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We investigate the validity of the Vlasov-Poisson equations for calculating properties of systems of N
charged particles governed by time-independent Hamiltonians. Through numerical experiments we
verify that there is a smooth convergence toward a continuum limit as N — oo and the particle charge
g — 0 such that the system charge Q = gN remains fixed. However, in real systems N and g are always
finite, and the assumption of the continuum limit must be questioned. We demonstrate that Langevin
simulations can be used to assess the importance of discreteness effects, i.e., granularity, in systems for
which the physical particle number /N is too large to enable orbit integrations based on direct
summation of interparticle forces. We then consider a beam bunch in thermal equilibrium and apply
Langevin techniques to assess whether the continuum limit can be safely applied to this system. In the
process we show, especially for systems supporting a sizable population of chaotic orbits that roam
globally through phase space, that for the continuum limit to be valid, JN° must sometimes be
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surprisingly large. Otherwise the influence of granularity on particle orbits cannot be ignored.
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L. INTRODUCTION

A standard, often tacit, assumption in theoretical in-
vestigations of charged particle beams is that particle
correlations are unimportant. With this assumption, one
applies the Vlasov-Poisson equations to calculate the dis-
tribution function of the particles in the six-dimensional
phase space of a single particle [1,2]. If the system is in
static equilibrium, then the distribution function can be
expressed as a function of isolating integrals of particle
motion in the mean potential. For example, any function
of the Hamiltonian derived from the mean space-charge
potential is a solution of the Vlasov-Poisson equations,
though not all such functions correspond to stable equi-
libria [3]. For systems not too far from equilibrium, one
can invoke a perturbation theory using Vlasov-Poisson to
calculate the evolution of the distribution function [4].
Such techniques are powerful and mature, but the under-
lying assumption must be questioned [5].

A major justification typically provided for using
Vlasov-Poisson is the length of the collisional relaxation
time f. By regarding this relaxation as the consequence
of an incoherent sum of binary encounters [6], one finds
tr = 93/(¢*>nInA), where o is a typical speed associated
with random motions, ¢ is the particle charge, n is a
characteristic number density, and InA is the so-called
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Coulomb logarithm, with A scaling as a positive power of
the number of constituent particles N. Upon assuming the
bulk kinetic and potential energies are comparable in
magnitude, this result becomes ¢t ~ 0.1(N/InN)zp, with
tp ~ R/v denoting a dynamical (orbital) time scale that
depends on the system size R. Given plausible parameter
values for real high-brightness beams, it becomes imme-
diately clear that t5 >> 5. For example, let N denote the
physical number of charges comprising a beam bunch,
and consider N = N = 6.25 X 10° (1 nC). This gives
tr ~ 107t;,, suggesting that collisions are unimportant
to the evolution of beams in, for example, linear accel-
erators. However, consider simulations for which the
number of macroparticles N << N'. The estimated #,
may now be small enough to drive collisional relaxation
during the simulation, in which case it is an artifact of the
relatively small number N of macroparticles.

As is evident in its derivation from the Bogoliubov-
Born-Green-Kirkwood-Yvon hierarchy [7], a Vlasov-
Poisson system having total charge (Q represents a
continuum limit in which the number of particles
N — oo while their individual charge ¢ — O such that
gN = Q. By contrast, real systems contain a finite num-
ber of particles N, and real charges have nonzero mag-
nitudes. Vlasov-Poisson is thereby unrealistic, yet for the
reasons stated, it is used to describe systems in the real
world. The obvious question, therefore, is (1) to what
extent do predictions derived from Vlasov-Poisson
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adequately describe real finite-N* systems? A related
question is (2) to what extent do predictions derived
from a simulation involving N < N macroparticles ade-
quately describe the real N'-body system? The present
paper is concerned with how discreteness effects, i.e.,
granularity, influence the answers to both questions.

IL. PRELIMINARIES

We adopt and extend techniques recently used for
similar investigations of the gravitational N-body prob-
lem [8,9]. That work concerned static potentials (analo-
gous to those of Sec. III below) for which, in the
continuum limit, the orbits are either all regular or es-
sentially all chaotic, permitting one to isolate discreteness
effects on both orbital types. Static beam potentials,
however, will normally contain an admixture of both
regular and chaotic orbits. Consider, for example, a
beam bunch in thermal equilibrium [10], wherein space
charge is important (e.g., that of Sec. IV below). The
density in the central regions is quasiuniform, giving
rise to nearly linear forces and thereby mostly regular
orbits. In the outer regions the density falls to a diffuse
tail over a few Debye lengths. The corresponding space-
charge force is thus nonlinear and, if the configuration
lacks spherical symmetry, it may give rise to a sizable
population of chaotic orbits that roam through global
regions of phase space, i.e., “globally chaotic” orbits.
The bulk potential then supports an admixture of orbital
types, and finite-N effects facilitate transitions between
regularity and chaos. The question of how granularity
influences these orbits is of interest, particularly in the
context of the transition to the continuum limit.

