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Oscillations in the spectrum of nonlinear Thomson-backscattered radiation
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When an electron beam collides with a high-intensity laser beam, the spectrum of the nonlinear
Thomson scattering in the backward direction shows strong oscillations like those in the spectrum of an
optical klystron. Laser gain on the backward Thomson scattering is estimated using the Madey
theorem, and the results suggest that Thomson-backscatter free-electron lasers are possible at wave-
lengths extending to the far uv using a terawatt laser beam from a chirped-pulse amplifier and a high-
brightness electron beam from a needle cathode.
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pensive alternative to conventional approaches for a uv or
x-ray FEL would be most useful.

the direction k̂k0, as shown in Fig. 1. The electron has
the initial velocity �0c and momentum p0 � �0�0mck̂k0,
I. INTRODUCTION

Thomson scattering is the radiation emitted when a
charged particle oscillates in the electromagnetic field
of an incident optical wave. When the optical field is
small, the particle motions are just one-dimensional os-
cillations in the electric field of the incident wave. The
scattered intensity is linear in the incident intensity and
appears at the same frequency. If the electrons are mov-
ing toward the incident optical beam, the radiation is
Doppler shifted to higher frequencies. This has proved
to be an important source of x rays and gamma rays [1–
3]. When the optical field is sufficiently intense, the
particle motions are relativistic and the radiation is non-
linear. In this case, the scattered radiation includes
harmonics and the spectrum is broadened by Doppler
shifts caused by the (classical) recoil of the particle
in the optical field. The development in recent years
of high-power (terawatt) pulsed lasers has made it pos-
sible to observe both the harmonics and the Doppler-
broadened radiation scattered from electrons in dilute
plasmas [4].

It has also been proposed to use nonlinear Thomson
scattering to make a tabletop free-electron laser (FEL).
The first such proposal was put forward in 1968 by
Pantell, Soncini, and Puthoff [5], who predicted that
usable gain could be achieved in the far-infrared region
using the technology available at that time. Since then,
there have been several proposals to develop a Thomson
FEL for shorter wavelengths [6–9]. At the present time,
several very large projects are underway in Germany and
the United States to develop conventional undulator free-
electron lasers for the far-uv and x-ray parts of the
spectrum using GeV accelerators [10], but the idea of a
tabletop free-electron laser has not been pursued because
of the limitations of available technology. Recent devel-
opments in both lasers (chirped-pulse amplifiers [11]) and
electron beams (needle photocathodes [12]) may change
this situation, however. A compact and relatively inex-
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II. THOMSON SCATTERING

In the present paper, we analyze nonlinear Thomson
backscatter from an electron beam. Previous analyses
have considered the case when the incident radiation
has uniform intensity during the pulse [5–9,13,14],
although recently computer simulations of nonlinear
Thomson scattering from plasmas have been done for
nonuniform laser pulses [15]. In the following, we con-
sider the case of a smoothly varying pulse and specialize
to a Gaussian pulse shape as an example. We find that the
spectrum of the backscattered radiation has interesting
structure similar to that observed from the so-called
optical-klystron free-electron lasers [16]. This has a pro-
nounced effect on the optical gain of the backscattered
radiation.

The angular spectral fluence of radiation from a mov-
ing charge is given by the formula (SI units are used
throughout) [17,18]

d2W
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�������2; (1)

where �0 is the permeability of free space, c the speed of
light, ! the angular frequency, q the charge on the
particle (negative for electrons), t the time, r the position
of the particle, c� � dr=dt the velocity of the particle,
and n̂n a unit vector in the direction of the observer. For a
linearly polarized incident plane wave with the wave
vector k0 and polarization êe0, we define k̂k
 � �1; k̂k0�,
where k̂k0 � k0=k0, and êe
 � �0; êe0�. The 4-vector poten-
tial in the Coulomb gauge is then

A
�r; t� � A���êe
; (2)

where

� � ct� k̂k0 � r � k̂k
r
; (3)

and r
 � �ct; r� is the 4-vector position. We consider a
particle initially traveling parallel to the incident wave in
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FIG. 1. Geometry of optical pulse incident on an electron
traveling in the same direction.
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where m is the particle rest mass and �0 � 1=
���������������
1� �20

q
, so

for head-on collision of the optical pulse with an electron
traveling in the opposite direction we take �0 < 0. The
equation of motion for the 4-vector momentum p
 is

dp
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�

q
m
�@
A� � @�A
�p�: (4)

