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We study the response of coasting beams in the presence of space charge to linear coupling as well as
gradient errors, based on linearizing the self-consistent Vlasov-Poisson equation. We determine the
coherent shift of the resonance conditions as well as the response on lattice errors in smooth
approximation, but allowing for arbitrary tune and/or emittance ratios. A characteristic feature is
cancellation between the external forces due to the lattice errors and the beam induced space-charge
forces, if the resonance condition is satisfied for the (space-charge shifted) single-particle tunes. For the
linear coupling mode and small tune split we also identify a parameter region, where spontaneous
instability exists in addition to the resonance.
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an ideal lattice to the case of nonideal lattices with errors.
n0;b�x; y� �

n0;b � const; if x
a2 � b2 � 1;
x2 y2 (1)
I. INTRODUCTION

In designing circular accelerators for high-intensity
beams one has to take into account the combined effect
of space charge and lattice imperfections. The issue of
envelope resonances and instabilities has received new
attention in several recent papers (see Refs. [1–3]),
whereas the effect of space charge on linear coupling
due to skew quadrupoles—the main topic of this
work—has hardly been addressed. Knowledge of the
precise resonance condition for linear coupling is, on
the other hand, crucial in a high-intensity ring where
coupling is used to exchange or equalize emittances.

A common feature of all resonances in the presence of
space charge is that the resonance condition m�0;x �
n�0;y � N cannot be replaced simply by using the
space-charge shifted incoherent betatron frequencies
�x; �y, since the full ensemble of particles may respond
to the resonance in a coherent way. For such a coherently
oscillating beam the resonance condition is shifted and
should be replaced by the coherent resonance condition
m�x � n�y � �� � N. This condition expresses the fact
that the coherent density mode resonates with the error
harmonic N. Note that in this context ‘‘coherent oscilla-
tion’’ is not relating to a beam displacement as a whole
(dipole mode), but to an oscillation of the density profile.
In this paper we use the linearized Vlasov-Poisson equa-
tion in 2D coasting beam approximation and study the
response of an anisotropic Kapchinskij-Vladimirskij
(KV) distribution beam exposed to second order lattice
errors. Our analysis extends the previous work of one of
the authors (see Ref. [4]) on the transverse eigenmodes in
ress: m.aslaninejad@gsi.de
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It also extends the work of Venturini and Gluckstern [1],
who have studied isotropic beams in symmetric focusing
with gradient errors, to the case of anisotropic beams
with both different tunes and emittances, and including
linear coupling. Throughout the paper we employ KV
emittances (four times the rms emittances) and beam
sizes of uniform beams (twice the rms size). Our results
may be applied to waterbag or Gaussian distributions
using rms-equivalent beams, which requires careful
checking by future simulations.

The structure of the paper is as follows: we start in
Sec. II with an equilibrium phase-space distribution and
derive the linearized Vlasov-Poisson equations in the
presence of lattice errors. A brief review of the solution
of this equation in the absence of lattice errors is given in
Sec. IV. Next we derive the resonance condition and a
relation for the expected tune shifts for the second order
even modes (envelope modes) as well as for the linear
coupling (second order odd or skew) modes. We discuss
the cancellation effects between lattice errors and space-
charge forces in Sec. IVC. In Appendix Awe compare the
obtained tune shift results for the second order even
modes with previous results, and in Appendix B we use
the envelope equations to further illustrate the force
cancellation principle.

II. BASIC EQUATIONS

We choose a Kapchinskij-Vladimirskij equilibrium
distribution function with uniform density profile in con-
figuration space

� 2 y2

0; if
a2
�

b2
> 1;

and a and b the semiaxes of the confining ellipse. Here, it
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is assumed that the transverse beam dimensions are small
in comparison with the radius of the beam pipe so that we
can ignore image charges. From Poisson’s equation we
readily obtain the effective potential inside the beam
valid for a uniform distribution of particles in free space
with charge q and line density ~NN � n0;b
ab (trans-
formed to the laboratory frame):

 eff �

�
q ~NN

2�0
�2a�a� b�
x2 �

q ~NN

2�0
�2b�a� b�
y2
�
: (2)

We now assume linear and continuous external focusing
forces for the equilibrium beam, and define betatron
frequencies in the absence of space charge �0;x and �0;y,
corresponding to the oscillation frequencies of a single
particle under the applied focusing field in the x and y
directions. Considering in addition the self-field effects
with their defocusing contribution, we can write the full
Hamiltonian as

H0�px; py; x; y� �
p2
x �m2�2�20;xx

2

2m�
�
p2
y �m2�2�20;yy

2

2m�
� q eff ;

(3)

where m is the particle rest mass. With !2
p �

q2 ~NN=�0
m�3ab the beam plasma frequency in the labo-
ratory frame, one can write the actual particle oscillation
frequencies �x; �y in the presence of space charge as

�2x � �20;x �!2
p=�1� a=b�;

�2y � �20;y �!2
p=�1� b=a�:

(4)

The full Hamiltonian can now be divided into two sepa-
rate parts for the x and y directions:

H0;x �
p2
x �m2�2�2xx

2

2m�
; H0;y �

p2
y �m2�2�2yy

2

2m�
:

(5)

The transverse energy anisotropy T, hence the ratio of
124202-2
oscillation energies in x and y directions, can be written
in terms of betatron tunes and emittances as T �
a2�2x=b2�2y � �x�x=�y�y. The anisotropic KV distribution
can now be expressed in terms of a � function of the
linear combination of the two separate Hamiltonians [4]

f0�x;y;px;py��
~NNT�y=�x
2
2m�a2

�
�
H0;x�TH0;y�

1

2
m��2xa2

�
;

(6)

which is consistent with a uniform density within the
boundary of the confining ellipse.