A. Frozen N-body models

To facilitate our analysis, we formulate the Vlasov-
Poisson equations in dimensionless variables. To model
discreteness effects, we consider static systems and rep-
licate their respective density profiles with distributions
of N identical macroparticles. These macroparticles re-
side at fixed coordinates that are randomly selected but
weighted in keeping with the system’s density profile,
thereby resulting in a “frozen-N representation.”” A charge
q is assigned to each macroparticle such that gN = Q, the
total charge of the physical system. Our use of dimen-
sionless variables makes the geometry of the system
invariant with respect to the choice of N, thereby putting
all frozen-N representations and the Vlasov-Poisson sys-
tem on the same footing. Of course, only one choice of N
is real, ie., N = IN. However, real high-charge beam
bunches can have a huge number of particles, making
N -body simulations impractical. One must therefore
consider implications of simulations with N < N'; our
dimensionless formulation provides the means to do so.

The total potentials associated with the dimensionless
Vlasov-Poisson system and corresponding frozen-N sys-
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tems give rise to dimensionless equations of test-charge
motion. For a frozen-N potential, the equation of motion
implicitly equates the charge of the test particle to the
charge of each macroparticle. Having constructed a
frozen-N system, we then compute orbits of test particles
and determine to what extent the value of N influences the
statistical behavior of collections of test particles.

By freezing the positions of the N macroparticles, we
turn off any collective relaxation that may arise in a real
system. However, we retain the collective space-charge
force calculated from the static density distribution via
Poisson’s equation, as well as discreteness effects on test-
particle orbits.

The use of frozen-N systems drastically reduces the
computational time, which in turn enables using much
larger values of N than would otherwise be possible. This
allows us to demonstrate the validity of a Langevin/
Fokker-Planck description of collisional, i.e., “discrete-
ness,” effects on particle orbits in large-N systems
[11-13]. We then use this description to explore discrete-
ness effects for particle numbers N — N that are found
in real high-charge beam bunches, i.e., values too large to
permit even frozen-N simulations. We are thereby
equipped to answer questions (1) and (2) posed earlier.
In the process, we demonstrate that discreteness effects
can be critically important even within just a few dy-
namical times ¢p, especially for potentials that support a
sizable population of globally chaotic orbits. In such
systems one must take care in using Vlasov-Poisson,
especially when treating beams for which the detailed
evolution and time scales are of practical concern. Such is
often the case respecting, e.g., high-brightness, high-
average-current beams that require tight controls on emit-
tance and/or beam halo [14].

B. Methodology for orbital analysis

We begin by outlining the methodology used to explore
orbits in the potentials considered herein, which is essen-
tially the same as applied in previous studies, e.g., [10].
We integrated the equation of motion for at least 100
orbital periods and, in most cases, for = 200 orbital
periods. The integrations were performed using a fifth-
order Runge-Kutta algorithm [15] with variable time
step. For each orbit, the fractional energy conservation
was <1078 at each time step, and <107° over the whole
orbit. As the integration proceeded, we also computed the
largest Lyapunov exponent for each orbit using a standard
algorithm from chaotic dynamics [16]. The idea is to
evolve two initial conditions that start with a very small
separation for about one dynamical time, then renormal-
ize to bring the two particles close together again, and
repeat the process until the average exponent associated
with the orbital separation converges to an almost stable
value. Typically convergence was achieved within ~100
orbital periods. In general the Lyapunov exponent in the
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smooth potential, yg, was much smaller than that in the
corresponding frozen-N potential, yy.

After computing the orbits, we extracted the power
spectrum for each orbit using a fast-Fourier-transform
algorithm [15], and we then computed the ‘“‘complexity”
of the orbit [17]. This entailed determining for each orbit
the quantities n,, n,, and n,, defined as the minimum
number of frequencies required to capture a fixed fraction
k of the power in each direction, and then assigning a
total complexity n(k) = n, + n, + n,. To obtain reason-
ably sharp Fourier spectra, we recorded data at least
100 times per orbital period. Then we sorted the spectral
frequencies in descending order and, starting from the
highest frequency, added as many frequencies as were
needed to reach 90% of the total power, i.e., k = 0.9. For
reasons explained and justified elsewhere [10], we cate-
gorized an orbit as chaotic if n(0.9) > 20.

Computations in the frozen-N potentials involved exact
direct-summation N-body integrations. Granularity in
itself makes all test-particle orbits in the frozen-N con-
figurations chaotic [18], causing exponential divergence
of nearby test-particle trajectories that persists until the
separation between the trajectories becomes large
compared to a typical intermacroparticle spacing. We
verified that the statistics of the computed orbits, as
probed by their Lyapunov exponents and complexities,
were unchanged by choosing more stringent requirements
for fractional energy conservation, e.g., <107'0 for
each time step and <10~® for the entire orbit. More-
over, differences between individual orbits in different
frozen-N potentials with the same N were much larger
than differences arising from different choices of compu-
tational accuracy. Integrating a single orbit in a N = 10°
potential typically took ~4 hours on a Pentium III
computer.

