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Superconducting cavities provide high accelerating gradient in linear accelerators. However, it is
desirable to have a constant geometry of the accelerating cells in order to simplify manufacturing. Such
geometry leads to a nonsynchronism. A separatrix formalism has been developed for a superconducting
linear accelerator based on a model of stationary separatrixes overlapping, and an effective separatrix,
moving together with a quasisynchronous particle. This formalism is applied to two cases: either the
phase velocity changes from cavity to cavity, or the phase velocity is constant for cavities, belonging to
one family. Solving Hamiltonian equations, it is shown qualitatively and quantitatively, how the
quasisynchronous phase velocity has to be adjusted either by a stepped phase velocity or by a stepped
rf phasing in order to minimize the effect of nonsynchronism in the first or the second case.
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erators are simpler and cheaper, but the longitudinal
dynamics is more complicated. The particles are sliding

At first the stepped phase velocity structure is consid-
ered, when �str is constant over the cavity and changes
I. INTRODUCTION

In the beginning superconducting (SC) cavities had a
quite simple shape and were operated at relatively low
magnetic and electrical fields. Present day advanced tech-
nology allows the production of complicated SC cavities
with surface electrical and magnetic fields around
60–80 MV=m and 80–100 mT. Because of this the ge-
ometry of SC cavities has to be simplified as much as
possible to keep costs down, which forbids having a SC
cavity for a proton machine whose geometry is changing
with acceleration.

A first step of accelerating structure technology sim-
plification had been partly done already in normal-
conducting linear accelerators in the relative velocity
region, � � 0:5–0:9, for meson factories to make them
cheaper (Los Alamos National Laboratory, Institute for
Nuclear Research in Moscow). Accelerators of this class
consist of about 100 cavities, and each cavity has about 20
similar accelerating cells. Obviously, each cavity has a
constant phase velocity, and it changes step by step from
cavity to cavity. The step value of the phase velocity is
determined by the required superposition of neighbor
section separatrixes to provide an instantaneous stable
motion with minimum deviation from the average phase
in the longitudinal plane. Such structures have been
named stepped phase velocity structures [1], and their
technology can be applied for superconducting linear
accelerator as well.

The cavity design in Spallation Neutron Source (SNS),
Japan Hadron Factory (JHF), and European Spallation
Source (ESS) projects can be considered as a next step of
SC cavity simplification, when many cavities belonging
to one family have identical geometry [2]. It means the
phase velocity changes step by step from family to fam-
ily. The number of gaps in a cavity and the number of
cavities in one family can be varied from one to a few
tens, depending on many factors. Of course, such accel-
1098-4402=03=6(12)=124001(9)$20.00 
down or up relative to the rf wave in dependence of the
ratio between the particles and the wave velocities. Thus,
the particles are almost never in synchronism with the
equivalent traveling wave, and they have no instanta-
neous stability. However, abandoning synchronism, we
acquire freedom in the choice of the rf phase shift,
	’str, between relatively short SC cavities. By proper
phasing of the rf cavities one can provide a stable quasi-
synchronous motion in the whole accelerator. This case is
called the stepped rf phase structure.

The SC structures of SNS, JHF, and ESS are based on
the elliptical SC cavities with very high accelerating
gradients 25–30 MeV=m. They are supposed to work in
the region of high relative velocity� � 0:5–1:0, when the
efficiency of acceleration in the cavity with constant
geometry is still enough high. To get higher mechanical
rigidity in the region of� � 0:1–0:4 the SC structures are
based on the quarter-, half-wave, and H-type crossbar
resonators (spoke resonators). They have the smaller num-
ber of accelerating gaps, but they relate to the stepped rf
phase structure as well.

A separatrix formalism for both the stepped phase
velocity and the stepped rf phase structures has been
developed. This formalism is especially useful in the
design and the tuning of superconducting linear accelera-
tor in the low � region, since the technique developed for
the higher � gives insufficient approximation [2]. The
lowest value of �, the number of gaps in one cavity, the
number of cavities in one family, and the rf synchronizing
law for cavities are included in the separatrix formalism.
In particular, this technique has been used for the design
of a superconducting linear accelerator for H� and D�

ions to serve as an injector into the COSY ring in Jülich
providing an energy gain from 2 to 50 MeV [3].