We now introduce a lattice error described by a
z� component of an ‘‘error’’ vector potential ~AAe.
Considering small-amplitude perturbations about f0,
~EE0, ~BB0, and expressing

f � f0�H0;x �H0;y� � f1�x; y; px; py; t�;

~EE � ~EE0�x; y� � ~EE1�x; y; t�;

B � ~BB0�x; y� � ~BB1�x; y; t�;

we linearize Vlasov’s equation and keep only first-order
terms in f1, ~EE1, ~BB1 to obtain (see, for example, Ref. [5])�
@
@t
� ~vv

@
@~xx

�q� ~EE0� ~vv� ~BB0�
@
@ ~pp

�
f1��q� ~EE1� ~vv� ~BB1�

@
@ ~pp
f0:

(7)

A general remark may be appropriate here. In our ap-
proach the equilibrium is a beam matched to the ideal
lattice. Turning on errors instantaneously results in time-
dependent perturbations of this equilibrium. An alterna-
tive approach would be to search for a matched beam in
the presence of a gradient or skew error. Plugging into
such a system the original matched solution (of the ideal
lattice) would then result in oscillations about the error-
matched beam—another way of looking at the perturba-
tions considered here.

With ~EE1 � �r� and ~BB1 � r� ~AAe, we find
df1
dt

	
@f1
@t

�
px
m�

@f1
@x

�
py
m�

@f1
@y

�m��2xx
@f1
@px

�m��2yy
@f1
@py

�
~NNTq�y=�x
2
2m2�4a2

�
px
@�
@x

� Tpy
@�
@y

� vz�
2

�
px
@Aez
@x

� Tpy
@Aez
@y

��
�0
�
p2
x �m2�2�2x

2m�
� T

p2
y �m2�2�2yy2

2m�
�

1

2
m��2xa

2

�
: (8)
The perturbed electrostatic potential � is in turn self-
consistently obtained from the linearized Poisson equa-
tion

r2� � �
q
�0
n1�x; y� � �

q
�0

Z
f1dpxdpy: (9)

Equations (8) and (9) form a closed set that can be solved
with an appropriate boundary condition.
III. INTEGRATION OF VLASOV’S EQUATION

We follow the technique used in Ref. [4] and integrate
Eq. (8) along the orbits of the unperturbed Hamiltonian
by introducing a phase angle " 	 �xt such that at time
t� � t, hence at "� � ", the orbit passes through the
point �x; y; px; py� in phase space. Using the above
Hamiltonian, the corresponding single-particle equations
124202-2
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of motion read

_ppx � �m��2xx; _xx � px=m�;

_ppy � �m��2yy; _yy � py=m�: (10)

One then obtains

x��t�� �
px

m��x
sin�"� �"� � x cos�"� �"�;

p�
x�t

�� � px cos�"
� �"� �m�x�x sin�"

� �"�;

y��t�� �
py

m��y
sin�#�"� �"�
 � y cos�#�"� �"�
;

p�
y�t

�� � py cos�#�"
� �"�
 �m�y�y sin�#�"

� �"�
:

(11)

Here we have introduced the ratio of the betatron fre-
quencies # 	 �y=�x. Assuming that # is rational—# �
n=j with n and j some integer numbers—the orbit given
by Eqs. (11) is exactly periodic in "� with period L �
2
j. The perturbed distribution function along the
124202-3
unperturbed orbit, f1�t; "�, is then also periodic in", and
the total derivative in Eq. (8) can be written in terms of
two variables only,

df1
dt

�
@f1
@t

� �x
@f1
@"

: (12)

We can now assume an explicit time dependence for a
single eigenmode by introducing a coherent mode fre-
quency !, f1 � f1�"�e

�i!t, � � ��"�e�i!t, so that f1
can be determined by integrating the total derivative
df1=dt over a full period L of the unperturbed orbit:

Z "�L

"

df1
dt�

d"� � �xf1�"�e�i!"=�x�e�i!L=�x � 1�: (13)

Hence, by inserting Eq. (8) into Eq. (13), introducing u 	
"� �", and dropping the explicit time dependence, we
obtain
f1�"� �
~NNTq�y=�

