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Coupling impedance values of accelerator components can be obtained from standard bench
measurements based on the coaxial wire method. Longitudinal impedance is obtained with one wire
and the transverse impedance with a twin wire inserted into the ‘‘device under test.’’ The coupling
impedance follows from the interpretation of the scattering coefficients from a network analyzer. In this
paper, models and formulas applicable to the interpretation of the data are collected and reviewed. The
paper is focused on lumped and distributed kicker magnets, for which a simulated measurement is
numerically analyzed with the results graphically presented. This study suggests that the application of
the standard lumped formula or the simple log formula for distributed impedances is appropriate.
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separate analysis [7] and is beyond the scope of this paper,
although certain results of the field analysis [8] are used

via a model to the Z . In the longitudinal measurement
with a single wire, this represents already the coupling
I. INTRODUCTION

The driving terms of instabilities in accelerators/
storage rings always depend on the beam surroundings
which are conveniently described by impedances [1,2].
Establishing and maintaining a coupling impedance
budget becomes an important part of designing a high
current accelerator. Theoretical estimates for typical ac-
celerator components have been developed and are avail-
able in the standard literature [3–5]. For critical devices,
the estimates need to be confirmed by impedance bench
measurements [6]. The basic concept of bench measure-
ments relies on simulating the beam by a wire for
longitudinal or a twin wire Lecher line for transverse
measurements. The measurements typically involve a
measurement of the device under test (DUT) and of a
reference structure with the difference or ratio of the data
used to interpret the coupling impedance.

Coupling impedance bench measurements discussed
here are performed with a network analyzer which pro-
vides the scattering coefficients, S21 and S11, of the DUT
and the reference. The standard formulas used to interpret
the measured data were all derived in the framework of
transmission line theory. The field configuration on an
ideal transmission line is a TEM wave with purely trans-
verse components. The finite wall conductivity or a geo-
metrical wall disturbance change the field into a mode
with a local axial component of the electric field respon-
sible for the interaction with the beam. The assumption in
the transmission line theory is, however, that the analysis
can be performed with ideal walls and the real situation is
handled by appropriately modifying the characteristic
impedance and propagation constant. At a sufficient dis-
tance away from the device, the pure TEM mode is
reestablished but with modified amplitude and phase of
the scattering coefficients.

The question of to what degree the bench impedance is
a valid representation of the beam impedance requires a
1098-4402=04=7(1)=012001(9)$20.00 
here for error estimates. Theoretical and experimental [9]
work suggest that agreement between actual and mea-
sured impedance can be achieved which is sufficient for
the design requirements of accelerator/storage rings if
several caveats are respected.

Wire measurements represent an ultrarelativistic beam,
and the results need correction for lower energies [10].
Measurements of single lumped elements and even more
so of distributed impedances are intrinsically perturba-
tive and thus require the highest characteristic impedance
of the reference tube and the smallest wire size, only
limited by the signal-to-noise ratio. For the purpose of
coupling impedance measurements, it is necessary to
employ devices with beam tubes attached as part of the
unit. End effects, i.e., the local appearance of evanescent
modes, at the junction of the device and the transmission
line is part of the impedance, thus extraneous steps in the
transmission line must be avoided. End effects can to
some degree be represented by added capacitive elements
[11]. It is also plausible that the relative contribution of
end effects is smaller for long distributed impedances
than for lumped impedances. Obviously, the bench mea-
surements are limited to the low frequency range where
higher order modes do not propagate. Notwithstanding its
limitations, transmission line analysis represents the
proper framework for the interpretation of coupling im-
pedance bench measurements. The general aspects of
impedance bench measurements are discussed in [12]
and need not be repeated here.