II. ACCELERATORS WITH STEPPED PHASE
VELOCITY STRUCTURE
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from cavity to cavity. Here the quasisynchronous particle
and the quasisynchronous phase velocity in both cases
will be defined.

The accelerating electrical field, E�x; y; z� cos!t, in a
periodical structure with period D can be represented
through a Fourier expansion:

E�x; y; z; t� �
1

2

X1
n��1

En�x; y� cos
�
!t�

2� � n
D

z
�
: (1)

The structure phase velocity is defined as the velocity of a
fixed rf phase, when

!t�
2� � n
D

z � const;

�str �
D
n�

: (2)

Further, the traveling wave formalism is used and the
fundamental accelerating harmonic is denoted as Eac �
1
2En. Usually, it is the first harmonic (n � 1). In a struc-
ture with a growing accelerating period D�z� � �s�z�� a
particle moving with the structural phase velocity �s �
�str �t 2 0–1� is called a synchronous particle and ac-
cordingly �s is the synchronous phase velocity.

From Eqs. (1) and (2) at any moment t, when the
particle has a coordinate z, the instantaneous phase �
of the arbitrary particle relative to the synchronous par-
ticle phase ’s is

� � ’� ’s � !
Z z

0

d�
c����

� 2�
Z z

0

d�
D���

: (3)

However, in the stepped geometry structure the period
Di changes step by step either from the ith cavity to the
�i� 1�th cavity, or from the ith family to the �i� 1�th
family and equals Di � �stri�. Obviously, in that case
there is no synchronous particle, since all particles oscil-
late with double frequencies: the eigenfrequency � and
external frequency �� � �2�=TD�,

’ � A cos��t� �� � b cos���t� #� � ’0; (4)

where TD is the periodicity of Di and A, b are free and
forced oscillation amplitudes correspondingly.

The particle, oscillating with external frequency only
(A � 0), we call the quasisynchronous particle, and its
velocity as the quasisynchronous phase velocity.

A. Stationary separatrices crossing and accelerating of
quasisynchronous particle

Since �stri is constant over the cavity, the particle
motion in each cavity is described by an equation as in
a stationary separatrix with ’s � �90	:

d�
d�

�
�stri � �
�stri

;
d
d�

��stri � �� � �AE sin�; (5)

where AE � 
�eEac��=�2�m0c2 3�� is a slowly changing
constant determined by the acceleration rate, d� �
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!dt � �2�=Trf�dt is the newly normalized time coordi-
nate, and the phase � is counted out from the separatrix
center located in the phase ’s � �90	.

Passing from one cavity with �stri into another with
bigger �stri�1, the bunch is transferred into a separatrix
located higher. Because of a special ratio between �str of
neighbor cavities the bunch is always located in one of the
stationary separatrices and never outside. The last remark
is not met in stepped rf phase structures. To minimize the
bunch coherent oscillation the exit phase of the quasisyn-
chronous particle equals the entrance phase in the next
cavity. Thus, all particles oscillate around some average
phase �s. In such a structure the particle with the mini-
mum oscillating amplitude is the quasisynchronous par-
ticle. Figure 1 shows schematically the phase trajectories
of different particles. From Eq. (5) we can derive the
oscillation equation for the arbitrary particle in the ith
separatrix: �d2�=d�2� ��2 sin� � 0, where �2 �
�AE=�str� is the longitudinal oscillation frequency in the
traveling wave field with phase velocity �str. Since we
force all particles to oscillate around some average phase
�s, let us expand sin� in the �s vicinity in terms of  �
���s � tan�s:

d2 

d�2
��2 cos�s �  � 0: (6)

The velocity and phase deviations upon entrance and
exit of the cavity are coupled through the matrix:
2
4

 