2
x

2
2m2�4a2
�e�i!L=�x � 1��1�0

�
p2
x �m2�2�2x

2m�
� T

p2
y �m2�2�2yy

2

2m�
�

1

2
m��2xa2

�

�
Z L

0

��
p�
x
@�
@x�

� Tp�
y
@�
@y�

�
�vz�

2

�
p�
x
@Aez
@x�

� Tp�
y
@Aez
@y�

��
e�i�!=�x�u du; (14)

with x�, etc., according to Eqs. (11). We now substitute f1 of Eq. (14) into Eq. (9), and carry out the momentum space
integration by introducing polar coordinates P and �, so that px � P cos� and T1=2py � P sin�. Partial integration
over P2 leads to both a nonvanishing boundary term for P2 � 0 describing a surface charge perturbation on the
unperturbed beam boundary, and a volume part of the charge perturbation

r2��
~NN

����
T

p
q2�y=�

2
x

2
2�0m�
3a2

�e�2
ij�!=�x��1��1

�
2
�

�
1

2
m���2xx2�T�2yy2��2xa2�

�Z 2
j

0
e�i�!=�x�u

��
p�
x
@�
@x�

�Tp�
y
@�
@y�

�

�vz�
2

�
p�
x
@Aez
@x�

�Tp�
y
@Aez
@y�

��
P2�0

du�2m�
Z 2
j

0
e�i�!=�x�u

d

dP2

�

��
p�
x
@�
@x�

�Tp�
y
@�
@y�

�
�vz�

2

�
p�
x
@Aez
@x�

�Tp�
y
@Aez
@y�

��
P2�m2�2��2x�a2�x2��T�2yy2�

dud�
�
:

(15)

The unknown solutions for � can be regarded as finite order polynomials in x and y in the interior of the beam that are
matched to outside solutions satisfying Laplaces’s equation in elliptic coordinates

r2��
1

c2�cosh2*�cos2’�

�
@2�

@*2
�
@2�

@’2

�
�0; x�ccosh*cos’; y�csinh*sin’; c2�a2�b2: (16)

Here we assume without loss of generality that a � b. The outside solution (* > *0, with cosh*0 � a=c) is a super-
position of angular harmonics which vanishes at infinity e�l�*�*0� cos�l’�, and e�l�*�*0� sin�l’�. Integration of Eq. (15)
across the beam boundary at * � *0 gives rise to a jump of the derivative @�=@* that equals the surface charge on the
boundary and matches the inside with the outside solution

�
@�
@*

�
*0�0

*0�0
�

~NNq2=�3x

�0m

2�4a2
�e�2
ij�!=�x� � 1��1

Z 2
j

0
e�i�!=�x�u

��
p�
x
@�
@x�

� Tp�
y
@�
@y�

�
�vz�

2

�
p�
x
@Aez
@x�

� Tp�
y
@Aez
@y�

��
P2�0

du:

(17)
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FIG. 1. Ratio of envelope deviations for the two eigenmodes
of an anisotropic beam in a perfect lattice with �x=�y � 1 and
��y � 0:2.
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IV. APPLICATION

A. Eigenmodes in ideal lattice

In the case of vanishing errors in the lattice �Aez � 0�,
Eq. (17) reduces to the result in Ref. [4] for the eigen
frequencies ! of oscillations of a KV beam in an ideal
linear lattice. The eigenmodes are characterized by the
leading power l in the expansion of �. Because of the
�-function distribution, only leading terms in the �x; y�
expansion of � are needed to determine the eigenfre-
quency. Eigenmodes are also characterized by the sym-
metry with respect to the angular variable ’ where the
even modes �cos�l’�
 are symmetric with regard to the x
axis and correspond to the well-known envelope pertur-
bations. The odd or linear coupling modes lack this
symmetry and reflect a skewing motion as found in linear
coupling. Here we restrict ourselves to the second order
even and odd modes and first review the results of Ref. [4].
Following the same notation we define-2

p � !2
p=�2x, # �

�y=�x, and . � a=b; - � !=�x. For the even mode —
denoted by the index e—the leading terms in the per-
turbed space-charge potential inside and outside are

�int
2;e � a0x

2 � a2y
2; (18)

�ext
2;e �

a2a0
2

�
b2a2
2

�
�a2a0 � b2a2� cos2’

2e2�*�*0�
; (19)

and the dispersion relation results as

D2;e 	�1� .�2 � -2
p

�
1� 2.

4� -2 �
2.� .2

4#2 � -2

�

� -4
p

2.

�4#2 � -2��4� -2�
� 0: (20)

For the round isotropic beam with . � 1 and # � 1,
this simplifies to

D2;e � 4�
6-2

p

�4� -2�
�

2-4
p

�4� -2�2
� 0; (21)

which is solved by the familiar result !2 � 4�2 �!2
p for

the fast mode, and !2 � 4�2 � !2
p

2 for the slow mode.
In Fig. 1 we show the ratio of envelope deviations as

function of �x=�y for the case of a homogeneous beam in
a perfect lattice and with �x=�y � 1 and ��y � 0:2. Note
that the incoherent space-charge tune shift is written as a
positive number, hence � � �0 � ��; also note that
�0;x=�0;y varies from 0:953 to 1:056. We linearize the
effective potential Eq. (2) and compare with coefficients
of x2 and y2 of Eq. (18) for the beam interior, which
results in a relation for the envelope ratio as function of
the beam parameters and the coherent mode frequency as
given by Eq. (20). The two different branches in Fig. 1
correspond to different signs of Eq. (20) for the coherent
mode frequencies. Note that for the case of equal emit-
tances as in Fig. 1 we have �a=�b � 1 in the upper branch
(‘‘fast mode’’) and �a=�b � �1 in the lower branch
124202-4
(‘‘slow mode’’) for �x=�y � 1. This leads to the distinc-
tion—also valid in the general anisotropic case —into a
breathing (in-phase) mode for the upper branch, and a
quadrupolar (out-of-phase) mode for the lower branch.
For larger space-charge tune shifts the graph in Fig. 1 is
stretched accordingly.