C. Modeling N-body orbits and flows by Gaussian
white noise

Conventional wisdom holds that effects from granular-
ity reflect a Markov process that can be idealized as
friction and Gaussian (nearly) white noise in the context
of a Fokker-Planck description [11]. Taken literally, this
suggests that individual N-body orbits can be well mim-
icked by Langevin simulations. However, it is unclear a
priori to what extent this is really true. The original
derivation of the Fokker-Planck equation (and most if
not all its tests) restricts attention to the statistical proper-
ties of collections of orbits, or to distribution functions,
over time scales that are long enough to submit to a
Markov treatment. It also carries an implicit assumption
that the bulk potential in which the particles evolve is
nonchaotic. An open question is whether the friction/
noise paradigm correctly describes shorter-time orbital
behavior, especially in a chaotic potential.

If the Langevin description is valid, a simple rule
connects N to the strength of the friction. Assuming
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that the noise is characterized by a temperature per unit
mass ©® comparable to the magnitude of the particle
energy, the coefficient of dynamical friction 7 defines
a relaxation time tgx = 1~ !. However, per the Intro-
duction, the binary-encounter approximation yields tp
(N/1nN)tp, and so i should scale as 1 o InN/N.

To justify a Fokker-Planck description, one must dem-
onstrate that frozen-N simulations with specified N can
be well mimicked by Langevin simulations with 7 «
InN/N. Here two practical issues arise. The first is that
the limited range of N that can be explored makes testing
the InN dependence impractical: for N < 103 or so, the
very notion of a bulk potential fails; for N > 10° compu-
tations become prohibitively expensive. One must instead
be content with testing the scaling n « N~!, ie., Inn =
p — InN with p being a constant. The second issue is more
serious. The usual Langevin equation allows energy to
vary on a time scale 7, but test-particle energy is con-
served absolutely in frozen-N potentials. Energy conser-
vation must be imposed on any scheme intended to mimic
orbits in these potentials. For this reason, the noisy in-
tegrations described herein were performed using a modi-
fied energy-conserving noise previously devised for the
study of gravitational frozen-N potentials [8,9].

III. N-BODY ORBITS AND FLOWS IN REGULAR
AND CHAOTIC POTENTIALS
A. Models considered

Consider a uniform-density, ellipsoidal beam bunch
with triaxial symmetry, axial dimensions (a, b, ¢), and
total charge Q = 1:

ey

1, ifR2=1,
p(r) = {

4mabc 0, if R?>1,

with R* = (x/a)? + (y/b)> + (z/c)*. This density gener-
ates a repulsive space-charge potential inside the beam of
the form

Dy (r) = —3(@3x’ + w3y? + wizd). 2

Suppose, however, that it is countered by an external
confining potential ®.,, = —2d, and that there is a
spherically symmetric spike of charge @ and size € at
the centroid. The total potential, in Gaussian units, is then

Q
N

Taking a = 1.95, b = 1.50, and ¢ = 1.05 yields the fre-
quencies w, = 0.4663, w; = 0.5508, and w,. = 0.6753
[19], which implies a dynamical time ¢, ~ 27/ w ~ 10.
We also take € = 1073. The potential @, though not
representative of “real” beams (e.g., we do not let the
charge distribution adjust to screen the central spike Q),
has significant pedagogical value. Via the choice of 9, it
can be made to support only regular orbits or (almost)

1
®(r) = E(a)tz,x2 + wly? + wi7?) — 3)
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only globally chaotic orbits, thereby permitting a clean
study of discreteness effects on both types of orbits.

Frozen-N representations of the uniform ellipsoid hav-
ing a charge density of the form

Q N
py) =3> 8 —r),  0=1, (4)
i=1

were generated by randomly sampling the uniform den-
sity p(r). The corresponding potential is

Dy(r) = (5)

1% 1
NS —r)*+ ¢

wherein e is a tiny softening parameter whose purpose is
to avoid singularities that arise occasionally when the
separation between two particles goes to zero [20]. Such
events are rare, but when they occur, they slow down the
computations considerably by necessitating extremely
small time steps to retain sufficient accuracy. If e is small
enough that the probability of two orbits approaching
within a distance comparable to e is extremely small,
then its precise value has no statistically significant im-
pact on either the computed values of Lyapunov expo-
nents or the Fourier spectra of orbits [8]. However, if e is
too large, there is an artificial reduction in the sizes of the
computed Lyapunov exponents. Now, for a system of fixed
size R, the typical interparticle separation decreases with
increasing N, and progressively smaller values of e are
needed. We found empirically that for N = 10>, the
orbital dynamics with e = 10™* and 1073 were statisti-
cally indistinguishable. The largest frozen-N system con-
sidered herein has N = 10°, so we chose ¢ = 107 for all
of our experiments.