If we substitute the potential (2) into the equation of
motion and recognize that @
A � k̂k
dA=d�, we find that
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If we take the inner product with k̂k
, the right-hand side
vanishes and we obtain the useful result
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(6)

for some constant E0. That is, the parameter � is just a
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constant times the proper time �. If we evaluate the
constant before the pulse arrives, we find that

E 0 � ck̂k
p
 � �0mc2 � �0�0mc2 � �0�1� �0�mc2:

(7)

Since the canonical momentum in the transverse di-
rection is conserved, it follows immediately that

p � êe0 � qA��� � 0 � �p
êe
 � qA���: (8)

If we substitute (6)–(8) into (5) and take the component
in the longitudinal direction, we obtain the equation of
motion

d
d�

�k̂k0 � p� �
q2

mc�0�1� �0�
A
dA
d�

: (9)

Integrating once and evaluating the constant of integra-
tion before the pulse arrives, we get

k̂k 0 � p �
q2

mc�0�1� �0�
A2

2
� �0�0mc �

1

m
k̂k0 �
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:

(10)

Using (6) to change the independent variable to � and
integrating a second time, we find that the longitudinal
position is [19,20]

k̂k 0 � r �
�0

1� �0
��

1

2

1� �0
1� �0

Z �

0
a2���d�; (11)

where we have introduced the dimensionless vector po-
tential a��� � qA���=mc. When we substitute these re-
sults into (1), we find that the angular spectral fluence in
the backscattered direction (n̂n � �k̂k0) is
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We are interested in the case when the incident pulse includes many oscillations under a slowly varying envelope, so
we write

a��� � �aa�z� cos��0z�; (13)

where

z � �=�0 (14)
and

�0 �
!0�0
c

� 1; (15)

in which !0 is the frequency of the incident pulse and �0 the pulse length. In the limit �0 � 1, we can develop an
asymptotic series for the integral in the exponent of (12) by integrating repeatedly by parts. For the first term we get
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where the dimensionless frequency is
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w � !=!0 (17)

and

Z�z� � z�
1

2

Z z

0
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The angular spectral fluence is then
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Using the Bessel function expansion

ei
 sin��� �
X1
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�ein� (20)

for the last factor and rearranging the sums using J�n � ��1�nJn, we get
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where we define

Kn�
� � ��1�n	Jn�
� � Jn�1�
�
: (22)

But Z�z� is a monotonically increasing function of z, so
the exponential in (21) oscillates rapidly unless there is a
resonance between the first and second terms. This can
occur only for n � 1, so we can ignore the rest of the
terms in the sum. For convenience in the following we
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assume that the incident pulse is symmetric, so that �aa�z� is
an even function of z. The angular spectral fluence is then
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For the specific case of a Gaussian pulse, the envelope
of the amplitude is

�aa�z� � a0e
�z2 (25)

and

Z�z� � z�

����
�
2

r
a20
4
erf�

���
2

p
z�; (26)

where erf�x� is the error function.
An example of the spectrum obtained using the asymp-

totic approximation is shown in Fig. 2. The laser parame-
ters used in the computations correspond to what can be
achieved with a tabletop chirped-pulse amplifier: a total
energy U � 5 J in a 10-ps pulse (�0 � 3:0 mm) at a
wavelength %0 � 1:054 �m (�0 � 1:8� 104), focused
to a 53-�m diameter spot (a0 � 0:17). The electron ve-
locity used in the computations corresponds to 100 keV
(�0 � �0:55), which can achieved with a tabletop dc gun.
The results obtained with the asymptotic approximation
are indistinguishable from those obtained by numerical
integration of the exact result (12). As shown in Fig. 2, the
spectrum of radiation on the fundamental extends from
the nominal (twice-Doppler-shifted) wavelength % �
308 nm out to % � 312 nm, due to the (classical) recoil
from the incident laser pulse. The oscillatory structure in
the spectrum is reminiscent of the spontaneous emission
from an optical-klystron free-electron laser and arises in
the same way [16]. Near the beginning of the interaction
the electron emits radiation at the frequency !, but as the
intensity of the incident pump pulse increases, the elec-
tron is accelerated in the direction of the incident pulse
and changes frequency (Doppler shift) as it is pushed
backward. When the pump intensity decreases later in
the pulse the electron radiates at the frequency ! once
again. However, this radiation is phase shifted relative to
the earlier radiation and interferes with it constructively
or destructively depending on the precise value of the
phase shift.