For the second order odd mode (o), we assume �int
2;o �

a1xy and �ext
2;o � aba1 sin2’=2e

2�*�*0�, which results in
the dispersion relation

D2;o 	�1� .�2 �
-2
p

2

�
�1� #��1� .2=#�

�1� #�2 � -2

�
�1� #��1� .2=#�

�1� #�2 � -2

�
� 0: (22)

For the isotropic round case this reduces to D2;o 	 4�
�2-2

p=�4� -2�
 � 0, with the result !2 � 4�2 � 1
2!

2
p

which coincides with the even slow mode frequency.

B. Perturbed lattice

In the following we apply the above perturbational
analysis to the inhomogeneous case in the presence of
lattice errors.

1. Envelope modes excited by gradient errors

We first use Eq. (17) to obtain the resonance condition
for the second order even mode perturbation—the enve-
lope mode case studied by Venturini and Gluckstern [1],
but generalized here to unequal focusing and emittances.
The question of interest is, for instance, to see what the
effect of a purely symmetric magnet perturbation and an
antisymmetric perturbation is on the resonance. Note that
according to [1] the symmetric perturbation (s) only
excites the fast mode, whereas the antisymmetric (as)
excites the slow mode only. With anisotropy this must
not be the case and we expect mixing since the symmetric
and antisymmetric perturbations, x2 � y2 and x2 � y2,
124202-4
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mix. We assume

�int
2;e � �a0x

2 � a2y
2�e�i�!=�x�u;

�ext
2;e �

�
a2a0
2

�
b2a2
2

�
�a2a0 � b2a2� cos2’

2e2�*�*0�

�
e�i�!=�x�u;

Aez � gas�x2 � y2�e�i�!=�x�u � gs�x2 � y2�e�i�!=�x�u;
(23)
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with g the amplitude of the error. Different from the
homogeneous case, the time dependence is now enforced
by the periodic lattice error of harmonic N; hence, ! is
replaced by N!0, where !0 is the angular revolution
frequency. For convenience we have also introduced the
scaled quantity -0 � !0=�x. After some algebraic ma-
nipulation we obtain
a0 � vz�2
-2
p

2.�1
4��N-0�

2 �gas � gs� � -2
p

1
4#2��N-0�

2 �gs � gas� � -4
p

2.
�4#2��N-0�

2
�4��N-0�
2

�gas � gs�

�1� .�2 � -2
p�

1�2.
4��N-0�

2 �
2.�.2

4#2��N-0�
2� � -4

p
2.

�4#2��N-0�
2
��4��N-0�

2


; (24)

a2 � vz�2
-2
p

.2

4��N-0�
2 �gas � gs� � -2

p
.2�2.

4#2��N-0�
2 �gs � gas� � -4

p
2.

�4#2��N-0�
2
�4��N-0�

2

�gs � gas�

�1� .�2 � -2
p�

1�2.
4��N-0�

2 �
2.�.2

4#2��N-0�
2� � -4

p
2.

�4#2��N-0�
2
�4��N-0�

2


: (25)

The resonance condition for given harmonic N is given whenever the denominators vanish. From here on, unless
otherwise mentioned, we drop !0 by simply interpreting �x;y as tunes, i.e., betatron periods per turn. We find two
solutions according to

N2 � 2�2x � 2�2y �
�
1

2
�

ab

�a� b�2

�
!2
p �

1

2

��
4��2x � �2y� �

�b� a�
�b� a�

!2
p

�
2
�

�4a2b2�

�a� b�4
!4
p

�
1=2
: (26)

For vanishing intensity this implies the incoherent con-
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FIG. 2. Resonance behavior of the envelope deviation for an
anisotropic beam with antisymmetric perturbation for
�a=a3gas, solid lines, and �b=b3gas, dashed lines (�x=�y � 4,
�0;y � 3:2, N � 8, and ��y � 0:2 for all values of �x).
ditions 2�x � N and 2�y � N, while for finite intensity
Eq. (26) allows one to calculate the coherently shifted
tunes, which determine where the envelope resonance
occurs. Further details of this relation will be discussed
in Appendix A.

In Fig. 2 this resonance behavior is shown in the
presence of a lattice antisymmetric error of harmonic
eight from the linearization of the effective potential
Eq. (2) and comparing with the second order perturbed
potential and using Eqs. (24) and (25). The space charge
has caused a shift from the point �x � 4 expected as
resonance condition for the incoherent tune. Note that
in this graph we have chosen fixed ��y � 0:2; hence,
��x � 0:1 due to the given emittance ratio. The dotted
line indicates the exact resonance condition at �x � 3:96.
At this point we have �0;x � 4:06; hence, the self-consis-
tent resonance allows a 60% higher space-charge tune
shift as would be given by the incoherent space-charge
limit �x � 4. This fact was also shown by Fedotov et al.
[2] in the simulation study of half-integer resonance
crossing in high-intensity rings. Note that in comparison
with the finite envelope excursions in their simulation
study we have infinite envelope response exactly at the
resonance as a result of the linearized theory. Fast and
slow modes are present, but since �x is bigger than �y the
dominant mode is the fast one, hence �a=a3 (solid lines)
exceeds �b=b3 (dashed lines).