Choosing Q = 0 leads to what we shall call model 1,
an exact Vlasov-Poisson equilibrium [21]. Here, the net
force inside the bunch is linear in the coordinates and the
potential is manifestly integrable: all orbits are regular;
all charges orbit with the same frequencies. Consider the
evolution of an initially localized clump of test charges.
In the absence of discreteness effects, the clump will
experience no systematic phase mixing and no emittance
growth. Hence, all emittance growth associated with a
frozen-N representation of this potential must be attrib-
uted to discreteness effects. By contrast, suppose Q =
10790 = 0.03162 and € = 1073, leading to what we
shall call model 2. Then, for test particles that are re-
stricted energetically to lie inside the ellipsoidal bound-
ary, the phase space is almost completely chaotic, and
almost all test-particle orbits are globally chaotic.

The potential of Eq. (3) is analogous to a gravitational
potential constituting a simple model of an elliptical
galaxy with a supermassive black hole at its centroid. In
that context the potential and its frozen-N representation
have been analyzed previously [8,22]. Herein we augment
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the earlier results for a more complete visualization of the
approach to the continuum limit as N is increased.

B. Phase mixing and the continuum limit

To explore the influence of discreteness effects on phase
mixing, we generated clumps of 1600 localized initial
conditions sampling a phase-space region of size |Ar| ~
|Av| ~ 1073 and monitored their evolution in both the
smooth potential and the corresponding frozen-N poten-
tial. A convenient diagnostic for visualizing and quanti-
fying the impact of discreteness effects is the clump
emittance, which we define as

€ = (e.€,€)/3, ©6)

with

& =) — v i=xy2. (D

Clumps evolved in the smooth, integrable potential of
model 1 exhibit no systematic tendency to disperse.
Because each orbit is harmonic, the charges remain close
together, returning to their original xq, yq, zo after peri-
ods 7,, Ty Tz respectively. Granularity in the frozen-N
potential breaks this periodicity and triggers a systematic
spread. The situation is very different for model 2 where,
even in the continuum limit, the phase space is almost
completely chaotic. The clumps phase mix exponentially
fast in the smooth potential; incorporating granularity
only accelerates the process. Even for the smooth poten-
tial, a time ¢ ~ 10¢p is sufficient for particles to sample
most of their energetically accessible phase space.

Plots of clump emittance in Figs. 1 and 2 enable one to
contrast regular phase mixing in model 1 with chaotic
phase mixing in model 2. In model 1 it is unclear for
sufficiently small N [cf. Fig. 1(a)] whether €(z) grows
exponentially or as a power law. However, for N =
10%3, the growth is distinctly slower than exponential.
Indeed, the data for N = 103 are well fit by a power law
€ « (t/N)'/2. By extrapolating to the continuum limit,
one uncovers the expected result that there is no system-
atic emittance growth in the smooth potential.

By contrast, in the smooth albeit chaotic potential
of model 2 [cf. Fig. 2(i)], the emittance should grow
exponentially as initially nearby orbits diverge. Indeed,
during the interval 10 < r < 100, €() exhibits a roughly
exponential growth at a rate comparable to the value
of a typical Lyapunov exponent yg for the orbits.
Discreteness effects clearly accelerate chaotic mixing.
For smaller particle number, N = 10>° and 1033, the
clump grows exponentially at a rate > yg, but for N =
10*3 and 10> the evolution is more complicated. For
these two cases the evolution decomposes into two largely
distinct exponential phases, the former with growth rate
>> yg acting over short length scales, and the latter with
growth rate ~ yg acting globally. For sufficiently small N,
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FIG. 1. Emittance € = (e,€,€.)'/> vs time ¢ of a clump in
model 1 wherein the total enérgy of each particle is £ = 1.0.
The left and right columns correspond to the frozen-N poten-
tial and energy-conserving white noise, respectively.
(@) N =10%% (b) n = 10725, (c) N = 10%>. (d) n = 10739,
() N=10*0. (f) n = 10733, (g N = 10*3. (h) n = 10749,
i) N =10°0. (j) n = 107%,

discreteness effects dominate the dynamics, and in
Figs. 2(a) and 2(c) the second exponential phase is nearly
absent. For larger N, as in Figs. 2(e) and 2(g), the second
exponential phase becomes more apparent.

The data of Figs. 1 and 2 also show that there are
differences between the clump emittances in the
frozen-N and Langevin representations when N is small,
but that as N increases, the clump emittances become
increasingly comparable. Indeed, the data reflect the scal-
ing relation Iny = p — InN with p = 0.5 £ 0.1. Several
implications of crucial importance immediately arise
such as the following:

(1) For sufficiently large N the Langevin representation
provides a good model of the orbital dynamics in the
frozen-N system. Thus the Langevin formalism seems
useful for experiments with much larger values of N.
By comparing Langevin results to those of the smooth
potential, one can then identify, e.g., whether the contin-
uum limit is justified for a real system with N = N
particles.
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FIG. 2. Same as Fig. 1, but for model 2. Note the logarithmic
scale. (@) N =10%. (b) n =10720. (c) N =10°. (d) n =
10739, (e) N = 10%5. (f) 5 = 1070, (g) N = 1055, (h) =
10739, (i) The smooth potential. The dashed line has slope
equal to the mean Lyapunov exponent (yg) for the orbits.
(j) m = 10773, the largest noise amplitude that does not ap-
preciably alter the results generated in the smooth potential.

