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The combined effect of space charge and nonlinear resonance on beam loss and emittance was
measured in a benchmarking experiment over a 1.2 s long flat bottom at 1.4 GeV kinetic energy in the
presence of a single controllable octupole. By lowering the working point towards the resonance, a
gradual transition from a loss-free core emittance blowup to a regime dominated by continuous loss
was found. We compare the observation with 3D simulations based on a new analytical space charge
model and obtain good agreement in the emittance blowup regime. Our explanation is in terms of the
synchrotron oscillation, which causes a periodic tune modulation due to space charge, and leads to
trapping and detrapping on the resonance islands. For working points very close to the resonance this
induces a beam halo with large radius. The underlying dynamics is studied in detail, and it is claimed
that the predicted halo in conjunction with a reduced dynamic aperture for the real machine lattice is
the source of the loss observed in the experiment.

DOI: 10.1103/PhysRevSTAB.6.124201 PACS numbers: 41.75.–i, 29.27.Bd, 29.17.+w
tune (see Refs. [6,7]). Experimental studies of the effect
of machine tune modulation on island trapping or detrap-

2002. The number of protons in the single bunch (200 ns
long at 4�) was 1:1� 1012 (parameters, see Table I).
I. INTRODUCTION

A detailed theoretical understanding as well as confi-
dence in simulation modeling of the long-term (105–106

turns) effects of high intensity or high phase space den-
sity is crucial for the SIS100 of the GSI future project
[1,2], where it is necessary to hold the high-intensity
bunches between injections over typically 1 s at a loss
level not exceeding 1%, likewise for the optimum per-
formance of the CERN Proton Synchrotron (PS) for
high-intensity beams. A major focus of such studies is
the combined effect of space charge and nonlinear reso-
nances and its impact on halo formation and/or beam loss.

Up to now comparison of simulation with experimental
work for second or higher order resonances dominated by
space charge has been successfully carried out in the
millisecond time frame [3,4]. In the realm of long-term
behavior, instead, where self-consistent 3D simulation is
beyond current computer capabilities, the question of
adequate approximations in space charge calculation is
a challenging issue. Moreover, an explanation of the
proper mechanisms describing the combined effect of
nonlinearity, space charge, and synchrotron oscillation
is necessary to gain sufficient confidence in the simula-
tion modeling. In the simplified simulation model of
Ref. [5] it was recently suggested that the single-particle
tune modulation caused by space charge and synchrotron
motion may lead to trapping and detrapping on the reso-
nance islands, which are moving in and out. This process
is related to the trapping during a single passage through a
higher order nonlinear resonance as a result of a changing
1098-4402=03=6(12)=124201(9)$20.00 
ping, in the absence of space charge, have been carried
out at the CERN Super Proton Synchrotron [8,9], where
the modulation was found to lead to diffusion effects, at
the Fermilab Tevatron [10], and at the Indiana University
Cyclotron Facility cooler ring [11]. The latter work gave
first evidence of the single-particle motion near islands by
taking advantage of the small emittances obtained by
electron cooling. The main point of the present work is
to study these phenomena in the context of the intrinsic
tune modulation caused by space charge and synchrotron
motion, which has not been addressed so far. This intro-
duces additional complexity due to the following features:
(i) the tune of an individual particle is strongly modu-
lated, by an amount comparable with the incoherent tune
shift, depending on two parameters, the synchrotron
phase as well as the betatron amplitude; (ii) the latter is
itself evolving in time, depending on the preceding trap-
ping and detrapping events; and (iii) there is a self-
consistent time evolution due to the global changes of
space charge. These circumstances do not allow experi-
mental verification of single-particle behavior. We use 3D
computer simulation with space charge to demonstrate
the long-term balance of trapping and detrapping as
competing mechanisms and to compare the global pre-
dictions on the rms emittance and halo growth with the
measurements.