The analogy with the radiation from an optical-klys-
tron FEL suggests that the optical gain on this backscat-
tered radiation might be enhanced by the oscillatory
structure.We can estimate the small-signal gain by means
of Madey’s theorem, which states that in the limit of small
gain, the small-signal gain is related to the spontaneous
emission by the formula [21,22]

G� 1 � �
8�3Je
mq!2

d
d�0

�
d2W
d!d�



; (27)
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where Je is the current density (Je > 0 for negatively charged electrons traveling to the left). But d2W =d�d! depends
on �0 only through the factor �1� �0�=�1� �0�. This appears in several places in (24) and (25), but the strongest
dependence is due to its appearance in the cosine, where it is multiplied by �0 � 1. Ignoring all but the strongest
dependence, we get

G� 1 � �
2�0cqJe
m!20�0�0

�20

�
1� �0
1� �0



2
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n�1

In�w�
��X1
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; (28)

where

I0n�w� � ��0w
Z 1

0
dz �aa�z�Kn

�
w
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1� �0
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�aa2�z�
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Z�z� sin

�
�0

�
w
1� �0
1� �0

Z�z� � �2n� 1�z
�	
: (29)
The gain calculated from these formulas for a Gaussian
pulse is shown in Fig. 3. The parameters used for this
figure are the same as those used for Fig. 2, but with an
electron-beam total current Ie � 100 mA focused to a
60:2-�m diameter spot (Je � 1:0� 109 A=m2), which
could be achieved from a needle photocathode [12]. As
shown in Fig. 3, the gain exhibits large positive and
negative oscillations, with a peak gain G� 1–10. It is
of interest to note in passing that qJe=�0 � q2cne > 0,
where ne is the electron density. Thus, the gain remains
finite even when the electron beam is stationary (�0 ! 0),
as must be true since we can view the gain from an
electron beam in the reference frame where the beam is
stationary. This suggests that stimulated Thomson back-
scatter should be observed from a sufficiently dense, cold
plasma, although in this case the wavelength where the
020701-4
gain appears is longer than the incident wavelength due to
the recoil of the electrons in the laboratory frame.

III. LONG PULSES

A few calculations using (28) are sufficient to show that
the gain is larger for longer pulses, even if the total energy
is held constant. For very long pulses (�0 � 1), the in-
tegrals (24) and (29) are difficult to evaluate numerically,
but they can be conveniently approximated using the
method of stationary phase [23]. At a given frequency,
the dominant contribution to the integrals (24) and (29)
comes from the point in the pulse where the local emis-
sion frequency is Doppler shifted to the frequency we are
examining. This is the point of stationary phase. If we
call the stationary-phase point z0 and expand about this
point, then the argument of the sine and the cosine is
�0

�
w
1� �0
1� �0

Z�z� � �2n� 1�z
�
��0

�
w
1� �0
1� �0

Z�z0� � �2n� 1�z0

�
��0

�
w
1� �0
1� �0

Z0�z0� � �2n� 1�

�
�z� z0�

�
�0w
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Z00�z0��z� z0�2: (30)

At the point of stationary phase the derivative of the phase vanishes, so the stationary-phase point z0 satisfies the
condition

w
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1� �0
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2
�aa2�z0�

�
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This is the resonance condition, and it has solutions for frequencies in the range

�2n� 1�
1� �0
1� �0

1

1� 1
2 �aa
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<w< �2n� 1�
1� �0
1� �0
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The integrals (24) and (29) are then

In�w� � �aa�z0�Kn
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�
w
2

1� �0
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Z00�z0��z� z0�2
�	
: (34)