(2) The Langevin results in Fig. 2(j), for which n =
10773, correspond to the largest noise amplitude that does
not appreciably alter the results generated in the smooth
potential. Thus, presuming the scaling of n with N re-
mains unchanged for very large N; for model 2 one
requires N = 107 to suppress discreteness effects. In the
context of macroparticle simulations, this is a large num-
ber indeed. In turn, were the corresponding physical
system to have N' = 107, one could hope the Vlasov-
Poisson prescription would likewise strictly apply. How-
ever, some uncertainty must remain because frozen-N
models cannot include effects of multiparticle correla-
tions such as particle-wave and wave-wave interactions
that accompany charge redistribution [23].

(3) The collisional relaxation time t, ~ 0.1(N/ InN)zp,
yet discreteness effects can be important in a system with
N ~ 1053, even over times as short as ~10¢,.

(4) Contrary to conventional wisdom, the N-body
Lyapunov exponent ), does not provide a useful measure
of chaos, at least when chaos is viewed macroscopically.
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Instead, in the chaotic potential of model 2, the clump
emittance scales as

e(t) = (t/N)/2 exp(xst). 8)

Granted that Gaussian white noise can mimic discrete-
ness effects, the scaling of clump emittance with N and ¢
is easily understood. At least for a harmonic potential, it
is straightforward to derive analytic solutions to the
Langevin equation for moments like (x?) or (xv,).
Then, if the Langevin forces are small compared to all
other forces relevant to the dynamics of the system, the
Fokker-Planck equation for the clump emittance is [24]

de; _ 2 2V(4,2 2

i 2D(x?) = 2n((x?)(w?) — (xwv)?), ©)
in which the diffusion coefficient D = @7, with O de-
noting the temperature per unit mass. If the initial emit-
tance of the clump is extremely small, at early times
(x?Xv?) = (xv)?. Averaging over oscillations gives (x?) =
E/w?, with E the initial energy. Accordingly, for early
times, €, ~ (2DEt/»?)"/?. Combining this result and the
analogous formulas for €, and €, with the scaling relation
D < 5 « 1/N leads immediately to e o« (1/N)"/2. After
discreteness effects “kick” two nearly coincident orbits
apart, they tend to diverge at a rate set by the Lyapunov
exponent s associated with the bulk potential
Equation (8) thus makes sense.

To reiterate, the results derived here for model 2 are
likely generic for bulk density distributions correspond-
ing to chaotic potentials. However, the results for model 1
are special in that there is zero systematic emittance
growth in the continuum limit. If, as would be expected
in real beams, the bulk potential exhibits at least some
anharmonicities, regular phase mixing will cause clump
emittances to grow linearly even in the continuum limit.
Allowing for discreteness effects will again accelerate
emittance growth; the exact form of this growth can be
complicated, but will remain weaker than exponential.

C. Individual orbits and the continuum limit

The preceding results do not necessarily imply that
individual orbits also converge toward characteristics in
the smooth potential. To what extent, then, is it true that,
as N increases, individual trajectories converge towards
their smooth-potential counterparts? The most compel-
ling check is visual. As a simple, and extreme, example,
set in Eq. (3) a = b = ¢ =1, corresponding to w, =
w, = w, =1, and @ =0 to obtain a uniform-density
spherical system. Select an initial condition that corre-
sponds to a circular orbit and integrate it in a frozen-N
representation of the potential. Results appear in Fig. 3 for
10> = N = 10°3, with the smooth-potential (strictly
circular) orbit plotted for comparison. For the smallest
values of N the orbit is nowhere near circular, nor is
there even a sense of net circulation. As N is increased,
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FIG. 3. The (x,y) projection of a frozen-N orbit generated
from an initial condition (x = 0.6,y =z =0, v, = 0.6, v, =
v, = 0) corresponding in the smooth spherical potential to
a circular orbit. (a) N = 10%3. (b) N = 10>, (¢c) N = 1033,
(d) N=10*0 () N=10*. (f) N =10 (g) N = 10°3.
(h) The smooth-potential orbit.

however, the orbit becomes ““less tangled.” For N = 10*3
a clear sense of net circulation arises; for N = 10>° the
orbit is clearly “centrophobic” (thus suggesting that an-
gular momentum is at least approximately conserved);
and for N = 10> the orbit arguably resembles a ““dis-
torted” or precessing circular orbit.