2. Odd (skew) modes excited by linear coupling

We now use Eq. (17) to find the resonance condition for
the second order odd mode. This mode causes emittance
exchange in a synchrotron near a linear coupling reso-
nance �x � �y � N, but of course modified with an addi-
tional coherent tune shift. For the odd (skew) modes we
expect different shifts for the two cases �x � �y �
��1 � N (sum mode) and �x � �y � ��2 � N (differ-
ence mode), which may be of interest in high-intensity
machines with linear coupling. For the second order odd
modes, we assume [4,6]

� � a1xye�i�N!0=�x�u; Aez � A1xye�i�N!0=�x�u; (27)

with a1 the amplitude of the perturbed space-charge
potential and A1 the lattice error component. After some
124202-5
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algebra we obtain

a1�1�.�
2��a1�A1vz�

2�

�
-2
p

2

�
�1�#��1�.2=#�

�1�#�2��N-0�
2

�
�1�#��1�.2=#�

�1�#�2��N-0�
2

��
�0;

(28)

or

a1 � A1vz�2

-2
p

2 ��1�#��1�.
2=#�

�1�#�2��N-0�
2 �

�1�#��1�.2=#�
�1�#�2��N-0�

2�

�1� .�2 � -2
p

2 ��1�#��1�.
2=#�

�1�#�2��N-0�
2 �

�1�#��1�.2=#�
�1�#�2��N-0�

2�
;

(29)

and the resonance condition reads

�1� .�2 �
-2
p

2

�
�1� #��1� .2=#�

�1� #�2 � �N-0�
2

�
�1� #��1� .2=#�

�1� #�2 � �N-0�
2

�
� 0; (30)

which can be rewritten as

N2���2x��2y�

�
!2
p

2

a2�b2

�a�b�2
�
1

2

��
4�x�y�!

2
p
�a2�b2�

�a�b�2

�
2

�8!2
p
��x��y��a2�x�b2�y�

�a�b�2

�
1=2
;

(31)

by returning to �x and �y as machine tunes and relating
the ‘‘�’’ to the sum and the ‘‘�’’ to the difference
resonance. For vanishing intensity Eq. (31) leads to the
condition �x � �y � N as expected. Likewise, we obtain
�x � �y � N for the difference resonance condition
whenever the emittances are equal (a2�x � b2�y). In
Fig. 3 we plot the normalized response of the space-
charge coupling potential as function of �x for the N �
1 (difference resonance) and the N � 7 (sum resonance)
cases. Because of the coherent space-charge effect the
exact resonance points (dotted lines with infinite re-
sponse in the linearized theory) are shifted from the
expected single-particle resonance condition �x � �y �
N (in our example �x � 4) in Fig. 3. The resonance
condition for the difference mode is always found to be
shifted above the single-particle resonance condition
(��2 < 0) as long as �x=�y > 1, and down from it for
�x=�y < 1 (as a rule of thumb the coherent linear cou-
pling difference resonance always occurs at increased
single-particle tunes in the plane, where the emittance
is larger). For the sum mode resonance we always find a
shift below the single-particle resonance condition
(��1 > 0), which is similar to the envelope equations.
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Numerical evaluation for the difference resonance
shows that the ratio of the coherent tune shift of linear
coupling, normalized to the incoherent tune shift, i.e.,
j��2j=��x, is mainly a function of the emittance ratio
and nearly independent of the incoherent tune shift as
long as the latter is small compared with the tune itself,
which is generally the case in circular accelerators. In
Fig. 4 we plot this dependence for N � 1 and three differ-
ent values of ��y equal to 0:1, 0:2, and 0:5. It is seen that
for 0:1; 0:2 the curves practically coincide, whereas for
0:5 there is a small deviation. Although Fig. 4 was deter-
mined for �0;y � 3:2, cross-checks up to significantly
larger tunes and N � 1; 2 have shown that the graph is
practically universally applicable (with variations of at
most a few percent). For the sum resonance the depen-
dence of the thus normalized coherent tune shift is only
very weak, and the corresponding graph in Fig. 4 is
124202-6
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practically also universally applicable for all values of N
or tunes.

A similar coherent tune shift phenomenon is obtained
for tunes not split by an integer, when the coupling is
driven byN � 0 (difference resonance) as shown in Fig. 5.
In this case the exact resonance condition with infinite
response (dotted line) is found to coincide —for arbitrary
emittance ratio or tune —with the condition �0;x=�0;y � 1
(note that this occurs in Fig. 5 at the point �x � 3:1,
which is consistent with ��x � ��y=2 for the emittance
ratio of four). This case, however, reveals an additional
feature: the odd mode is exponentially unstable in the
tune range bounded by the coherent resonance condition
and the single-particle resonance condition. This can be
seen from the dispersion relation Eq. (30) for N � 0,
which is identical with Eq. (22) and - � ! � 0. As
was shown in Refs. [4,7] the case of zero mode frequency
! marks a transition to !2 < 0. This implies a pair of
exponentially growing (I! > 0) or damped (I!< 0)
modes. This might be explained as a result of the desta-
bilizing effect if the tune ratio in the interior of the beam
(here �x=�y > 1) is reversed with respect to the ratio far
away from the beam, where space charge is ineffective
(here �0;x=�0;y < 1).