The R&D and design work for the construction of the
Spallation Neutron Source (SNS) required detailed im-
pedance studies of various components [13,14]. The
transverse impedance of the extraction kickers was
judged to be critical to the performance of the accumu-
lator ring and received special attention [15]. The mea-
sured data is obtained from the network analyzer as a
normalized ratio SDUT21 =SREF21 � S21Nwhich is translated
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FIG. 1. Circuit model for wire impedance measurements.
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impedance. In the measurement with twin wires, spaced
apart by 	, the transverse coupling impedance follows
from

Z? �
c

!	2
ZDUT: (1)

The interpretation of the measurements was compli-
cated by some inconsistencies of the available publica-
tions and pointed to the need for a uniform treatment. In
this paper, the relevant models and the applicable inter-
pretation are presented in general terms. The discussion
starts with the lumped model for a longitudinal imped-
ance and is extended to the transverse impedance model
of a lumped kicker magnet. Then the model of a trans-
mission line kicker magnet is developed and several for-
mulas intended for a distributed wall impedance are
collected and discussed. Finally, the theoretical forward
scattering coefficients of prototypical models of a lumped
kicker and of a transmission line kicker magnet are in a
simulated wire measurement numerically interpreted via
the various formulas. The simulated impedances are
graphically represented and the appropriate formula
choice is discussed. The results point to the standard
Hahn and Pedersen (HP) formula [16] for lumped and
to the simpleWalling et al. [17] log formula as appropriate
for the interpretation of the wire measurements.

II. LUMPED IMPEDANCE

The scattering coefficients due to a single, lumped wall
impedance, ZW , are well known in the transmission line
framework and are repeated here for convenience:

S11 �
ZW

2RC � ZW
and S21 �

2RC;
2RC � ZW

; (2)

with RC the characteristic impedance of the reference.
Although in principle either coefficient gives correct re-
sults, the forward scattering coefficient is applicable to
more general configurations and is generally preferred.
The effect of the attached beam tubes is eliminated by
normalizing the data with impedance, SDUT21 , to that of a
reference tube of equal length, SREF21 . The wall impedance
is given by the standard HP formula [16]

ZW � 2RC

 
SREF21

SDUT21

� 1

!
: (3)

In the literature [18], an alternate expression, the Palumbo
and Vaccaro (PV) formula [19] (also known as Sands and
Rees) is found:

ZW � 2RC

 
1�

SDUT21

SREF21

!
: (4)

A derivation of both ‘‘lumped’’ formulas, based on the
field equivalent principle and the reciprocity theorem,
was published by Argan et al. [20] without arriving at a
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preference for either of them. Being of some academic
interest, an estimate of their error is obtained by applying
the formulas to the theoretical forward scattering coef-
ficient from the wire measurement of a lumped imped-
ance with the value ZW . The integral field analysis yields
in the ‘‘low frequency, small wire’’ limit the approxima-
tion for the normalized forward scattering coefficient [8]

SDUT21

SREF21

� 1�
ZW
2RC

�
5

4

�
ZW
2RC

�
2
: (5)

The interpretation via Eq. (3) yields ZHP � ZW�1�
ZW=8RC� and via Eq. (4) ZPV � ZW�1� 5ZW=8RC�, in-
dicating a smaller error for the HP formula. Note also that
the network analyzer uses this interpretation for the
through impedance.

A. Resistive matching

In the application of the above formulas it is assumed
that the characteristic impedance RC of the reference
wire/beam tube is fully matched to the network analyzer
impedance R0. Matching can be achieved by an ideal
transformer or, with some loss in signal strength, by
resistive matching. Resistive matching is achieved on
the input side with a parallel resistor RP plus a series
resistor Rin with

RP � R0
������������������������������
RC=�RC � R0�

p
;

Rin � RC � R0RP=�R0 � RP�
(6)

and a series resistor on the output side, Rout � RC � R0.

B. Effect of mismatch

Matching is typically imperfect and the finite length of
the beam tubes leads to errors at higher frequencies.
Formal expressions for the forward scattering coefficient
associated with a series impedance Z between unmatched
coaxial beam tubes are derived here from elementary
circuit theory without the explicit use of hybrid matrices.
The notation used is shown in Fig. 1.