Fourier spectra of the orbital data, examples of which
appear in Fig. 4, corroborate the visual impression. For
the three smallest values of N, |x(w)| is obviously broad-
band, although there is a peak at or near the circular
frequency (w = 1) associated with the smooth-potential
orbit. For N = 10*? and 10*3 the peak becomes appreci-
ably sharper, and for N = 10°° and 10> one sees only
slight irregularities in the spectra which translate into the
visual appearance of precession. The conclusion is ob-
vious: as N increases, frozen-N orbits come to more
closely approximate the smooth orbit, both visually and
in terms of their power spectra. Analogous results obtain
for more generic initial conditions evolved in this and
other integrable potentials, such as the ellipsoidal poten-
tial of model 1 [8].
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Convergence of Fourier spectra is of general impor-
tance for certain applications of nonlinear dynamics to
many-body systems interacting via long-range forces.
Many physical phenomena, including accelerator modes
[25], modulational diffusion [26], and resonant relaxation
[27], are attributed to resonant couplings between, e.g.,
natural frequencies of individual regular orbits and fre-
quencies associated with time-dependent perturbations.
However, such attributions can only be justified if the real
N -body orbits have frequency distributions that ade-
quately approximate the frequencies associated with or-
bits in the smooth potential.

IV. N-BODY ORBITS AND FLOWS IN A
THERMAL-EQUILIBRIUM CONFIGURATION

A. The model

We now consider a more realistic density-potential pair,
that of a system of charges in thermal equilibrium. This
system is of practical interest both for beam physics
[2,28,29] and nonneutral-plasma physics [1]. It consists
of JN identical charged particles, interacting electrostati-
cally, that are constrained by linear restoring forces to
manifest triaxial symmetry, the focusing forces in differ-
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ent orthogonal directions being characterized by unequal
frequencies. The specific model we consider is one that, in
the continuum limit, admits large measures of both regu-
lar and chaotic orbits, the latter reaching into the Debye
tail where the net force is nonlinear. The model is con-
structed and its orbits are categorized elsewhere [10].
Upon defining a Debye length and plasma frequency in
terms of the centroid number density n(0), and then
expressing length and frequency in units of these quanti-
ties, respectively, we express the corresponding number
density normalized to n(0) as

n(r) = exp[ —102R* — O(r)] (10)

where ®(r) is the space-charge potential that follows self-
consistently from Poisson’s equation:

V2®(r) = —n(r), ®(0) = VO(0) = 0. (11)

Here R? = (x/a)?> + y* + (z/c)?, with a and ¢ being scale
lengths, and € is a focusing strength. In general one
cannot solve Egs. (10) and (11) analytically. This makes
the computation of orbits in the smooth potential much
more difficult; however, these difficulties were overcome
using numerical techniques described in [10].

Frozen-N representations of the form

N
ny(r) = 8(r—r) (12)
i=1

were generated by randomly sampling the smooth density
n(r). The frozen-N space-charge potential is given by

Dy(r) = (13)

1 Ni 1
47Tyi=1\/|1'— r;|> + &2

with N denoting the number of frozen particles, and
1
V= f drexp[—502R2 — CD(r)}, (14)
v

where the volume V spans all of space. In practice one
cannot precisely evaluate V, even numerically, since
®(r) can only be determined over a finite-size grid. We
found "V by using integration limits coinciding with the
grid boundaries, and then renormalized by a small con-
stant that made the plots of potential and density in the
smooth versus frozen-N configurations overlap perfectly.

The system considered here has parameters a’> = 0.5,
¢2=15,and Q = 1.0001/\/—3_; we shall call this model 3.
They yield a dynamical time ¢, ~ 20, which corresponds
to the space-charge-depressed period, and define a beam
carrying moderate space charge. Consider, for example, a
proton bunch with temperature kz7T = 5 eV spanning
3 cm full “radius” (rms beam size § ~ 1.3 cm). The
rms normalized emittance is y[kzT/(mc?)]"/2 =1 pum,
the Debye length is Ap ~ 2 mm, the central density (in
SI units) is n(0) = gokpT/(eAp)? =7 X 101> m™3, and
the bunch charge is Q = en(0)A},V =~ 0.5nC, i.e., N =
3 X 10° protons. The tune depression is roughly 0.35 [28].
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B. Phase mixing of regular orbits

We first discuss an initially localized clump of 1600
test charges evolved in frozen-N representations of
model 3, with total energy sufficiently small that the
constant-energy hypersurface in the smooth potential is
completely regular. Given how model 3 was made dimen-
sionless, the size of the beam is ~10 units as opposed to
~1 unit in the case of models 1 and 2, so the initial
conditions of particles in the clump sampled a region
10 times larger: |Ar| ~ |Av| ~ 1072, The emittance &(z)
for various choices of N appears in the left-hand panels of
Fig. 5. As for model 1 in Sec. III, the emittance scales as a
power law rather than exponentially, and at least for N =
1055 and N = 10°9, it is well fit by € o ¢'/2. The emit-
tance €(f) in the smooth potential is shown in Fig. 5(i).
Here the evolution is clearly linear, not square root, which
is the expected behavior for phase mixing in generic
integrable potentials where nearby initial conditions cor-
respond to slightly different orbital frequencies. We did
not see this in the smooth potential of model 1 because
there was no frequency spread. That the clump emittance
grows much faster with N = 10%° than in the smooth
potential shows clearly 10° particles are insufficient to
represent the smooth potential of model 3, even over an
interval as short as t = 25t (for comparison, a 1 GeV
proton linac would span roughly 40zp).