II. MEASUREMENTS

The measurements were carried out as part of a high-
intensity machine development time at the PS in October
2003 The American Physical Society 124201-1
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FIG. 1. (Color) Experimental results on final rms emittance (of
Gaussian fit) and beam current relative to initial values.

TABLE I. Experimental parameters.

Parameter Value Units

Kinetic energy 1.4 GeV
Particles per bunch 1:1� 1012

Bunch length 200 ns
Emittancesa (unnormalized at 2�) 9=4:5 mm mrad
Momentum spread (2�) 2:8� 10�3

Derived maximum tune shiftsa 0:075=0:12
PS circumference 628 m
Beam pipe diametersa 14=7 cm
PS superperiodicity 10
aHorizontal/vertical.
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A vertical maximum space charge tune shift of 0.12
and a horizontal one of 0.075 (for minimum amplitude
particles) were achieved with relatively small emittances
of �x � 9 mmmrad and �y � 4:5 mmmrad (unnormal-
ized at 2�). The space charge tune shift was chosen
significantly below the maximum possible in the PS to
avoid overlap with other resonances. The bunch profiles
measured 10 ms after injections were found to be
Gaussian in all directions in the absence of the octupole.
The vertical machine tune was set to Qy � 6:12, and the
horizontal one was varied in the interval 6:25<Qx <
6:32. The chromaticity is close to the natural one, hence
the small momentum spread of 3� 10�3 (at 2�) allows
one to ignore the chromatic effects. The kinetic energy
was kept at the injection value of 1.4 GeV with a mea-
surement window of 1.2 s (4:4� 105 turns) over which
the bunch intensity was monitored with a current trans-
former. The calibrated octupole (here K3 � 1:215 �
I m�3) was powered to 40 A at 110 ms after injection to
excite the resonance 4Qx � 25. We used the transverse
profiles measured with the flying wire (20 m=s), fitted
them with a Gaussian profile, and determined the corre-
sponding rms emittances. Initial and, in most cases, final
profiles were actually found quite close to Gaussian.

In Fig. 1 results of final measurements 1.2 s after
injection are plotted as a function of the machine working
point.

Our main finding is the existence of two regimes: an
emittance growth dominated regime for Qx sufficiently
above the resonance (in our example Qx > 6:28) and a
loss dominated regime for Qx < 6:28. It is noted that for
the working point of maximum loss (Qx � 6:27) the
emittance also shrinks, since large amplitude particles
are predominantly lost. The time evolution of the bunch
intensity for Qx � 6:27 is shown in Fig. 2. Note the
continuous loss at a nearly constant rate after an initially
enhanced loss (the intensity drop at 1200 ms is caused by
the kicker event).

III. SIMULATION
Interpretation of these measurements must rely on ade-

quate computer simulation. The comparison is also a
124201-2
necessary basis for code benchmarking on such a long
time scale, which has not been undertaken so far to our
knowledge. To initiate such a process we have carried out
a series of simulation runs in 2D and 3D.
A. The model

The main factors to explain the observed behavior are
space charge, the octupole, and synchrotron motion.
While the octupole is the driving mechanism for the
resonance, the detuning effect, as an amplitude limiting
mechanism, is not only due to the octupole and other
lattice nonlinearities, but mainly due to space charge.
Here we are dealing with the transverse amplitude de-
pendence of space charge as well as the strong periodic
modulation of the transverse tune shift during a synchro-
tron period, which is the main source of tune modulation
in our experiment. Chromaticity dependent tune modula-
tion is more than an order of magnitude lower and ignored
in our simulations.

The variation of space charge between beam core and
halo is best seen on a plot of single-particle tunes in a tune
diagram for the initial ensemble considered in Sec. III D
as shown in Fig. 3.