The forward scattering coefficient is defined as

S21 � 2v3=u (7)

and is obtained by sequential elimination of the currents
and voltages as follows [21]:
012001-2



FIG. 2. Lumped kicker magnet circuit model.
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S21��
ZZ1

�Z�Z2��R0�Z1�
�

Z1�Z�Z2�
�Z�Z2��R0�Z1�

cos2k‘

�j
ZC�Z�2Z2�

�Z�Z2��R0�Z1�
sin2k‘; (8)

with

Z1 �
Z� Z2 � jRC tank‘

1� �Z� Z2�R�1
C tank‘

;

Z2 �
R0 � jRC tank‘

1� R0R
�1
C tank‘

: (9)

The complete expression for the scattering coefficient is
obtained via the MAXIMA program but it is too large for
presentation here. The Taylor expansion for low frequen-
cies, k � !=c, follows as

S21 �
2R0

2R0 � Z
� j4k‘

R0�R
2
0 � R2C � R0Z�

RC�2R0 � Z�2
: (10)

The coefficient ratio for the interpretation of the mea-
surements yields the formula

SDUT21

SREF21

�
2R0

2R0 � Z
� j2k‘

Z
RC

R2C � R20
�2R0 � Z�2

; (11)

which can be used to interpret the measurements. In
practice, it gives only an estimate of the error due to a
mismatch. Here R0 represents the nominal instrument
impedance (after matching) and RC the actual line im-
pedance. Note that toward zero frequency the error van-
ishes and consequently the nominal R0, rather than the
actual RC which is less accurate, should be used in the HP
formula.

III. LUMPED KICKER MAGNET

A. Nassibian and Sacherer (NS) model

The interpretation of wire measurements on a kicker
magnet differs if the unit is designed as transmission or
lumped magnet. The lumped magnet is at low frequencies
characterized by a position-independent bus-bar current.
In spite of its finite length, the lumped magnet can thus be
analyzed with the help of a transformer model as devel-
oped in the seminal paper by Nassibian and Sacherer
(NS) [22]. The illustrative example assumes a perfect
magnet with ‘; h; w, representing length, height, and
width, respectively. The kicker has an inductance LK �
�0h‘=w and is terminated with the power supply imped-
ance Zg. The expression for the coupling impedance seen
by the beam is

ZNS? �
c

h2
!L2K

j!LK � Zg

�
c

h2

�
!L2KReZg

ReZ2g � �!LK � ImZg�
2

� j
!L2K�!LK � ImZg�

ReZ2g � �!LK � ImZg�
2

�
; (12)
012001-3
with h the aperture in kick direction. In addition to the
impedance coupled to the kicker termination, the beam
sees an uncoupled impedance from image currents on the
bus bar and the ferrite core. The uncoupled impedance is
essentially inductive and the resistive part can often be
neglected. An estimate for the uncoupled inductance LI is
obtained from the simple model of a dipole current be-
tween metal plates spaced apart by the width w corre-
sponding to [15]

Z? �
j�‘

6w2
Z0: (13)

B. Lumped kicker bench measurement

The transverse coupling impedance is obtained from a
twin wire bench measurement in which the magnet is
coupled to the twin wire transmission line by the mutual
inductance M. The line has a nominal wire spacing 	, a
characteristic impedance of RC, and is assumed fully
matched to the network analyzer impedance. The line in
the reference tube has the inductance LC � RC‘=c and a
negligible resistance at the low frequencies of interest
here. The wire measurements are interpreted with regard
to a model represented by the equivalent circuit in Fig. 2.
This model incorporates the impedance contributions
from the uncoupled and coupled impedances, as well as
that attributed to the leakage flux, �1� �2�LK. The cou-
pling coefficient � and transformer ratio n are given by

� �

�������������
M2

LKLC

s
and n �

M
LK

�
	

h
: (14)