The right-hand panels of Fig. 5 demonstrate that dis-
creteness effects can again be well mimicked by energy-
conserving Gaussian white noise with Inn = p — InN.
For model 3, however, p = 1.5 = 0.2, which differs
from models 1 and 2 for which p = 0.5 £ 0.1. The emit-
tance evolved with » = 10793, the largest noise that does
not significantly alter emittance growth in the smooth
potential, is shown in Fig. 5(j). Presuming the scaling
extends to larger N and smaller 7, the smallest number of
macroparticles needed to replicate the behavior of regular
orbits in the continuum limit of model 3 is N ~ 108,

C. Phase mixing of chaotic orbits

Next we discuss an initially localized clump of 1600
particles with total energy high enough to reach the
Debye tail and make them globally chaotic in the smooth
potential. The results appear in Fig. 6. As for model 2 in
Sec. III, the evolution is exponential rather than power
law, and granularity again has an important effect.
Discreteness effects can still be well mimicked by noise
with Iny = p — InN and p = 1.5. Most striking, how-
ever, 1s the fact that even much weaker noise can now
accelerate emittance growth appreciably. For these cha-
otic orbits, discreteness effects must correspond to a noise
amplitude satisfying 7 < 10730 before a continuum limit
can be justified. Chaotic orbits are far more susceptible to
low-amplitude noise than are regular orbits. Presuming
again that the scaling holds, it follows that, for the case of
chaotic orbits, the continuum limit cannot be justified for
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FIG. 5. Emittance € = (€,€,€.)"/? vs time ¢ computed for a

clump of regular orbits in model 3, allowing for both frozen-N
backgrounds and energy-conserving white noise. (a) N = 103,
(b) 7 =10730 (c) N =10%0. (d) n = 1073>. (e) N = 10>,
(f) . =107*%, (g) N = 1059, (h) » = 10~*>. (i) Unperturbed
motion in the smooth potential. (j) n = 107%3, the largest
value of 7 that does not significantly impact emittance growth.

N = 10%3 over time scales t = 25t,. This means the
Vlasov-Poisson equations are at best only marginally
applicable to the real beam for which N =N =
3 X 10°. Accordingly, in studying the dynamics of beams
with moderate space charge, one may not be able to
assume with complete confidence that the continuum
limit, and hence the Vlasov-Poisson prescription, is jus-
tified physically, even if the system is in a state of static
equilibrium.

D. Transitions between regular and chaotic behavior

Model 3 differs from models 1 and 2 in that the smooth
potential supports both regular and chaotic orbits. At low
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FIG. 6. Same as Fig. 5 but for a clump of chaotic orbits.
(@) N =10*3. (b) n = 10730, (c) N = 10°%. (d) n = 10737,
(e) N =10%%. (f) p = 10749 (g) N =10%0. (h) 5 = 107%>.
(i) Unperturbed motion in the smooth potential. (j) = 10789,
the largest noise amplitude that does not appreciably alter the
results generated in the smooth potential.

energies, where the total potential is nearly harmonic, all
orbits are regular, and discreteness effects can deflect
only frozen-N orbits from one regular trajectory to an-
other. At higher energies, however, there is a complex
coexistence of regular and chaotic orbits. Discreteness
effects can now deflect orbits from regular to chaotic
trajectories and vice versa [30]. Of obvious interest then
is how fast such transitions occur. For example, an accel-
erator designer relying on the Vlasov-Poisson prescription
and its inherent smooth potential would neglect these
microscopic transitions. Thus their influence on phase
mixing and its attendant emittance growth would be
improperly modeled, and the computed results, e.g., evo-
lutionary time scales and length scales, would be suspect.
The consequences of such an omission depend on the
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problem at hand, but one might expect them to be most
pronounced for nonequilibrium beams wherein chaotic
dynamics is likely to be more prevalent [31].

Suppose we select an initially localized clump of par-
ticles all of which follow regular orbits in the smooth
potential. Suppose further that all of these particles have
energy sufficiently high that many other orbits with the
same energy are chaotic. We now place this clump in a
frozen-N representation and integrate the orbits. The
transition of an orbit from regular to chaotic (or, more
precisely, from locally chaotic to globally chaotic) can be
easily detected because the orbit suddenly becomes more
“irregular” in appearance. If, moreover, large numbers of
such transitions occur over very short times, they will
make the clump emittance transition from power-law
growth to roughly exponential growth.