The ‘‘tune footprint’’ reflects particles in the bunch
center with small synchrotron and betatron amplitudes
(left lower tip) as well as particles at the bunch ends (right
upper tip). In the example shown (machine tune at Qx �
6:26) the resonance line intercepts with such particles
near the bunch ends. Transverse halo particles are absent
in the initial footprint, since the initial transverse distri-
bution has only particles inside a sharp edge at 3�. We
are referring to this region as the ‘‘beam core,’’ whereas
particles beyond 3� (where they get to as a result of the
resonance) are called ‘‘halo.’’ Note that the larger hori-
zontal emittance causes an asymmetry in the footprint.

We have replaced, for simplicity, the linear PS focusing
lattice by constant focusing and ignored lattice nonline-
arities besides the contribution from the localized octu-
pole. We have also ignored the smaller vertical beam
124201-2



FIG. 2. (Color) Measured bunch intensity as a function of time at Qx � 6:27 with octupole powered at 280 ms (110 ms after
injection at time 170 ms).
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emittance of the experiment and assumed a circular cross
section for space charge calculation in the analytical 3D
space charge model, which is based on a rotational ellip-
soid. The horizontal emittance has been redefined accord-
ingly such as to reproduce accurately the maximum
horizontal space charge tune shift extracted from the
measurement, which we believe is the crucial issue here
since we are not dealing with a coupling resonance.
B. Dynamic aperture

The loss observed in the experiment must be related to
the shrinking of the dynamic aperture, since the beam
was too small to hit a physical aperture. To roughly
explore the effect on the dynamic aperture of the octu-
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FIG. 3. Tune diagram with ‘‘footprint’’ of the initial ensemble
of particles in 6D phase space (‘‘frozen’’ longitudinal motion).
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pole alone we have carried out a numerical test by search-
ing the maximum stable radius of test particles placed
into 20 different directions in the upper half of the x-y
plane and ignoring space charge at this point. We have
found that the nominal octupole (40 A) leads to a dy-
namic aperture (105 turns) of about 5� near Qx � 6:25,
where � is the horizontal rms beam size of the injected
beam. This value is not small enough to explain the
observed loss of particles as will be seen in the subse-
quent simulations. Hence, a more complete knowledge of
machine nonlinearities at the working points used here
may be needed to explain the observed loss, which has to
be the subject of future measurements. Assuming 200 A
octupole current, we have calculated that the dynamic
aperture shrinks to a radius of 2:5� near Qx � 6:25 for
103 turns and about 2:2� for 105 turns.
C. 2D simulation

We first attempt a comparison with the fully self-con-
sistent 2D particle-in-cell (PIC) version of the MICROMAP

code [12] with 105 simulation particles, mainly to dem-
onstrate that synchrotron motion and 3D are indispens-
able. We employ a Gaussian distribution function and a
64� 64 grid filling a rectangular boundary of 70�
70 mm size. We find no loss for 40 A: the rms emittance
growth remains below 2%. In the absence of space charge
it is 15% at Qx � 6:25, independent of the octupole
strength, which only determines the time it takes to reach
saturation (about inversely proportional to the octupole
strength). This low saturation level of 2% is a result of the
well-known mechanism of nonlinear detuning [6]. The
effect is enhanced here by the large space charge detun-
ing relative to the natural detuning effect of the octupole.
It is crucial, for this detuning to be effective, that the
single-particle tune (including space charge) is static in
the 2D simulation due to the absence of synchrotron
124201-3
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oscillation. A more pronounced effect, with a loss regime
and an emittance growth regime analogous to the experi-
ment, though quantitatively still much weaker, is ob-
tained assuming a 5 times stronger octupole. This is
shown in Fig. 4 after 1000 turns, where the effect is
practically saturated.

The saturated maximum emittance growth is now
about 8%, which reflects the reduced space charge detun-
ing relative to the octupole strength. The loss regime
confirms the shrinking of the dynamic aperture forQx !
6:25. Note that a comparison of this self-consistent round
beam simulation with a case, where the horizontal tune
shift is unchanged, but the vertical emittance is reduced
to the experimental value, has shown that the emittance
asymmetry has a weak effect only.