From the standard electrical engineering description of a
transformer follows the forward scattering coefficient
directly as

SDUT21 � 2RC

�
2RC � n2

j!LKZg
j!LK � Zg

� j�1� �2�!LC

� j!LI

�
�1

� 2RC

�
2RC �

!2M2

j!LK � Zg
� j!LC � j!LI

�
�1
:

(15)
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The scattering coefficient of the reference line in the
beam tube is in the low frequency approximation

SREF � 2RC�2RC � j!LC�
�1: (16)

The interpretation of the wire measurement via the
lumped HP or PV formula yields, in an approximation
to first order in RC,

ZDUT � n2
!2L2K

j!LK � Zg
� j!LI; (17)

and the transverse coupling impedance (in kick direc-
tion) becomes

Z? �
c
!
ZDUT

	2
�

c

h2
!L2K

j!LK � Zg
� j

c

	2
LI: (18)

As expected, the wire measurement yields the theoretical
Nassibian and Sacherer impedance estimate plus the un-
coupled image impedance.

C. Davino and Hahn (DH) model

The measurement accuracy is increased by reducing
the wire thickness which leads to an increase of the line
inductance LC. At constant wire spacing the transformer
ratio n remains unchanged, but the coupling coefficient �
is reduced. In a typical setup, one has �2 � 1, leading to
the expression for the coupled impedance

ZDH? �
c

!h2
j!LKZg

j!LK � Zg

�
c

!h2

�
�!LK�2ReZg

ReZ2g � �!LK � ImZg�
2 � j . . .

�
; (19)

with the instability driving resistive part identical to the
NS value. The Davino and Hahn (DH) model [15] differs
from the NS model only in the reactive component.

Kicker magnets with access to the bus bar offer the
possibility to short it, Zg � 0, and use the shorted magnet
as reference. Using the shorted magnet as reference sim-
plifies and shortens the time between measurements and
effectively eliminates instrument drift.

D. Reference calibration

The above interpretation of the measurements implies
the calibration of the twin line to obtain SREF21 in a beam
tube with a diameter equal to the aperture of the magnet.
The calibration can also be done in free space, which is
simpler in the case of rigid lines, although it may be
difficult to find a true free space. However, the line
inductance (and correspondingly the characteristic im-
pedance) from free-space tube beam tube with radiusw is
reduced by

	L �
2�0‘
�

�
	

w

�
2
: (20)

The results from measurements based on the tube as
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reference will differ from that in air by the reactive
transverse impedance per unit length [23]

Zpc? � �j
2

�w2
Z0; (21)

with Z0 � c�0, as long as radiation from the line in air
and wall losses of the perfect conductive (pc) tube are
negligible. It is to be noted that the instability driving
resistive part does not change with the reference taken as
tube or air.

E. Frequency effect

The current induced voltage in the magnet is uK �
j!MiC if the magnet length is short compared to the
wavelength on the transmission line, but at higher fre-
quencies one finds [22]

uK � j!fMGgiC with G �
sin12 k‘
1
2 k‘

(22)

leading to the measured impedance of the kicker magnet,

ZDUT �
�!MG�2

�Zg � j!LK�
� . . . (23)

and a corresponding correction of the measured trans-
verse impedance.

IV. DISTRIBUTED IMPEDANCE

The transmission line analysis of a distributed imped-
ance of length ‘ can be based on the Faltens et al. [6]
model in which the total impedance of the device Z is
represented by a uniformly distributed wall impedance
Z=‘. The bench wire measurements are interpreted by
comparing the wave propagation through the device with
that in a ‘‘perfect’’ reference tube. In this model, propa-
gation in the device is described by the changed charac-
teristic impedance and propagation constants,

ZW � �ZC � ZC

����������������������
1� j

Z
#ZC

s
and

kW � �k � k

����������������������
1� j

Z
#ZC

s
;