Provided that z0 is not too close to the origin, we can extend the integral to �1. If we assume that Z00�z0� � �jZ00�z0�j
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FIG. 3. (Color) Gain versus wavelength (fundamental only).
The asymptotic approximation is shown as a black line and
the stationary-phase approximation as a red line extending
upward from the first peak. The blue line, shifted slightly to
the right of the first peak, shows the gain for the equivalent
square pulse.
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FIG. 2. (Color) Angular spectral fluence versus wavelength
(fundamental only). The asymptotic approximation is shown
as a black line and the stationary-phase approximation as a red
line extending upward from the main peak. The blue line
(shifted slightly to the right of the main peak) shows the
fluence for the equivalent square pulse.
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[that is, �aa�z� is a monotonically decreasing function of z for z > 0], use trigonometric identities for cos�a� b�, sin�a�
b�, sina� cosa, and sina� cosa, and the definite integralZ 1

�1
cosx2dx �

����
�
2

r
; (35)

we get
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where the phase of the spectral oscillations is

� � �0

�
w
1� �0
1� �0

Z�z0� � �2n� 1�z0

�
�
�
4
: (38)

If we ignore all harmonics but the fundamental, the angular spectral fluence is

d2W
d!d�

�
�0cq2

8�2
�0w �aa2�z0�
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�
w
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and the gain is
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�
w
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�
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jZ00�z0�j
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The condition for the stationary-phase approximation
to be valid is that the width of the resonance be small
compared with the value of z0 when the resonance occurs
near the origin (z0 � 1) or small compared with unity
(the scale length for variations of the pulse amplitude)
otherwise. That is, we require

�0w
2

1� �0
1� �0

jZ00�z0�jmin�z20; 1� � 1: (41)
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This will be true except near z0 � 0 or for z0 � 1, where
Z00�z0� becomes small. Therefore, the stationary-phase
approximation should be valid except near the endpoints
of the spectrum of each individual harmonic.

For the specific case of a Gaussian pulse, as discussed
earlier,

Z0�z� � 1� 1
2a
2
0e

�2z2 (42)
020701-5
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FIG. 4. Geometry of the electron beam and laser beam in the
interaction region.

PRST-AB 7 OSCILLATIONS IN THE SPECTRUM OF NONLINEAR . . . 020701 (2004)
and

Z00�z� � �2a20ze
�2z2 : (43)

The stationary-phase point is then

z0 �

�����������������������������������������������������������
ln

����������������������������������������������������
a20=

�
4n� 2

w
1� �0
1� �0

� 2


svuut : (44)

The stationary-phase approximation for a Gaussian pulse
is compared with the asymptotic approximation in Figs. 2
and 3, where the asymptotic approximation is shown as a
black line and the stationary-phase approximation as a
red line. As shown there, the stationary-phase approxi-
mation works quite well except near the end points of the
spectrum, as expected.

Using (40), it is now a simple matter to estimate the
gain at the first (longest wavelength) full peak in the
spectrum, which we chose because it is the broadest full
peak. This peak occurs at � � 3�=4, where sin2� � �1.
Since the first full peak occurs for z0 � 1, we may use the
approximation

Z�z0�
jZ00�z0�j

�
1� 1

2a
2
0

2a20
: (45)

The value of the gain at the peak is therefore

Gmax�1�
��20�0cqJe
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4

1��0
1��0

a20

�
:

(46)

Using these same approximations in (38) we find that the
first full gain peak occurs at

z0 �
�
3�
2

1� 1
2a
2
0

�0a20



1=3
; (47)

which is small for long pulses (�0 � 1). The condition for
the validity of the stationary-phase approximation at the
first gain peak is then

�0w
1� �0
1� �0

a20z
3
0 �

3�
2
w
1� �0
1� �0

�
1�

1

2
a20



� 1: (48)

But near the first gain peak, we see from the resonance
condition (31) that w�1� 1

2 a
2
0��1� �0�=�1� �0� � 1, so

this leaves us with the condition 3�=2� 1. As we see in
Fig. 3, this is good enough for our purposes since the
stationary-phase approximation is close to the asymptotic
approximation at the first full peak of the gain.