In order to explore the evolution over significantly
longer times we have replaced the fully self-consistent
space charge calculation by an analytical calculation for
the ‘‘frozen’’ initial profile. While such analytical space
charge models ignore the dynamically changing space
charge force, they have the advantage of being much
faster and eliminating completely the inherent noise of
a PIC simulation. As a first example we have taken the
above 2D coasting beam case with exactly the same
transverse rms values and Gaussian distribution. The
round beam approximation allows us to use the Gauss
law for space charge calculation, which we have applied
to the initial profile. The result after 103 turns—without
updating the space charge electric field—is found to
deviate by not more than �10% from the self-consistent
simulation. Beyond this, the analytical space charge
model shows practically no change of rms emittance
between 103 and 105 turns. This finding gives us confi-
dence that self-consistency might not be an important
factor as long as emittance growth or loss is small enough.

D. 3D simulation with synchrotron motion

The failure of 2D simulation to describe the experi-
ment justifies the need for including the longitudinal
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FIG. 4. (Color) Result of fully self-consistent 2D simulation
with 5� stronger octupole (200 A) after 1000 turns. Shown are
rms emittances and total intensity in units of initial values.
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motion in a 3D bunch model, which induces a tune
modulation primarily via space charge. In Appendix A
we show that for certain classes of density profiles we can
perform an exact integration of Poisson’s equation using a
fully analytical method. This method generalizes a tech-
nique used in Ref. [13] for 2D and parabolic profiles to the
3D case as well as more general (relatively arbitrary)
density profiles. It uses only integrals of algebraic expres-
sions in x, y, and z and is therefore sufficiently fast and
noise free. We employ a density distribution following a
higher order parabola of the kind �1� x2=a2�3 (in x and
similar in y and z), which is analyzed in detail in
Appendix B. Its core is sufficiently close to that of a
Gaussian, but it has a finite beam edge at 3�. Using
2000 test particles we generate the corresponding
(initially) consistent distribution in 6D phase space,
assuming the same bunch length (200 ns at 4�) and
a synchrotron period comparable with that of the
experiment.

The dependence on the working point is seen (Fig. 5) to
have a similar trend as in the experiment for Qx > 6:28,
but no loss for smaller tunes. For better comparison with
the experiment we have applied a Gaussian fit to the
simulation data and determined the rms emittance from
this fit, which puts the emphasis on the core emittance
rather than rms emittances. Note that the relatively large
emittance growth without accompanying loss reflects the
large physical aperture in both experiment and simula-
tion, if compared with the initial beam size.

The resulting maximum halo increases for Qx ! 6:25
(Fig. 6). This is due to the fact that larger betatron ampli-
tudes must be adopted to compensate the increasing space
charge, while the particle moves longitudinally to the
bunch center and trapping on the resonance island is
maintained. Note that for Qx ! 6:32, where the reso-
nance loses its effect, the halo shrinks to the initial
beam edge of 3�.

This halo formation by island trapping is the reason for
beam loss in the experiment, where apparently further
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FIG. 5. (Color) 3D simulation using analytical space charge
(40 A octupole). Shown are simulated rms emittances
(Gaussian fit) after 5� 105 turns and experimental values.
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nonlinearities cause a smaller dynamic aperture than in
the simulation and lead to halo extraction. An example of
a simulation transverse beam density cut with pronounced
halo determined after 5� 105 turns is shown in Fig. 7 on
a logarithmic vertical scale.