(24)

where# � k‘ � !‘=c and ZC are the electric length and
the characteristic impedance of the reference tube. In this
model, the coupling impedance is fully described by the
changed propagation constant kW or through the single
complex value �. The expression for the coupling imped-
ance can now be formally written as

Z � j#ZC�k2W � k2�=k2 (25)

or alternatively by

Z � j#ZC��� 1���� 1�: (26)

Representing the amplitude of the forward and reflected
012001-4
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wave by A and B, respectively, one can apply field
matching (i.e., voltage and current matching in the trans-
mission line) which leads to the conditions [24], at the
input port of the wall impedance,

Ain � Bin � ADUT � BDUT;

�Ain � Bin� � �AW � BW�=�;
(27)

at the output port (Aout � 0),

AWe�j�# � BWej�# � Bout;

�AWe�j�# � BWej�#�=� � Bout:
(28)

With the scattering coefficients defined as

S21 �
Bout
Ain

and S11 �
Bin
Ain

(29)

one finds after simple manipulations

S21 �
4�e�j�#

��� 1�2 � ��� 1�2e�j2�#

�
2�

2� cos�#� j��2 � 1� sin�#
; (30)

S11 �
��2 � 1��1� e�j2�#�

��� 1�2 � ��� 1�2e�j2�#

�
j��2 � 1� sin�#

2� cos�#� j��2 � 1� sin�#
: (31)

These equations are exact within the limitations of the
model and either of them could be used to extract numeri-
cally the value of � for use in Eq. (26). This task is
simplified by combining the values of forward and re-
flected scattering coefficients to form the relation

� �
1

#
arccos

1� S211 � S221
2S21

: (32)

Together with Eq. (26), this expression provides an exact
value for the impedance but, due to its complexity, is of
limited value for the routine interpretation of measure-
ments. Furthermore, it was noted that insertion of the
scattering coefficients for lumped elements from Eq. (2)
into Eq. (32) leads to an undetermined solution of the
form �! 0=0.

A. Wang and Zhang (WZ) formula

An alternate formula for the interpretation of the wire
measurements was derived by Wang and Zhang (WZ) [25]
who introduced a corrected S21 parameter, SC � e�jkW‘,
obtained from

S2C �
S211 � S221 � 1

S21
SC � 1 � 0: (33)

This solution is confirmed by inserting SC � e�j�# into
Eq. (33), which leads directly to the original Eq. (32). The
propagation constants kW‘ � j logSC and kl � j logSREF21
012001-5
are combined with Eq. (25) to yield the expression

ZWZ � �ZC ln
�
Sc
SREF21

��
1�

lnSc
lnSREF21

�
: (34)

This expression is exact, but due to the mathematics
involved in finding SC also of limited practical use.

B. Walling et al. log formula

Taking the ratio of scattering coefficients provided by
the network analyzer, and treating the wall impedance as
a perturbation of the reference tube, i.e., Z� ZC, leads to

SDUT21

SREF21

�
4�e�j���1�#

��� 1�2 � ��� 1�2e�j2�#

� exp
�j��� 1�#�: (35)

Approximating Eq. (26) by

�� 1 � �j
Z

2#ZC

results in the well-known log formula for distributed
impedances by Walling et al. [17]:

Z � �2ZC ln
SDUT21

SREF21

: (36)

C. Improved log formulas by Vaccaro and Jensen

Under the assumption that the reflection coefficient is
small, S11 � 0, Vaccaro makes the approximation that
SDUT21 � exp��jkW‘�. Using Eq. (25), rather than (26),
an improved expression for the measured impedance
can be obtained [26,27],

Z � �ZC ln

 
SDUT21

SREF21

! 
1�

lnSDUT21

lnSREF21

!
: (37)

An identical equation, although written in a more con-
venient form by means of SREF21 � exp��j#�, was re-
cently presented by Jensen [28],

Z � �2ZC ln

 
SDUT21

SREF21

!(
1�

j
2#
ln

 
SDUT21

SREF21

!)
: (38)

