�
dy

�
� �m� l�

d
dy

�P�m;0�
l �y� � P�m;1�

l�1 �y�� � �m� l�
d
dy
P�m�1;1�
l ; (C20)

where we have also used Eqs. (C1) and (C2). Equation (C16) is then obtained by applying Eqs. (C6) and (C13) to
Eq. (C20).

To prove Eq. (C17), we first apply Eq. (C3) to P�m�1;�1�
j�1 �x� and the subsequent results repeatedly to yield

P�m�1;�1�
j�1 �x� �

�
x� 1

2

�
��1�j

�j� 1�

Xj
n�0

��1�n�m� 2n�P�m�1;0�
n �x�: (C21)

Next, using Eq. (C2) we can derive from Eq. (C21) that
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P�m�1;�1�
j�1 �x� �

x� 1

2


�
m� j
j� 1

�
P�m;0�
j �x� �

Xj�1

n�0

��1�j�n�2n�m� 1�

�j� 1�
P�m;0�
n �x�

�
: (C22)
Applying Eq. (C1) to the right-hand side of Eq. (C22), we
obtain Eq. (C17).

To verify Eq. (C18), we use the following integral
involves Legendre polynomial Pl�x� and Bessel function
J0�x� [45]:Z �=2

0
sin�2��Pl�cos2��J0�. sin��d� � .�1J2l�1�.�;

(C23)

together with the relation Jn�ix� � inIn�x� to expand
I0�kr� in terms of Jacobi polynomials as

I0�kr� �
1

2

X1
l�0

��1�l�I2l�ak� � I2l�2�ak��P
�0;0�
l

�
1�

2r2

a2

�
;

(C24)

where r � a. Taking the derivative of Eq. (C24) with
respect to r, we derive

I1�kr��
r
2a

X1
l�0

��1�l�I2l�1�ak��I2l�3�ak��P
�1;0�
l

�
1�

2r2

a2

�
;

(C25)

for r � a. Equation (C18) can then be derived from
Eqs. (C24) and (C25) by using a mathematical induction
method and taking the derivatives of Bessel functions.
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