The growth rate of this linear coupling instability (in
units of the betatron frequency in y, times 100) is shown
as a dashed line in Fig. 5. The number of betatron periods
per e-foldings of the growth results as 2
I!=�0;y ;
hence, the maximum value of 0:016 in the center of the
unstable region corresponds to � 10 zero space-charge
betatron periods (three turns in our example). For weaker
space charge also note that the growth rate is roughly
proportional to the incoherent tune shift. In this instabil-
ity region the exponential instability is expected to be by
far dominant over the lattice error induced response.
From a practical point of view the linear coupling insta-
bility band is adjacent to the ‘‘Montague resonance’’ stop
-10

-5
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 2.9  2.95  3  3.05  3.1  3.15  3.2

a 1
 / 
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FIG. 5. Linear coupling difference resonance (N � 0) and
linear coupling instability (dashed line is normalized instabil-
ity growth rate times 100) (�x=�y � 4, ��y � 0:2, �0;y � 3:2).
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band, which is a fourth order resonance (precisely speak-
ing it is also an instability with exponential growth)
driven by space charge for N � 0. Detailed simulations
presented in Refs. [7,8] for ideal lattices (no linear cou-
pling errors) have shown that both processes can be iden-
tified in realistic simulations, although the fourth order
resonance is found to be the dominant phenomenon in the
emittance exchange.

As before in Fig. 4 it is again convenient to express
results in a normalized way (see Fig. 6). We find that
graphs practically coincide for the considered tune shifts
up to ��y � 0:5. This result is universally applicable to
all tunes as long as ��y � �y. Hence the presented graph
allows calculation of the resonance condition of linear
coupling with space charge in all cases of practical
relevance.

In comparing the coherent shifts for unsplit (N � 0)
and split tunes (N > 0) we note that the latter are gen-
erally about half the former for the same emittance ratios.

A practical implication of the strong dependence of the
linear coupling coherent tune shift on the emittance ratio
could be the following: with emittance exchange pro-
gressing it can be expected that the resonance condition
is shifted away from the actual tune. Such a detuning
effect might even suppress an emittance exchange if the
resonance were dynamically crossed from below in the
example of Fig. 3; for crossing from above the emittance
exchange might be more effective, since the resonance
condition moves in the same direction. Obviously, this
goes beyond the linearized theory and requires computer
simulation.

C. Cancellation of lattice error by space-charge
perturbation.

The results of the preceding section can be understood
more easily by exploring the relative effect of space
charge on the external lattice error.
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FIG. 6. Normalized coherent tune shift j��2j=��x for
N � 0 as function of emittance ratio.
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The total perturbation for the second order odd mode can be written as

�� vz�2Aez � �a1 � vz�2A1� xye�iuN!0=�x : (32)
Substituting a1 from Eq. (29) yields

��vz�2Aez�
�A1vz�

2�1�.�2

�1�.�2�
-2
p

2 �
�1�#��1�.2=#�
�1�#�2��N-0�

2�
�1�#��1�.2=#�
�1�#�2��N-0�

2�
xye�iuN!0=�x : (33)

If the denominator goes to infinity we have �1� #�2 � �N-0�
2 � 0 and �1� #�2 � �N-0�

2 � 0, which in turn means
that N � �x � �y with �x and �y the usual tunes. It is seen that the lattice error is compensated by the space-charge
perturbation if the single-particle resonance condition is satisfied.

To show a similar effect for the second order even perturbations, we can write

�� vz�2Aez � a0x2 � a2y2 � vz�2�gas�x2 � y2� � gs�x2 � y2�
: (34)

Substituting from Eqs. (24) and (25), this gives

�� vz�
2Aez � vz�

2
��gs � gas��1� .�2 � gas-2

p
�1�.�2

4#2��N-0�
2 � gs-2

p
2.�.2�1
4#2��N-0�

2

�1� .�2 � -2
p�

1�2.
4��N-0�

2 �
2.�.2

4#2��N-0�
2� � -4

p
2.

�4#2��N-0�
2
�4��N-0�

2


x2e�iuN!0=�x

� vz�2
��gs � gas��1� .�2 � gas-

2
p

�1�.�2

4��N-0�
2 � gs-

2
p
2.�.2�1
4��N-0�

2

�1� .�2 � -2
p�

1�2.
4��N-0�

2 �
2.�.2

4#2��N-0�
2� � -4

p
2.

�4#2��N-0�
2
�4��N-0�

2


y2e�iuN!0=�x : (35)
For 4� �N-0�
2 � 0, or N � �2�x using the usual tunes,

the coefficient of x2 will be equal to zero, while the y
coefficient remains finite. The same is true for the coef-
ficient of y2 if the tune has the values N � �2�y (see also
Appendix B). This implies that the effect of error is
compensated by the space-charge perturbation in the
plane, where the single-particle resonance condition is
satisfied.