���stri
�stri

3
5
out

�

2
4 cos� � 1

�cos1=2�s
sin�

�cos1=2�s � sin� cos�

3
5

�

2
4

 

���stri
�stri

3
5
0

; (7)

where � � �cos1=2�s � � � n is the advanced phase of
the longitudinal oscillation per one cavity, and n is the
number of periods in a cavity. Since the minimum oscil-
lation is reached at  out �  0 and

�� �stri
�stri

							out� �
�� �stri
� stri

							0;
we can write the expression of the initial phase  0 and the
oscillation amplitude	’ for a quasisynchronous particle:

 0 �
1

�cos1=2�s tan
�
2

�
�qs � � stri

�stri

�
;

and

	’ �
1

�cos1=2�s

�
�qs � �stri

�stri

�
out
tan
�

4
; (8)

where �qs is the relative velocity of the quasisynchronous
particle.
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FIG. 1. (Color) Longitudinal motion in the stepped phase ve-
locity structure.
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Determining the average phase, as ’s �  0 �
1
2 	’,

we find the velocity gain 	�qs for the quasisynchronous
particle over the whole cavity:

	�qs
�stri

� 4�cos1=2�s � tan�s � tan

�
�cos1=2�s � �n

4

�
:

(9)

For comparison in accelerators with a gradually growing
period of acceleration the velocity gain per n periods is
�	�=�� � �2 sin’s � �n, and it is similar to Eq. (9) for a
small value of ��n.

B. Effective separatrix creation

Thus, due to cavity design simplification there are no
synchronous particles in the stepped phase velocity struc-
ture. The whole bunch always makes a coherent oscilla-
tion, and a stable motion relative to a quasisynchronous
τ

β
str βstr

1
se

ct
io

n

la
st

se
ct

io
nδβ

T 2*T 3*T 4*T T 2*T

FIG. 2. (Color) Representation of velocity func
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particle determines the stability of any particle. The
above technique is based on a motion description in
each stationary separatrix of a cavity and their linking.
However, it does not give any information about the
effective separatrix, which arises around a quasisynchro-
nous particle and moves together with it. The effective
separatrix is the most important characteristic in the
longitudinal plane. The effective separatrix is created in
the following way. From Eq. (5) we can see the difference
between the motion in the structure with a gradually
growing period of acceleration and the motion in an
accelerator consisting of cavities with �stri � const. In
order to make them absolutely similar the structure phase
velocity of accelerating cavities has to change in accor-
dance with the law, where one would add in a second
equation of (5) some constant �d�str=d�� � ":

d�
d�

�
�stri � �
�stri

;
d
d�

��stri � �� � �AE sin�� ";

(10)

where AE is determined by Eq. (5).
Obviously, if one takes " � AE sin�s all particles os-

cillate around the phase

� s � arcsin

�
"
AE

�
; (11)

and one reaches full identity with a gradually growing
period structure. Of course, this is not a realistic case,
since in practice �stri is the stepwise function with step
value #� � �stri�1 � �stri (see Fig. 2). It can be repre-
sented through the linearly growing component �str �
"� and the sawtooth oscillating component ~��str, which
can be expanded in a Fourier series. As a result one has

�str��� � �str��� � ~��str���

� "�� #�
�
1

2
�

X1
m�1

1

�m
sinm���

�
; (12)

where �� � 1
n is the dimensionless frequency, and T �

1=�� � n is the periodicity of the phase-stepped velocity
function. Thus, taking into account the stepwise character
βstr

τ τ
3*T 4*T T 2*T 3*T 4*T

δβ

tion in the stepped phase velocity structure.
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of �str, it is reasonable to rewrite Eq. (10) as

d�
d�

� 1�
�
�str

;

d
d�

��str � �� � "�
#���
�

X1
m�1

cosm���� AE sin�:

(13)

Differentiating the first equation of (13) and substituting
the second equation, one has

d2�

d�2
�
AE
�str

sin��
"
�str

�
#�
�str

�
��
�

X1
m�1

cosm��� � 0:

(14)