The improved impedance expressions require the knowl-
edge of the electrical length of the device under test and
one would expect that its accuracy decreases for shorter
devices due to the signal noise. In contrast, the simple log
formula is generally applicable including lumped compo-
nents, provided that no strong resonance is present and the
perturbation treatment is justified. The standard lumped
impedance formula is applicable to single resonances and
012001-5
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has the advantage that the scattering coefficient ratio is
directly converted into an impedance by the network
analyzer. A more detailed comparison of the interpreta-
tion formulas is obtained from numerical simulations and
will be presented in the sequel below.

V. TRAVELING WAVE KICKER

One of the more important examples of a distributed
impedance is provided by traveling wave kicker magnets,
and the interpretation of their bench measurements is
typically done with the log formula. The above concept
of treating the lumped kicker magnet as a transformer
can be generalized and applied to traveling wave kickers
[29]. The kicker properties are characterized by its char-
acteristic impedance ZK, propagation constant kK, and
electrical length, #K � kK‘. The kicker and the twin
wire Lecher line are treated as transmission lines,
coupled via the mutual inductanceM for which the differ-
ential equations are well known. The general solution
becomes unwieldy and several simplifications can be
adopted without reducing the value of the results. The
major part of the impedance is due to the coupled flux
between the beam and the external terminations at either
end of the bus bar, so that the contribution of the un-
coupled flux can be neglected. In order to let the twin
wire line represent the ‘‘stiff ’’ ultrarelativistic beam, its
current is considered externally imposed and thus un-
changed by the current in the bus bar. The impedance
seen by the beam is then obtained by the voltage gener-
ated by the bus-bar current via the mutual inductance.
One finds, with the time dependence ej!t suppressed, the
following set of differential equations in the position
dependent variables iK; uK; iB; uB representing the kicker
current and voltage, and the beam current and voltage,
respectively,

@uK
@s

� �jkKZKiK � j
	

h
kKZKiB; (39)

@iK
@s

� �j
kK
ZK

uK; (40)

@uB
@s

� j
	

h
kKZKiK; (41)

where kK � k
����������
L0C0

p
, ZK �

������������
L0=C0

p
, and k � !=c. L0 and

C0 are the kicker inductance and capacity per unit length
and 	=h � M0=L0. Assuming an ultrarelativistic beam
current, iB � Ie�jks, associated with the dipole strength
I	, one finds the impedance measured in the bench
measurement

ZDUT � �
1

I

Z ‘

0

@uB
@s

ejks: (42)

This value yields the transverse coupling impedance
according to
012001-6
Z? �
c

!	2
ZDUT: (43)

The solution of the above differential equations is found
by imposing the boundary conditions established by the
kicker input and output terminations, Ri and Ro,

uK�0� � RiiK�0�; uK�‘� � �RoiK�‘�: (44)

The general expression for the coupling impedance is
somewhat lengthy, but reduces in typical kickers where
k� kK to a manageable size. Furthermore, in the low
frequency range of interest, one can take iB � I. The case
of input and output terminated with the characteristic
impedance follows in this approximation as

Z? �
c

!h2
ZK
�1� cos#K� � j�#K � sin#K��; (45)

which differs from Nassibian’s expression [30]

ZNS? �
c

!w2
ZK
�1� cos#K� � j�#K � sin#K�� (46)

only in its dependence on geometry.

VI. NUMERICAL SIMULATION OF WIRE
MEASUREMENT

As illustration for the interpretation of wire measure-
ments, the various available formulas are applied to the
two prototypical examples of lumped and transmission
line kicker magnets. The lumped example is modeled
after the SNS extraction kicker magnet and the trans-
mission line example after the RHIC injection kicker
magnet. The frequency range covers 30 kHz to
100 MHz, corresponding to the actual measurements.
The simulated measurement is obviously without instru-
ment noise and drift, allowing the identification of small-
est differences in the interpretative formulas used.