The total number of particles in the halo at this instant
is about 1%. This quantity does not include the particles,
which have been temporarily in the halo at some earlier
time, and which would determine the total loss, if a
physical aperture would intercept the halo. We will return
to this issue of integrated halo in Sec. III F.
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E. Interpretation

Our interpretation of the significant difference between
2D and 3D emittance growth relates this to synchrotron
motion: in 2D particles have static tunes and are on
resonance for basically one value of the betatron ampli-
tude. Once on resonance they get easily detuned again
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FIG. 7. Particle density profile normalized to the bunch cen-
ter density in simulation for Qx � 6:26 (radial units in initial
�). Note the evolution of tails beyond 3�.
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after a small amplitude increase due to the dominant
space charge detuning; in 3D the synchrotron motion
makes the particles oscillate between high and low space
charge, which induces an efficient periodic tune modula-
tion. Eventually such particles are locked to the resonance
islands, which implies that they may be carried to a larger
transverse amplitude to compensate the enhanced space
charge when moving back to the bunch center. A rela-
tively large number of particles, those with sufficiently
large synchrotron amplitude to reach the island tunes, is
thus able to periodically cross the resonance, until trap-
ping occurs. As was shown in Ref. [5], such trapping may
be followed by detrapping after some time unless the
particle hits the aperture before. This process is shown
in Fig. 8, where we plot the time evolution for a single
test particle of the simulation in Sec. III D with tune
Qx � 6:257.
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FIG. 8. Trapping and detrapping of a single test particle and
Qx � 6:257. Shown are transverse relative single-particle emit-
tances as functions of turns (top frame zoom of bottom frame
abscissa).
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FIG. 9. Statistical evaluation of trapping and detrapping of a
single test particle over 107 turns andQx � 6:257. Shown is the
probability with which a given particle stays continuously
outside the ‘‘reference emittance’’ for a certain number of
turns.
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The particle was arbitrarily chosen with maximum
synchrotron amplitude, hence initiated at the bunch
end. Units on the abscissa are horizontal single-particle
emittances relative to the initial (transverse) beam edge
emittance corresponding to 3�. The initial relative
single-particle emittance is chosen to be 0.8. The tune of
Qx � 6:257 is sufficiently close to the resonance so that a
large halo radius may be expected, which is confirmed by
the simulation. The growth of the single-particle emit-
tance up to 5.5 times the beam edge emittance is consis-
tent with Fig. 6. Noting that a full synchrotron period
takes 625 turns, the main structure of this plot is seen to
be closely linked to half synchrotron periods. The first
major spike near turn 1750 indicates island trapping for a
shorter fraction of the synchrotron period: after trapping
the synchrotron motion carries the particle from one side
of the bunch through the center (where it adopts maxi-
mum emittance) to the other side; there it gets detrapped
at small emittance and remains so for about another half
synchrotron period, followed by another trapping event.
The large excursion at about turn 3350 leads to immedi-
ate detrapping and the particle remains at large betatron
amplitude for half a synchrotron period when it gets
trapped again, apparently in the phase where it longitudi-
nally goes through the bunch center, and is lost from the
island at a somewhat smaller betatron amplitude, and so
on. This whole process follows a chaotic pattern as is seen
from the extended plot on the bottom of Fig. 8.

Over a larger number of synchrotron periods the par-
ticle may stay at increased amplitude —likewise at any
level of amplitude — continuously over a certain interval
of time, because it was detrapped after a preceding trap-
ping. On a long run it thus frequently jumps between halo
and core, which implies also a large jump in the periodic
tune modulation due to the strong dependence of the
betatron tune on transverse distance. This process of
trapping and detrapping by an island is, in principle,
closely related to previous studies of the effect of machine
tune modulation in the absence of space charge
[7,8,10,11,14]. The main difference lies in the fact that
the space charge tune modulation is exposed to these large
jumps following trapping or detrapping events, hence the
relative position of islands changes in time and from
particle to particle.