To simplify the term �d�=d�� is omitted, which is re-
sponsible for the Lorentz friction and gives in the solution
the factor � / e��1=2��d ln�=d���. Taking into account (11),
the constant term in (14) can be written through the
longitudinal frequency:

"
�str

�
AE
�str

sin�s;
"
�str

� �2 sin�s: (15)

Following an obvious relation �d�str=d�� � 2� � T �
#�, or #� � �2�=���", which means �#�=�str� �
���=�� � 2�2 sin�s, Eq. (14) is represented in the form:

d2�

d�2
��2 sin���2 sin�s � 2�2 sin�s

X1
m�1

cosm���:

(16)

For a small deviation� from�s the solution of Eq. (16)
is

���� � A cos��cos1=2�s � �� $� ��s

� 2�2 sin�s �
X1
m�1

cosm���

�2 cos�s �m2�2�
: (17)

From Eq. (17) one can see that all particles oscillate with
frequency�cos1=2�s around a quasisynchronous particle
�qs, which itself oscillates around the average synchro-
nous phase �s,

�qs � �s � 2�2 sin�s �
X1
m�1

cosm��
�2 cos�s �m2�2�

�

with the frequency spectrum �� � �1�m�.
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Thus, no particle has zero amplitude of oscillation.
Since one is interested in the stable region relative to
the oscillating quasisynchronous particle, one uses a
new coordinate system that is moving together with a
quasisynchronous particle  � ���s � f���, where

f��� � 2�2 sin�s

X1
m�1

cosm���

�2 cos�s �m2�2�
:

The solution of Eq. (16) depends on the ratio between the
perturbation frequency �� and the longitudinal fre-
quency �cos1=2�s.

In case �� � �cos1=2�s, it is the motion in a fast
oscillating field, and one retains the lowest harmonic
only f��� � ’a cos��� with ’a � �2�2 sin�s=�

2
��.

Obviously, the quasisynchronous particle moving
along the trajectory �s � f��� does not experience the
action of external forces and in the new coordinates
f	� � �qs � �; � ���qsg one has the equations:

d 
d�

�
	�
�qs

;

d�	��
d�

� �AE � 
cos� ��s � ’a cos����

� cos��s � ’a cos�����: (18)

In Eq. (18) the new �s was changed by 90	 ��s and
passed in the ‘‘cos’’-wave coordinate system just to make
it similar to the generally accepted designation. So, one
has the explicit time-dependent Hamiltonian:

H�	�; ; �� �
�	��2

2�qs
�U� � (19)

with the potential energy:

U� � � AE � 
 sin� ��s � ’a cos����

�  cos��s � ’a cos�����: (20)

Taking into account the expansions

cos�cos���� � J0�’a�� 2J2�’a�cos2������ � ;

sin�cos���� � 2J1�’a�cos���� 2J3�’a�cos3������ � ;

(21)

where Jn�’a� is the Bessel function of the nth order, and
retaining a reasonable number of terms, the force
d�	��=d� is represented as
d�	��
d�

��AE �J0�’a� � 
cos� ��s��cos�s�

�AE �2J1�’a� � 
sin� ��s��sin�s� �cos����AE �2J2�’a�
cos� ��s��cos�s� �cos2���: (22)

The action of the fast oscillating component can be found by the Landau method [4], when the effective potential is
represented through the sum of a time-independent averaged fast oscillating component:
124001-4
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dUeff
d�

�
dU
d�

�
dp
d�

@
@�

�
dp
d�

�
: (23)

As a results one gets

H�	�; � �
�	��2

2�qs
� AE � J0�’a�

� 
sin� ��s� �  cos�s� � A2E � J
2
1�’a� � sin

2� ��s� � A2E � J
2
2�’a� � cos

2� ��s�: (24)
Hamiltonian (24) gives a full description of the system
and allows one to find the effective separatrix. Now one
can conclude that in the stepped phase velocity structure
due to coherent oscillation of the whole separatrix with
the frequency of a quasisynchronous particle and an
amplitude ’a, the effective longitudinal frequency
decreases proportionally to
















J0�’a�

p
, and consequently

the velocity spread of the separatrix decreases by the
same factor. Since another two terms A2E�’

2
a=4� and

A2E�’
4
a=64� are negligible, the phase length of separatrix

remains the same. The first term















J0�’a�

p
expansion is

1� �’2a=8�; that is, for a relatively large oscillation of the
quasisynchronous particle the separatrix changes insig-
nificantly. For instance, for the �30	 oscillation the
separatrix velocity spread decreases by 3%–4% only.