To determine the relative fraction of the orbits that
remain regular after some time #, we first recorded the
phase-space coordinates of individual frozen-N orbits at
various times ¢ > 0. Then, using these coordinates as
initial conditions, we evolved these orbits in the smooth
potential to determine whether the resulting trajectories
were still regular [complexity n(0.9) = 20] or whether
instead they had become chaotic [r(0.9) > 20]. Pre-
suming the system is ergodic and discreteness effects
are strong enough to convert any orbit from regular to
chaotic (and vice versa), it would seem clear what the
analysis ought to reveal. (1) At sufficiently long times,
independent of N, the relative measure of chaotic orbits
generated from any clump should (to within statistical
uncertainties) coincide with the relative measure of cha-
otic orbits on the constant-energy hypersurface. (2)
Assuming, however, that discreteness effects are more
important for smaller N, the time required to converge
asymptotically toward this value should be an increasing
function of N, ie., as N increases, transitions should
become more rare. As Fig. 7 shows, these expectations
were in fact confirmed. For N as small as 10*°, about 35%
of the orbits in a clump of initially regular orbits had
become chaotic within a time ¢t = 64, only ~3¢j, and the
relative measure f of chaotic orbits appears to have con-
verged asymptotically toward a time-independent value
f =40% by t = 128. For computations with N = 1030, f
grew more slowly in time, but by + = 512 it had again
approached a value f = 40%. For larger values of N, f
remained a monotonically increasing function of time,
but transitions were sufficiently rare that it did not reach a
static value prior to t = 512 =~ 251,.

V. DISCUSSION AND CONCLUSIONS

Viewed macroscopically, there is a precise sense in
which, as the number of macroparticles N increases,
trajectories in frozen-N systems converge toward their
counterparts in the corresponding smooth potential. For
very small N, <10* or so, the notion of an average bulk
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FIG. 7. The net percentage f of orbits generated from a clump
of regular initial conditions in a frozen-N representation of
model 3 that, as of time #, have been converted to chaotic
orbits. From top to bottom: N = 10*>, N = 10>9, N = 10°7,
and N = 1000,

potential fails and orbits in frozen-N systems are very
different from smooth-potential characteristics. In par-
ticular, the usual distinctions between regularity and
chaos that exist in a smooth potential seem completely
lost. However, for larger N the distinctions become
clearer, and they are manifest in the evolution of ‘“‘regu-
lar” versus ‘“‘chaotic” clumps of initially localized par-
ticles. Just as for clumps evolved in a smooth potential,
the emittance of a regular clump evolved in a frozen-N
potential grows as a power law in time, whereas for a
chaotic clump it grows roughly exponentially. However,
in both cases the growth is more rapid than in the smooth
potential. Discreteness effects accelerate emittance
growth for both regular and chaotic clumps. In terms of
both the statistics of collections of orbits and the com-
plexities of individual orbits, discreteness effects can be
well mimicked by Gaussian white noise in the context of
a Fokker-Planck/Langevin description. This appears
true even when considering the short-time behavior of
individual orbits. These findings suggest strongly that
Langevin simulations are useful for assessing the impor-
tance of discreteness effects in real beams for which the
constituent number of particles N — N is too large to
allow honest direct-summation integrations. Moreover,
discreteness effects can remain important even if N is
very large, e.g., in high-brightness beams, especially
when chaotic orbits are present.

Discreteness effects are also important because they
can trigger transitions between regular and chaotic be-
havior. The larger the value of N, the longer it takes for
these transitions to become important, and they become
impossible in the continuum limit. However, for any finite
N there appears to be a finite time beyond which it is
unsafe to ignore these discreteness-induced transitions.
Even if discreteness effects were too weak to facilitate
frequent transitions between regularity and chaos, they
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may nonetheless play an important role in accelerating
diffusion through a complex chaotic phase space. Generic
smooth potentials admitting both regular and chaotic
orbits have phase spaces in which chaotic regions are
partitioned by complex structures associated with cantori
in two dimensions and the Arnold web in three dimen-
sions. Although they are not absolute obstructions,
they serve as ‘“‘entropy barriers” that impede phase-
space transport [32]. However, even very-low-amplitude
Gaussian white noise has been shown dramatically to
accelerate diffusion through such barriers [33]. Since
we have shown herein that discreteness effects can be
modeled as Gaussian white noise, they should act as a
significant source of accelerated phase-space transport.
The meaning of “chaos” in connection with beams is
somewhat subtle. We have seen that two distinct sources of
chaos can exist, associated with physics on different
scales. Chaos associated with close encounters between
individual charges will always be present. They cause
nearby orbits to diverge exponentially until a distance
comparable to the interparticle spacing separates them. In
that context beams are always ‘“locally chaotic.”
However, if in the continuum limit the bulk potential
admits global stochasticity, then the orbits will continue
to separate and exponentially fill global regions of phase
space. These two distinct phases are characterized sepa-
rately by different sets of Lyapunov exponents. Close
encounters trigger an exponential separation of nearby
trajectories at a rate Yy, but the separation saturates at
only microscopic scales. The bulk potential triggers an
exponential separation at a rate yg typically much
smaller than yy, but it saturates on macroscopic scales.
Hence, when global stochasticity is present in beams, it
leads to macroscopic, operationally irreversible evolution.
All of these considerations have practical implications
for beams. In particular, discreteness effects can be im-
portant in real beams and over real acceleration time
scales, thereby vitiating the Vlasov-Poisson methodology.
In turn, simulations that correctly account for the full
scale of evolutionary mechanisms may require a huge
number of macroparticles, possibly comparable to the
number of particles in the real beam bunch itself.
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