IV. RESULTS

We can use the simple formula (46) to study the scaling
of the gain with the pump laser energy, the pulse length,
and the wavelength of the laser output. To do this we have
to make some assumptions about the geometry of the
interaction, which is shown in Fig. 4. For a pump laser
020701-6
with power P in the lowest Gaussian mode focused to a
Rayleigh range zR, the dimensionless vector potential on
axis at the focus is

a20 �
�0q

2%0P

�2m2c3zR
; (49)

where %0 � 2�c=!0 is the pump wavelength. For an
electron traveling at the velocity �0c, the distance trav-
eled during the interaction with a copropagating optical
pulse of total duration � 2�t is 2j�0jc�t=�1� �0�. To
keep the effects of diffraction of the pump laser small, we
make the Rayleigh range equal to this distance and set

zR �
2j�0jc�t
1� �0

: (50)

The dimensionless vector potential a0 at the focus is then
found from

�0a20 �

����
2

�

r
�0q

2

�m2c3
1� �0
j�0j

U

�t
; (51)

where U is the energy in the Gaussian laser pulse. The
degree to which the electron beam can be focused is
determined by the spread of the beam in its transverse
phase space. In terms of the effective [24] emittance " of
the electron beam (roughly the total area of the beam in
transverse phase space divided by �, 4 times larger than
the rms emittance [24]) and the depth of focus ze (equiva-
lent to the Rayleigh range of the pump laser), the area of
the focused electron beam is �"ze [25]. The electron
beam can be focused somewhat more tightly than the
laser beam, since the interaction is important only be-
tween the resonant points, so we take ze � z0zR. Since the
emittance generally increases with the total current, a
better invariant measure of the electron-beam quality is
the normalized brightness BN � 2Ie=�2�20�

2
0"
2. In terms

of the normalized brightness and the total current Ie, the
current density at the focus is then

Je �
I

�"ze
�

�����������
BNIe

p ������� 1

48�5=2
�0q

2

m2c6
�30�1� �0�

4

�0

U

�t4

�������1=3
(52)

for a20 � 1, which will typically be the case for long
020701-6
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pulses. Combining these formulas, using the fact that
K21�x� � 1 for x � 1, we find that for a20 � 1, which is
typical of long pulses, the peak gain is given by the
simple formula

Gmax�1�
1��0
1��0

�����������
BNIe

p �������
����
�

p

48

�40q
5

m5c3

�
1��0
�0



4
U�t2

�������1=3:
(53)

This shows that the gain increases with laser pulse energy
and, more strongly, pulse length. Some results are shown
in Fig. 5 for the parameters used previously (Ie �
100 mA, �0 � �0:55, BN � 1013 A=m2 sr) but with a
more powerful laser (U � 500 J) such as the petawatt
upgrade of the Vulcan laser system [26]. The pulse length
�t is varied while keeping the total laser pulse energy U
constant. As shown in Fig. 5, the gain can be quite large
even for a relatively small current.

Several caveats are important, however. In the first
place, the Madey theorem is valid only in the case when
the gain is small, G� 1� 1, which is clearly not the
case in Fig. 5, or in Fig. 3, for that matter. Typically,
however, the gain becomes exponentially larger when
G� 1� 1, which would make the present estimates
conservative. We can illustrate the importance of this
effect by considering the gain in a uniform optical pulse,
for in this case the exponential gain can also be calculated
analytically. For a uniform pulse

a � a0; ��L < � < �L; (54)

with the effective length 2�L, we can compute the spec-
trum and gain on the fundamental using just the first term
in the sums in (23) and (28). The stationary-phase ap-
proximation cannot be used, but the asymptotic formulas
(24) and (29) remain valid. For a uniform pulse, at fre-
quencies near the resonant frequency
1

10

100

1000

10000

1 10 100 1000

Pulse length (ps)

G
ai

n

FIG. 5. (Color) Gain versus pulse length for constant pulse
energy (500 J). The gain for an emittance-dominated electron
beam is indicated by the black (lower) line, and that for a
space-charge-dominated beam by the red (upper) line. The
curves terminate at the quantum limit.
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wL �
1� �0
1� �0