Therefore, the number of cavities in accelerators with a
fixed final energy can be decreased as much as one sat-
isfying the condition of beam matching with a separatrix.

Nevertheless, one is restricted by another requirement
to avoid an external resonance. For longer cavities the
frequency perturbation �� decreases and it could be
comparable (but not equal) to the eigenfrequency �� �
k�cos1=2�s�k � 2�. In that case one has an external
resonance in the nonlinear system. In first approximation
Eq. (16) can be written in the form:

d2�

d�2
��2 sin� � F��; ��; (25)

where

F��; �� ��2 sin�s

�
1� 2

X1
n�1

cos��n�


��2 sin�s

�
1� 2

X1
n�1

cos��n�

�
d�
d�

: (26)

Now we do not omit the Lorentz damping term, since it
can make a significant contribution in the final solution.

Following Bogolyubov’s asymptotic method [5], the
first approximation solution is sought in the form of

� � a��� cos ���;
d�
d�

� �a����sin ���; (27)

where  ��� � ��� ���� and it is determined by the
equation system:

da
d�

� 	t

�
�
1

�
F��a�sin ; �� sin 

�
;

d�
d�

� 	t

�
�

1

a�
F��a�sin ; �� cos 

�
; (28)
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where	t is the operator of averaging. Substituting Eq. (26)
into Eq. (28), one has

da
d�

��a
�2sin�s

2
�a

�2sin�s

2
cos
�2��n�������;

d�
d�

�2��n��: (29)

From this equation one sees that in the case of 2� � ��
the solution of this equation can be written

a / e���2 sin�s=2�� � ecos���2 sin�s=2��:

The first term is just a Lorentz damping factor existing in
any accelerator. However, due to the parametrization of
the friction force one has the additional term, which
depends on phase �. For some phase � this factor causes
additional damping, for another it makes the Lorentz
factor weaker. It causes particle losses especially in the
region of the adiabatic tail (see Fig. 1). Therefore, in
practice one has to make a minimum ratio ���=�� �
4–5, which avoids such phenomena.

III. ACCELERATORS WITH STEPPED RF PHASE
STRUCTURE

Consider the case, where the cavities are joint in fam-
ilies, and all ncavities of one family have the same
structure phase velocity �str � const for i 2 1–n. On
the one hand, such a linear accelerator is cheaper, since
it has a smaller number of cavity types, and all cavities
belonging to one family are interchangeable. On the other
hand, the violation of synchronism between particles and
structure requires another mechanism of acceleration. It
will be shown that such a mechanism is based on a special
law of rf phase shift from cavity to cavity.

A. The rf phase shift as acceleration mechanism in a
structure with one stationary separatrix

As in the previous case the particles move in a cavity,
where the structure phase velocity �str is constant.
Therefore, they oscillate around ’s � �90	. But in the
considered case the particle velocity deviation from the
structure phase velocity 	� � �str � � can exceed the
velocity spread of stationary separatrix with a synchro-
nous level � � �str. The longitudinal phase plane is di-
vided into three regions. Particles higher or lower with
respect to the separatrix drift along phase trajectories to
the left or the right directions correspondingly (regions III
124001-5
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and I), and only in region II do the particles oscillate in
the separatrix.

Figure 3 explains the mechanism of acceleration. It is
based on an rf shift for each cavity. The particles have to
return back each time after passing through a cavity to
get an average phase �s over all cavities. By a proper
choice of the rf phase shift 	’rf between cavities one can
create a quasisynchronous motion and in total a stable
motion in the whole accelerator. The quasisynchronous
particle oscillating in a cavity around ’ � 0 (for the
‘‘sin’’ wave) is forced by the intercavity rf shift to oscil-
late around�s. The equations of oscillation are similar to
a previous case (5), but with one difference: for each
cavity the initial and final phase deviations are not equal
each to other.