To illustrate the process of trapping and detrapping in
more quantitative terms we have analyzed the single-
particle emittance of the specific test particle of Fig. 8.
In Fig. 9 we plot, for a total history over as many as 107

turns, the probability that the single-particle emittance
exceeds a certain ‘‘reference emittance.’’ The latter we
have chosen as twice the emittance corresponding to the
unperturbed beam edge at 3�. For every crossing of the
reference emittance we determine the number of turns,
and the particle continuously exceeds this value.
Referring to the bottom diagram of Fig. 8 we note that,
for example, there is an event following turn 10 800,
124201-6
where �x=�x;edge > 2 for 2000 turns. This particular event
yields a probability of n� 2000=107 at bin 2000 on the
abscissa, if such an event occurs n times over the full
length of 107 turns (we are ignoring events lasting less
than 50 turns). As expected from Fig. 8 these probabil-
ities are clustered around multiples of half synchrotron
periods. Note that the probability for the particle to be
continuously beyond the reference emittance for more
than six synchrotron periods is only at the 10�4 level.
For less periods there is almost a linear dependence on the
logarithmic scale. The integrated effect is such that this
particle spends about 50% of its time outside the reference
emittance.
F. Instantaneous and integrated halo intensity

The 50% total halo residence probability for the above
described test particle is specific to this particle, and for a
sufficiently large number of turns to get good statistics.
Particles with different initial betatron or synchrotron
amplitudes may take a different time to get trapped. It
is therefore useful to compare, at a given time, the in-
stantaneous halo intensity with the integrated halo inten-
sity. The latter is defined as number of particles which
have been ‘‘kicked’’ into the halo (�x=�x;edge > 1) at least
once up to this time, no matter for how long. The actual
loss on a physical aperture limitation is given by this
integrated halo intensity. The result is shown in Fig. 10
for the case with Qx � 6:26, where it is seen that the
instantaneous halo intensity levels off at about 1% rela-
tively early (compare with the corresponding final density
cut in Fig. 7). The integrated halo intensity, instead,
124201-6
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continues to grow and exceeds the instantaneous one by
about a factor 4 up to turn 5� 105.
G. The rms self-consistency

The simulation rms emittance evolution for Qx � 6:29
using the fully frozen analytical space charge is shown in
Fig. 11. The time profile compares well with the measured
data, but saturates somewhat below the experimental
values. Similar to the instantaneous halo intensity in
Sec. III F, this saturation is due to the fact that an equi-
librium occurs between trapping and detrapping among
the particles with a sufficiently large synchrotron ampli-
tude (depending on Qx) to cross the resonance. We com-
pare this result with a modification, where the growing
FIG. 11. (Color) 3D simulation emittance evolution for Qx �
6:29 comparing analytical fully ‘‘frozen’’ space charge with
results obtained by using a continuously updated rms size
(squares: measured values).
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rms emittance is used to update the horizontal rms size.
As a result of this rms self-consistency space charge gets
weaker with progressing emittance growth. This allows
even particles to cross the resonance, which have initially
had too small of synchrotron amplitudes, correspond-
ingly large tune shifts, to be able to reach the resonance
condition. With this increasing number of potentially
resonant particles, further emittance growth takes place,
and better agreement with the measurement is achieved.
While this simple modification works well in the emit-
tance growth regime, it does not help to improve the
agreement in the loss regime, where better knowledge of
the dynamic aperture is needed.

IV. CONCLUSION

Synchrotron oscillations in a 3D bunch have been
shown to enhance significantly the response on the octu-
pole, if compared with the coasting beam 2D case. In
the emittance growth regime quite good agreement is
achieved with the measurements over half a million
turns, which supports our 3D space charge model and
the interpretation of the observed phenomena in terms of
tune modulation caused by space charge. We predict the
formation of a halo increasing in radius for Qx ! 6:25
and claim this is the source of the measured loss. Future
measurements should consider weaker octupoles, where
the predicted halo might be entirely inside the dynamic
aperture and observable by scrapers. Obviously more
refined measurements are desirable to further deepen
the understanding of the underlying complex nonlinear
dynamics processes. Theoretical efforts to explain the
detailed processes have to be advanced accordingly.
Cross-checks of the simulations presented here with fully
self-consistent 3D simulation may be feasible over some
104 turns, which requires pushing the octupole excitation
to the limits in the experiment (planned for the near
future).