V. DISCUSSION AND CONCLUSIONS

Our complete analysis of the linearized self-consistent
response for second order resonances (the even envelope
modes as well as the odd linear coupling modes) allows
one to determine quantitatively the coherent space-
charge induced shift � in the resonance conditions n�x �
m�y � �� � N (n;m � 0;�1 and N � 0; 1; . . . , while
� depends on n, m, and N). The finding of exact cancel-
lation of lattice error forces by the space-charge induced
forces at the single-particle resonance condition n�x �
m�y � N helps to explain this coherent shift. Asymmetry
in focusing and/or emittances (beam anisotropy) are
found to couple the fast and slow envelope modes in cases
where the lattice gradient perturbation is purely symmet-
ric or antisymmetric. For the linear coupling modes—the
main focus of our study—we present graphs, which allow
one to calculate the coherent shift � as a function of the
emittance ratio. For weak space charge (as in rings) this
coherent shift is found to be approximately independent
of the space-charge tune shift as well as the absolute tune
values; hence, our results allow straightforward applica-
tion to determine the resonance conditions for all pa-
rameters of practical importance.
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This work must be understood as a theoretical basis for
future simulation and experimental studies. The strong
dependence of the difference linear coupling coherent
tune shift on the (unperturbed) emittance ratio suggests
that the dynamical evolution, where invariant emittances
only exist in a rotating frame, may be significantly af-
fected by space charge. In cases where the linear coupling
resonance is crossed for initially unequal emittances we
expect an asymmetric behavior, depending on whether
the crossing starts from the side to which the coherent
resonance is shifted or from the opposite side. For �x > �y
the former case would imply starting the crossing from
�x � �y; hence, the working point and coherent reso-
nance condition move in the same direction, which might
help the exchange. Obviously, a quantitative study of the
effect on emittance exchange involves the nonlinear re-
sponse of the linear coupling with space charge, which is
beyond the present theory and will be pursued in a forth-
coming study.
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APPENDIX A

In this paper, we obtained the tune shifts for the second
order even mode based on self-consistent Vlasov-Poisson
equations. A comparison with previous derivations based
124202-8
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on the envelope equations is as follows:

N2 �2�2x � 2�2y �
�
1

2
�

ab

�a� b�2

�
!2
p

�
1

2

��
4��2x � �2y� �

�b� a�
�b� a�

!2
p

�
2

�
�4a2b2�

�a� b�4
!4
p

�
1=2
: (A1)

Defining the following relations

a0 �
!2
pab

�a� b�2
�

2K

�a� b�2
; a1 � �20;x �

3�2x
a4

� a0;

a2 � �20;y �
3�2y
b4

� a0;

(A2)

and using K as the normalized perveance [5], we can
obtain the same tune shifts as eigenvalues of the matrix

A �

0
BB@

0 1 0 0
�a1 0 �a0 0
0 0 0 1

�a0 0 �a2 0

1
CCA; (A3)

which was derived by Struckmeier and Reiser [9]. Also,
for the round case Eq. (A1) simplifies to

N2 � 2�2x � 2�2y �
3
4!

2
p �

1
2f�4��

2
x � �2y�


2 � 1
4!

4
pg

1=2:

(A4)

Recalling that �2x � �20;x �
!2
p

2 , �2y � �20;y �
!2
p

2 , and
��sc;x �

!2
p

4�0;x
, Eq. (A4) can be rewritten as

N2 � 2�20;x � 2�20;y � 5�0;x��x
� f4��20;x � �20;y�

2 � ��0;x��x�2g1=2; (A5)

which is the expression derived by Baartman [10].
Finally, for the large tune split, Eq. (A1) can be approxi-
mated for the positive sign by

N2 � 4�2x �
b2 � 2ab

�a� b�2
!2
p

�
a2b2!4

p

�a� b�4�4��2x � �2y� �
b�a
b�a!

2
p

: (A6)

For the negative sign, we find

N2 � 4�2y �
a2 � 2ab

�a� b�2
!2
p

�
a2b2!4

p

�a� b�4�4��2x � �2y� �
b�a
b�a!

2
p

: (A7)

From the above two expressions, we obtain the mode
coefficients Cm of Ref. [10] for the large tune split limit.
Because of ��sc;x � !2

p=�2�1� .��0;x
 and ��sc;y �
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!2
p=�2�1� 1=.��0;y
, we obtain

C2x �
3� 2.
4�1� .�

; C2y �
2� 3.
4�1� .�

: (A8)

If, for example, . � 1, we have C2x � 5=8 and C2y �
5=8. For the case of . � 2, this yields C2x � 7=12 and
C2y � 2=3, in agreement with Baartman’s results (see
Fig. 7).