Taking into account the average phase �s of oscilla-
tion, one can write the expressions for initial phase de-
viation ’0 and oscillation amplitude 	’ for a cavity:

’0 �
2�s

1� cos�
�
�� �str
�str

�
1

�cos1=2�s

�
sin�

1� cos�
;

	’ � ��s � tan
2 �

2
�
�� �str
�str

�
2

�cos1=2�s

� tan
�

2
;

(30)

where � � �cos1=2�s�n is the phase advance of the
longitudinal oscillation per cavity, and n is the number
of gaps in the cavity. If the required velocity gain per
cavity is 	�, the average phase of oscillation �s is
derived from the simple formula �	�=�str� �
2� sin�s tan��=2�, following from Eq. (30).

Since the advanced phase � is a small value, the
oscillation amplitude can be defined as

	’ � �
�� �str
�str

�
2

�cos1=2�s

� tan
�

2
:

FIG. 3. (Color) Longitudinal motion in the stepped rf phase
structure.
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In comparison with the stepped phase velocity structure
this value [compare with Eq. (8)] is different for each
cavity and is much larger due to the bigger velocity
deviation.

B. Effective separatrix creation

Thus, the quasisynchronous particle executes an oscil-
lation with a large amplitude, and, in principle, it is
instantaneously unstable nearly all the time. The separa-
trix in the case of the stepped rf phase is created in the
following way. The structure under consideration has a
longitudinal periodicity integer of �str�. Therefore, one
uses the normalized longitudinal coordinate d& �
2��dz=�str��, but not as in the previous case with the
normalized time d� � 2��dt=Trf�:

d�
d&

�
�str
�

� 1;
d�
d&

�
eEac��str
2�m0c

2 3�
sin�: (31)

From Eq. (31) one derives the phase oscillation equation
�d2�=d&2� ��2 sin� � 0, where �2 � AE � ��

2
str=�

3�
is determined by means of the parameter AE �

�eEac��=�2�m0c

2 3�� introduced before in (5).
Obviously, if one does not undertake some action with
phase �, the particles will accelerate around phase � �
0, and acceleration will be absent, since 	W / sin�s. To
correct this situation one adds the external phase shift
’str�&� to the phase �. Following definition (3) the cor-
rected phase is

��&� �
Z &

0

�strd�
�

�
Z &

0
d�� ’str�&�; (32)

and the first equation of system (31) takes the form:

d�
d&

�
�str
�

� 1�
d’str�&�
d&

: (33)

Then the phase oscillation equation is

d2�

d&2
��2 sin��

d2’str
d&2

� 0: (34)

In case �d2’str=d&2� � const and not equal to zero,
all particles will oscillate around some phase �s �
arcsin
�d2’str=d&2�=�2�. Thus, the second derivative of
’str�&� defines the acceleration rate in the stepped rf phase
structure.

A stepped rf phase structure similar to the structure
with a gradually growing period of acceleration can be
found. Since the rf shift is coherent and acts on the whole
bunch, it is reasonable to find a function ’str�&� from the
synchronous particle condition:
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d�s

d&
� 0)

d’str�&�
d&

� 1�
�str
� s

;

d�s
d&

� AE
�str
�s
sin�s: (35)

Differentiating the first and substituting the second
equation there, one gets an equation for ’str�&�:

d2’str�&�

d&2
� AE �

�2str
�3s

sin�s: (36)

Substituting Eq. (36) into Eq. (34) one can conclude:
realizing a structure with an rf shift according to
Eq. (36), one has a structure similar to the structure
with a gradually growing period of acceleration with
synchronous phase �s. It is easy to find the function for
’str�&�. From the second equation (35) one gets

�2s
2

�
�2s0
2

� AE sin�s � �str � &: (37)