APPENDIX A: ANALYTICAL SOLUTION OF
POISSON’S EQUATION

It is well known that Poisson’s equation can be inte-
grated explicitly for the special class of ellipsoidal sym-
metry density profiles, where the real density (normalized
to 1) can be written as

n�x; y; z� �
1

4�abc
n̂n�T�; (A1)

with

T �
x2

a2
	
y2

b2
	
z2

c2
; (A2)

and
Z 1

0
n̂n�t2�t2dt � 1: (A3)
124201-7
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The corresponding distribution function in 6D phase
space is based on the same kind of symmetry using the
Courant-Snyder invariants

f�~xx; ~xx0; ~yy; ~yy0; ~zz; ~zz0� � �F
�
�x
�̂�x

	
�y
�̂�y

	
�z
�̂�z

�
; (A4)

where � is a normalization constant and F an arbitrary
function. The coordinates are normalized by using the
single-particle emittances as invariants, hence �x � ~xx2 	
~xx02, �y � ~yy2 	 ~yy02, and �z � ~zz2 	 ~zz02, with maximum val-
ues �̂�x, �̂�y, and �̂�z. Using these invariants to construct the
distribution function is based on the approximation that
the underlying motion is linear. Note that for the consid-
ered weak nonlinearities such a matching of the initial
distribution consistent with the linear part in the focusing
forces is common practice.

The electric field for N protons in the bunch is then
given by (see Refs. [15,16])

Ex �
eN
8��0

x
Z 1

0

n̂n�T̂T�

�a2 	 t�3=2�b2 	 t�1=2�c2 	 t�1=2
dt;

(A5)
with

T̂T �
x2

�a2 	 t�
	

y2

�b2 	 t�
	

z2

�c2 	 t�
: (A6)

For simplicity we limit the discussion to rotationally
symmetric bunches, hence a � b and T � r2=a2 	
z2=c2, with r �

����������������
x2 	 y2

p
. We assume a power series

expansion:

n̂n�t� �
X1
l�0

cltl: (A7)

Note that such a general ansatz allows us to consider
sufficiently realistic density profiles. In previous work in
connection with the 2D coasting beam case only the
linear term was considered, which creates a parabolic
density profile (see Ref. [13]). While we present the gen-
eral formalism here, we will, later on, keep the linear as
well as quadratic terms.

Using Eq. (A6), we obtain

n̂n�T̂T� �
X1
l�0

cl
X
i	j�l

�
l
i
�

r2i

�a2 	 t�i
z2j

�c2 	 t�j
: (A8)
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By inserting this into Eq. (A5) we find the general ex-
pansion of the electric field as

8><
>:
Ex �

eN
8��0

x
P

1
l�0 cl

P
i	j�l

�li�r
2iz2jIi	1;j�0�;

Ez �
eN
8��0

z
P

1
l�0 cl

P
i	j�l

�li�r
2iz2jIi;j	1�0�

(A9)

(for Ey similar replace x by y). Here we have introduced
integrals of the kind

In;m�t1� �
Z 1

t1

1

�a2 	 t�1	n �c2 	 t�1=2	m
dt; (A10)

where the boundary parameter t1 is introduced for density
profiles with a real finite boundary. To evaluate these
integrals we have found a useful recurrence relation of
the form

In;m�t1� �
��1�n	m

P0
n�1�1�Pm�1�1=2�

@n

@#n
@m

@$m
I0;0; (A11)

where # � a2, $ � c2, and Pn�a� �
Q
n
i�0�a	 i�. Using

the definitions u �
���������������
a2 	 t1

p
, v �

���������������
c2 	 t1

p
, and d �����������������

c2 � a2
p

the following results are found for c � a:

In	1;m � �
1

1	 n
1

2u
@
@u
In;m; (A12)

and

In;m	1 � �
1

1	 2n
1

v
@
@v
In;m: (A13)

The starting integral is

I0;0 � �
'
d
; (A14)

with

' � ln

�
v� d
v	 d

�
: (A15)

This results in the following expressions for the lowest
orders:
I10 �
v

d2u2
	
'

2d3
; I01 �

2

v�u2 � v2�
�
'

d3
; I20 �

��v�5u2 � 2v2��

4d4u4
�

3'

8d5
;

I11 � �

�
2u4 � u2v2 � v4

d6u2v

�
	

3'

2 d5
; I02 �

�2�u4 � 5u2v2 	 4v4�

3d6v3
�
'

d5
;

I30 �
v�33u4 � 26u2v2 	 8v4�

24d6u6
	

5'

16d7
; I21 �

�8u4 � 9u2v2 	 2v4

4d6u4v
�

15'

8d7
;

I12 �
��2u4 � 14u2v2 � 3v4�

3d6u2v3
	

5'

2d7
; I03 �

�2�3u4 � 11u2v2 	 23v4�

15v5��u2 	 v2�3
�

d'

��u2 	 v2�4
:

(A16)

Here we have set v �
��������������
c2 	 (

p
and u �

��������������
a2 	 (

p
. The parameter ( is used to distinguish between inside and outside (for

finite bunch boundary) according to
124201-8
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(�r; z� �

0 if T � 1;
t1 if T > 1;

(A17)

where t1 is a solution of

1 �
r2

�a2 	 t1�
	

z2

�c2 	 t1�
: (A18)

.
APPENDIX B: EXAMPLES

These expressions will be used to calculate explicitly
the electric field for three examples, where the Ey is
obtained from Ex replacing x by y. Note that a full
Gaussian requires extending the series expansion of n̂n�t�
to infinity. We confine the evaluation up to the second
order terms, which yield sufficiently smooth density
profiles.

1. Zeroth order

The normalized density zero order term leading to
uniform real space density is taken as

n̂n�t� �

3 if t � 1;
0 if t > 1:

(B1)

In this case the electric field can be written as

Ex �
3eN
8��0

xI1;0�(�; Ez �
3eN
8��0

zI0;1�(�: (B2)

2. First order

Using the first order term (similar to the 2D treatment
of Ref. [15] in 2D) we have

n̂n�t� �

15
2 �1� t� if t � 1;

0 if t > 1:
(B3)

This leads to a transverse density profile n�x� �
15=�16a��1� �x=a�2�2 (similar in y, z), in contrast with
the parabolic density obtained from the same order in 2D.
The equivalent distribution function is F / �1� t��1=2.
In this case the electric field can be written as

Ex �
15eN
16��0

x�I1;0�(� � r2I2;0�(� � z2I1;1�(��;

Ez �
15eN
16��0

z�I0;1�(� � z2I0;2�(� � r2I1;1�(��: (B4)

3. Second order

This is the case used for the present paper. At the beam
edge it is sufficiently smooth (with vanishing second
124201-9
order derivatives of density) representing a better match
with a Gaussian density than the previous one. The n̂n�t� is
based on the quadratic term:

n̂n�t� �

105
8 �1� t�2 if t � 1;

0 if t > 1:
(B5)

This corresponding density profile is n�x� �
35=�32a��1� �x=a�2�3 (similar in y, z), with a distribu-
tion function given by F / �1� t�1=2. The electric field
results as

Ex �
105eN
64��0

x�I1;0�(� � 2r2I2;0�(� � 2z2I1;1�(�

	 z4I1;2�(� 	 2r2z2I2;1�(� 	 r4I3;0�(��;

Ez �
105eN
64��0

z�I0;1�(� � 2r2I1;1�(� � 2z2I0;2�(� 	 z4I0;3�(�

	 2r2z2I1;2�(� 	 r4I2;1�(��:

(B6)
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