APPENDIX B

In this appendix we use the envelope equations to
further illustrate the cancellation between the lattice
multipole error and the induced space-charge perturba-
tion if the single-particle resonance condition is satisfied.
The beam boundary is defined by the two envelope func-
tions a�s� and b�s� in the transverse plane, which satisfy
the familiar nonlinear envelope equations as

d2

ds2
a�s� � 6q�s�a�s� �

2K
a�s� � b�s�

�
�2x
a3�s�

� 0; (B1)

d2

ds2
b�s� � 6q�s�b�s� �

2K
a�s� � b�s�

�
�2y
b3�s�

� 0: (B2)

In Eqs. (B1) and (B2) 6q�s� is the quadrupole focusing
term. In the presence of the lattice error we write the
focusing function as 6q�1� gm cos�!�x u�
, with gm the
amplitude of the small quadrupole error [1]. After linea-
rization, we find

d2

ds2
�a� 6q�a�

2K

�a� b�2
��a� �b� �

3�2x
a4

�a

� �6qgma cos
�
!
�x
u
�
: (B3)

d2

ds2
�b� 6q�b�

2K

�a� b�2
��a� �b� �

3�2y
b4

�b

� �6qgmb cos
�
!
�x
u
�
: (B4)
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The second order derivatives with 72c2 as scaled quantity
�
�!2 � 6q �

2K

�a� b�2

�
�a�

2K

�a� b�2
�b�

3�2x
a4

�a � �6qgma cos
�
!
�x
u
�
; (B5)

�
�!2 � 6q �

2K

�a� b�2

�
�b�

2K

�a� b�2
�a�

3�2y
b4

�b � �6qgmb cos
�
!
�x
u
�

(B6)

can now be solved for �a and �b:

�a �
��!2 � 6q �

2K
�a�b�2 �

3�2y
b4 
a�

2K
�a�b�2 b

� 2K
�a�b�2


2 � ��!2 � 6q �
2K

�a�b�2 �
3�2x
a4 
��!

2 � 6q �
2K

�a�b�2 �
3�2y
b4 


6qgm cos

�
!
�x
u
�
; (B7)

�b � �
��!2 � 6q �

2K
�a�b�2 �

3�2x
a4 
b�

2K
�a�b�2 a

� 2K
�a�b�2


2 � ��!2 � 6q �
2K

�a�b�2 �
3�2x
a4 
��!

2 � 6q �
2K

�a�b�2 �
3�2y
b4 


6qgm cos

�
!
�x
u
�
: (B8)

For obtaining the complete resonance conditions, we have to set the denominators equal to zero. Before doing this, we
cast these terms into a more familiar form. We define the following quantities:

�x � a2�x; �2x � 6q �
2K

a�a� b�
; K �

!2
p

2
ab; �y � b2�y; �2y � �6q �

2K
b�a� b�

;

# �
�y
�x
; . �

a
b
; - �

!
�x

�
N
�x
; -2

p �
!2
p

�2x
: (B9)

After some algebra, the above denominators as resonance conditions become

�1� .�2 � -2
p

�
1� 2.

4� -2 �
2.� .2

4#2 � -2

�
�-4

p
2.

�4#2 � -2��4� -2�
� 0; (B10)

which is of course consistent with the result from Eqs. (24) and (25). Now considering the motion of an individual
particle, we write the equation of motion in the x direction,

x00 �
�
6q �

2K
a�a� b�

�
x � 0: (B11)

With perturbed focusing function, we have

x00 �
�
6q

�
1� gm cos

�
N
�x
u
��

�
2K

a�a� b�

�
x � 0: (B12)

We linearize the above equation,

x00 �
�
6q

�
1� gm cos

�
N
�x
u
��

�
2K

�a� �a��a� �a� b� �b�

�
x � 0; (B13)

yielding the following result:

x00 � �2xx � �6qgm cos

�
N
�x
u
��
1�

2K

a2�a� b�2
��2a� b��a� a�b


�
x: (B14)

From Eqs. (B7) and (B8), we substitute �a and �b
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x00 � �2xx � �6qgm cos

�
N
�x
u
��
1�

2K

a2�a� b�2

� �2a� b�f��!2 � 6q �
2K

�a�b�2 �
3�2y
b4 
a�

2K
�a�b�2 bg

� 2K
�a�b�2


2 � ��!2 � 6q �
2K

�a�b�2 �
3�2x
a4 
��!

2 � 6q �
2K

�a�b�2 �
3�2y
b4 


�
�af��!2 � 6q �

2K
�a�b�2 �

3�2x
a4 
b�

2K
�a�b�2 ag

� 2K
�a�b�2


2 � ��!2 � 6q �
2K

�a�b�2 �
3�2x
a4 
��!

2 � 6q �
2K

�a�b�2 �
3�2y
b4 


��
x: (B15)

Straightforward algebra now shows that the numerator of the above fraction vanishes for!2 � N2 � 4�2x (not for!2 �
N2 � 4�2y); hence, there is no net perturbation of the motion of an individual particle in the x� direction in this case.
Repeating the above calculation similarly for y gives

y00 � �2yy � 6qgm cos

�
N
�x
u
��
1�

2K

b2�a� b�2

� ��a� 2b�f��!2 � 6q �
2K

�a�b�2 �
3�2x
a4 
b�

2K
�a�b�2 ag

� 2K
�a�b�2


2 � ��!2 � 6q �
2K

�a�b�2 �
3�2x
a4 
��!

2 � 6q �
2K

�a�b�2 �
3�2y
b4 


�
bf��!2 � 6q �

2K
�a�b�2 �

3�2y
b4 
a�

2K
�a�b�2 bg

� 2K
�a�b�2


2 � ��!2 � 6q �
2K

�a�b�2 �
3�2x
a4 
��!

2 � 6q �
2K

�a�b�2 �
3�2y
b4 


��
y: (B16)
Again, the right-hand side equals zero for !2 � N2 �
4�2y, but not for !2 � N2 � 4�2x.
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