Substituting (37) into (36), one gets

d2’str
d&2

�
AE sin�s � �2str

�2AE sin�s � �str&� �2s0�
3=2
: (38)

Double integrating Eq. (38) and taking into account
’str�0� � 0 and

d’str
d&

							���str

� 0;

one gets the full definition of ’str�&�:
1
se
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io

n

4Τ 6Τ
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str
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ϕstr
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FIG. 4. (Color) Intersection
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d’str�&�
d&

� 1�
�str

�2AE sin�s � �str � &� �2s0�
1=2
;

’str�&� � �
1

A�
�2AE sin�s � �str � &� �2s0�

1=2 � &

�
�s0

AE sin�s

: (39)

This determines the rf phase shift function, which one
ideally provides for acceleration in a one phase velocity
structure.

However, such a function could be realized only in the
case when the rf phase of the cavity is shifted together
with the sliding particle [first equation of (31)]. In reality
the rf phase of each cavity is fixed and changes from
cavity to cavity step by step. The step value is propor-
tional to periodicity T of the cavities. Therefore, the
closest approach to the ideal case is the cavity with one
gap. However, for economical reasons one would like to
have a longer cavity with some gaps. Figure 4 shows the
function ’str�&�, which one could realize in practice (left
picture). It is a stepwise function with an average value
’str coinciding with an rf shift of the ideal case (38) and
(39). Introducing, like in the previous case, a ‘‘triangu-
lar’’ function ~’’norm �

P
1
m�1�1=�m� sinm�ph&, the real

’str�&� could be submitted through the sum:

’str�&� � ’str�&� �
d’str
d&

� 2� � T � ~’’norm�&�; (40)

where T is the period of cavity repetition and equals
numerically the number of gaps in one cavity.

As distinct from the stepped phase velocity structure in
the considered structure the amplitude of triangular func-
tion is proportional to the derivative �d’str=d&� � 2� � T:
ζ

where β  =βs str

d ( )ζ

ζ

ϕ  (ζ)
norm

ϕ
d ζ

str

rf phasing in structure.
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~’’ str �
d’str
d&

� 2� � T �
X1
m�1

1

�m
sinm�ph&; (41)

where �ph � �1=T�.
Substituting Eqs. (40) and (41) into (34) and taking

into account (36), one gets

d2�

d&2
��2sin���2sin�s�2

d3’str
d&3

X1
m�1

sinm�ph&

m�ph

�4
d2’str
d&2

X1
m�1

cosm�ph&

�2
d’str
d&

X1
m�1

m�ph sinm�ph&:

(42)

To compare the contribution of the terms on the right
side of (43) all derivatives are written in more explicit
form using the current velocity �:

d’str
d&

� 1�
�str
��&�

;
d2’str
d&2

� �2�&� sin�s;

d3’str
d&3

� 3
��&�
�str

�4sin2�s:
(43)

Figure 5 shows the behavior of the derivatives along the
accelerator. One can see that the contribution of the
second and third derivatives on the right side is negligible.
All derivatives are slowly varying functions, therefore,
the first derivative can be considered as a slowly time-
dependent coefficient.
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In the vicinity of �s one can write for Eq. (42):

��&� � A cos��cos1=2�s � &� $� ��s

� 2
d’str
d&

�
X1
m�1

m�ph � sinm�ph&

�2 cos�s �m2�2ph
: (44)

As in the case of the stepped phase velocity one defines
the particle oscillating only with external frequency as a
quasisynchronous particle:

�qs � �s � 2
d’str
d&

�
X1
m�1

m�ph � sinm�ph&

�2 cos�s �m2�2ph
: (45)

Applying a coordinate system moving together with
the quasisynchronous particle  � ���s � f�&�,
where f�&� is

f�&� � �2
d’str
d&

�
X1
m�1

m�ph � sinm�ph&

�2 cos�s �m2�2ph
: (46)

For �� � �cos1=2�s one retains the first harmonic
only f�&� � ’a sin�ph& with ’a � �2=�ph� � �d’str=d&�.