In the lumped case, the procedure consists in numeri-
cally ‘‘measuring’’ the forward scattering coefficient,
Eq. (2),

SDUT21 �
2RC

2RC � Z

for a representative impedance, Z, such as the DH kicker
magnet model

Z �
j!LKZg

j!LK � Zg
;

with Zg � �R�1
g � j!CB��1. The reference value is

SREF21 � 1 and the normalized S21N is interpreted via the
various lumped as well transmission line formulas.

The transmission line case proceeds correspondingly,
starting with Eq. (30),

S21 �
2�

2� cos�#� j��2 � 1� sin�#
;

where � � k
�������������������������������
1� j�Z=#RC�

p
and Z � ZK
�1�

cos#K� � j�#K � sin#K��. The reference value is here
012001-6
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SREF21 � e�j# and the normalized S21N is numerically
interpreted via the various formulas.
A. The lumped kicker magnet

The numerical data for the example of a resonant
lumped device are taken from the open SNS extraction
magnet: LK � 1 �H, CB � 32 pF, Rg � 250 *, and
RC � 250 *. The example of a nonresonant element
corresponds to the SNS extraction magnet with the ter-
mination changed to Rg � 25 *. The results for the two
examples are shown in Figs. 3 and 4, respectively.

In Fig. 3, the HP formula renders the original values
and confirms only the absence of numerical errors. The
PV formula departs significantly from the original values
at the resonance frequency where Z=RC � 1. The log
formula, which is not intended for lumped devices, also
exhibits errors but is more accurate than the PV formula.
Clearly, theVaccaro and Jensen (VJ) formula, Eq. (37), is
not suited for lumped impedances with values reaching
Z=RC � 1.

The interpretation in Fig. 4 of an impedance with
values Z=RC � 1, that is the condition assumed in the
perturbation treatment, is correctly done by all with the
exception of the VJ formulas.
FIG. 3. (Color) Open kicker magnet. Interpretation of S21 via
the HP (black), PV (red), log (green), and VJ (blue) formulas.
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B. Transmission line magnet

The numerical data for the distributed impedance
example is taken from the 1 m long RHIC injection
magnet with ZK � 25 * and RC � 250 *. The simulated
data for the transmission line magnet is shown in Fig. 5.
The black curve provided the scattering data and thus
represents the WZ formula, but this was not numerically
verified. Obviously, the HP formula is intended only for
lumped elements and fails, i.e., provides negative results
at higher frequencies. Walling’s simple log formula shows
the smallest errors for the instability driving resistive part
of the impedance, whereas the ‘‘improved’’ VJ formula
shows significant errors in the resistive part and is only
better in the reactive part of the impedance. This result is
contrary to an observation by Caspers [31] who states that
the improved formula gives better results ‘‘at least for the
real part.’’ (In fact, a sign change of the corrective term in
Eq. (38) led to better agreement with the real part at the
expense of a degraded imaginary part, suggesting the use
of the complex conjugate of the corrective term.) Thus,
the properties of the VJ formula deserve a more detailed
study before its routine application.
FIG. 4. (Color) Terminated kicker magnet. Interpretation of
S21 via the HP (black), PV (red), log (yellow), and VJ (blue)
formulas.
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FIG. 5. (Color) Transmission line magnet. The black curve
provides the scattering coefficient and is the reference imped-
ance. The interpretation of S21 is via the log (green), VJ (red),
and HP (blue) formulas.
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VII. CONCLUSION

It is recognized that the three examples are not full
justification for an all encompassing generalization.
However, the examples are sufficiently representative of
actual devices seen in accelerators/storage rings to give
confidence for a conclusion. The numerical results can be
summarized by stating that the use of the standard HP
formula for lumped components and the simple log for-
mula for distributed components provides an appropriate
and, in view of measuring errors, adequate interpretation
of the wire bench measurements.
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