1

1� 1
2a
2
0

; (55)

we find that

I1�w� � a0zLK1

�
1

4

a20
1� 1

2a
2
0



sin�x�
x

; (56)

where the dimensionless effective length is
zL � �L=�0 (57)

and the dimensionless departure from resonance is

x � �0zL
w� wL

wL
: (58)

Substituting this into (23), we find that the angular spec-
tral fluence is

d2W
d!�

�
�0cq

2

16�3
1��0
1��0

a20�
2
0z
2
L

�1� 1
2a
2
0�
2
K21

�
1

4

a20
1� 1

2a
2
0


�
sin�x�
x

�
2
:

(59)

In the same way, we find that the small-signal gain is

G� 1 � je
x sin�x� cos�x� � sin2�x�

x3
; (60)

where

je �
2�0cqJe
m!20�0�0

1� �0
1� �0

a20�
3
0z
3
LK

2
1

�
1

4

a20
1� 1

2 a
2
0



(61)

is the dimensionless current density. The peak value of
the gain profile occurs at x � �1:303, which is slightly
below the nominal resonance.

To apply these formulas even approximately to a non-
uniform pulse, we must remember that since the dimen-
sionless vector potential varies during the pulse, only
parts of the pulse are in resonance at a given frequency.
We assume that the central portion of the pulse is respon-
sible for the first gain peak and ignore the rest of the pulse.
Near the center of the pulse we can use the approximation
�aa � a0�1� z2�, so from (55) we see that the shift of the
resonant frequency is

�w
wL

�
a20z

2

1� 1
2a
2
0

: (62)

From (59) we see that the width of the resonance [the first
zero of sin�x�=x] corresponds to x � �. The effective
length of the pulse therefore satisfies

�30z
3
L � ��20

1� 1
2 a
2
0

a20
; (63)

which we can substitute in (59) and (61).
These results are compared to the results for a Gaussian

pulse in Figs. 2 and 3. For the parameters used for Fig. 3,
the peak gain of the equivalent uniform pulse in the
small-gain limit is Gmax � 1 � 5. As shown in Fig. 3,
this is about a factor of 2 smaller than the gain predicted
by (46), but both estimates based on the Madey theorem
020701-7
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are undoubtedly low. For the uniform pulse in the high-
gain limit, the gain is found to have the exponential
dependence [27]

Gexp �
1
9 exp�j

1=3
e

���
3

p
�: (64)

Kim [28] has shown that when the signal begins from
noise (self-amplified spontaneous emission), saturation is
reached when je � �4��3 � 2000, which corresponds to
Gexp � e20 � 3� 108. In the exponential-gain limit, the
uniform-pulse gain (64) for the parameters used in Fig. 5
is Gexp � 5� 104, which is much larger than the predic-
tion from Madey’s theorem. Although these results cannot
be directly applied to nonuniform pulses, the gain in
nonuniform pulses will certainly be much larger than
predicted by Madey’s theorem.

The second caveat that must be considered in using
Madey’s theorem to predict the gain is the fact that
Madey’s theorem is a classical result. Quantum effects
can be ignored if the natural spreading of the electron
wave packet is small compared to the wavelength in the
electron rest frame [29]. Equivalently, the Compton recoil
must be small compared with the wavelength. In terms of
the phase shift /0 due to the recoil, the condition for
ignoring quantum effects is

/0 �
2 �h!0
mc2

���������������
1� �0
1� �0

s
!0�t � 1; (65)

where �h is Planck’s constant divided by 2� and �t the
laser pulse length. In the low-power case illustrated in
Figs. 2 and 3, this amounts to /0 � 2:64� 10�3, so
quantum effects can be ignored. However, for longer
pulses, quantum effects become a limiting factor, since
they reduce the gain [30]. In Fig. 5, the curves are
terminated at 200 ps, since quantum effects become
important for longer pulses.