In the cos wave and using new coordinates f	� �
�qs � �; � ���s � f�&�g one gets the equation sys-
tem:

d 
d&

�
�str
�2qs

� 	�;

d	�
d&

� �AE
�str
�qs


cos� ��s � ’a sin�ph&�

� cos��s � ’a sin�ph&��: (47)

Thus one obtains the explicit time-dependent
Hamiltonian:

H�	�; ; &� �
�str
�2qs

�
�	��2

2
�
�str
�qs

� U� � (48)

with the potential energy:

U� ; &� � AEfsin� ��s � ’a sin�ph&�

�  � cos��s � ’a sin�ph&�g: (49)

Taking into account expansion (22) and retaining only
a reasonable number of terms, the force �d	�=d&� is
represented as
d	�
d&

� � AE
�str
�qs

� J0�’a� � 
cos� ��s� � cos�s� � AE
�str
�qs

� 2J1�’a�
sin� ��s� � sin�s� � cos�ph&

� AE
�str
�qs

� 2J2�’a�
cos� ��s� � cos�s� � cos2�ph&: (50)

Following the same method [5], the action of a fast oscillating component can be found, when the effective potential
is represented through the sum of time-independent and averaged fast oscillating components:
124001-8



PRST-AB 6 YU. SENICHEV, A. BOGDANOV, AND R. MAIER 124001 (2003)
H�p;  � �
�str
�2qs

�
�	��2

2
� AE

�str
�qs

� J0�’a�

� 
sin� ��s� �  cos�s� � A2E
�2str
�2qs

�
J21�’a�

�2ph
� sin2� ��s� � A2E

�2str
�2qs

�
J22�’a�

4�2ph
� cos2� ��s�: (51)
As in the stepped phase velocity structure one
can see as a fundamental effect the decreasing of
the frequency � �
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str=�

3
qs�J0�’a�

q
by a factor















J0�’a�
p

� �1� ’2a=8�. The separatrix length remains
the same.

The stepped rf phase structure in case �� � � has the
same length and a smaller energy spread in the factor














J0�’a�

p
, where the amplitude of oscillation ’a is slowly

changing in time.

IV. CONCLUSION

A separatrix formalism for superconducting linear
accelerators in the absence of synchronism between par-
ticles and phase wave has been developed. The separatrix
formalism consists of two parts. The first part is based on
the bunch motion relative to a stationary separatrix, and
the second part considers acceleration of a bunch in an
effective separatrix, moving together with a quasisyn-
chronous particle.

Separatrix formalism has been applied to two options,
when the phase velocity changes from cavity to cavity
and from family to family. In the first option it is shown
how the quasisynchronous phase velocity has to be ad-
justed by a stepped phase velocity in order to minimize
the effect of nonsynchronism. As a result due to the
noncompensated part of nonsynchronism the whole
bunch makes a coherent oscillation. The amplitude of
the coherent oscillation is proportional to the average
acceleration rate and inversely proportional to the
squared frequency of the phase velocity stepping and is
almost constant during acceleration. The acceleration rate
is determined by the first time derivative of the averaged
structure phase velocity.

In the second option nonsynchronism changes from
cavity to cavity and is larger. To create a quasisynchro-
nous motion the stepped rf phasing of cavities is used. It is
shown that the amplitude of the coherent oscillation is
124001-9
proportional to the first derivative of the averaged rf
phase and inversely proportional to the frequency of the
rf phase stepping. The acceleration rate is determined by
the second derivative of the averaged rf phase change. The
amplitude of the coherent oscillation depends on the
instantaneous nonsynchronism and changes from cavity
to cavity.

In both cases due to the coherent oscillation the mo-
mentum spread of the effective separatrix is squeezed
proportionally to
















J0�’a�

p
, where ’m is the coherent

oscillation amplitude. Therefore, in the stepped phase
velocity structure the effective separatrix momentum
spread is almost constant. But in the stepped rf phase
structure it can decrease significantly and determines the
limit of cavity number in one family. In both options the
effective separatrix phase length does not change.
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