In the third place, we see in Fig. 3 that the gain is
positive only over small frequency intervals. This means
that the electron energy spread must be small enough to
overlap just a single oscillation of the gain spectrum. For
electron beams from dc accelerators, the energy spread is
typically small, less than 1 eV, unless space-charge poten-
tials across the beam are important. In the absence of
space charge, the dominant effect is the spread of longi-
tudinal momentum caused by the transverse motions of
the beam. For an electron beam with emittance ", the
equivalent frequency spread is [25]

/w" �
/!
!0

�
j�0j

�1� �0�
2

"

�2ze
�
1� �0

�1� �0�
2

"

�2z0c�t
:

(66)

We can find the width of the gain peak in the following
way. The phase � of the spectral oscillations is given by
(38). Differentiating this and using the resonance condi-
tion (31), we find that the full width of the gain peak,
020701-8
which corresponds to �� � �=2, is
1

�w
�
2

�
d�
dw

�
2�0
�
1� �0
1� �0

�
1�

1

2
a20



z0: (67)

The width of the gain peak must be larger than the
frequency spread (66) caused by the electron beam, so
we arrive at the criterion

/w"

�w
�
4

�2
"
%0

1� 1
2a
2
0

1� �0
� 1: (68)

We can estimate the effective emittance from the normal-
ized brightness and the current using the formula BN �
2Ie=�

2�20�
2
0"
2. For the parameters used in Fig. 3,

for example (Ie � 100 mA, �0 � �0:55, BN �
1013 A=m2 sr), we get " � 7� 10�8 m rad. From this
we find that /w"=�w � 0:03� 1, so the emittance is
not a problem.

Since the emittance generally increases with the elec-
tron-beam current, this would suggest that the current
could be increased to increase the gain. However, as the
electron-beam current is increased, space charge introdu-
ces two potentially deleterious effects. In the first place,
the space-charge potential at the center of the beam,
relative to the outer edge, causes a spread in the electron
energy. For a uniform beam, the potential difference is
[24]

� �
Ie

4�"0c�0
: (69)

Since the wavelength spread accompanying the electron
energy difference must be smaller than the width of the
gain peak, we get the criterion

/wsc
�w

� 1: (70)

For the parameters used in Fig. 3, for example, we get
/wsc=�w � 7� 10�3 � 1, so the space-charge potential
is not a problem. In addition, it must be kept in mind that
for very long pulses of high current, space-charge forces
prevent the electron beam from being focused to a small
spot. From the envelope equation for an electron beam
with space charge, it can be shown that the current
density at the focus is

Je �
j�30j�

3
0IA

�z2e
; (71)

where IA � 4�"0mc
3=jqj � 17 kA is the Alfvén current

[24]. The gain is then

Gmax � 1 � 2
�
1

3�
�0q2

m2c3
1� �0
j�0j

U

�t



2=3
; (72)

independent of the pump wavelength, the electron-beam
voltage, and the total current. This result is shown as a red
line in Fig. 5. It shows that space charge in the focused
electron beam establishes a limit on how long the pulse
020701-8
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can be. Equivalently, it shows that for sufficiently long
pulses or sufficiently high total current, the gain depends
only on the peak power U=�t of the pump laser.

In summary, the nonuniform intensity of a realistic
optical pulse leads to structure in the spectrum of radia-
tion that is Thomson backscattered from charged par-
ticles. This structure is particularly interesting for the
possibility it offers for enhanced optical gain on the
backscattered radiation and the development of tabletop
free-electron lasers. For example, for a 100-kV, 100-mA
beam in the field of a 500-J, 100-ps, 10:054-�m laser
pulse focused to a 170-�m diameter spot, the Madey
theorem predicts a small-signal gain exceeding 100 per
pass at a wavelength of 312 nm. The actual gain is almost
certainly orders of magnitude larger, but a more sophis-
ticated computation (probably involving numerical simu-
lations) is needed to prove this [31]. Scaling to shorter
wavelengths is possible, but the following limitations
must be borne in mind. For constant pump laser energy
and pulse length, and constant electron-beam brightness
and current, the gain falls off roughly with the laser
wavelength %. This can be compensated by increasing
the pulse length or electron-beam current, but the pulse
length and current are limited by space-charge defocus-
ing of the electron beam. Larger pump laser energy also
increases the gain, but higher electron-beam brightness
helps only until space charge dominates the focus. Both
the spectral oscillations and the gain should be observable
in Thomson backscatter from sufficiently dense, cold
plasmas.
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