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The TREDI Monte Carlo program is briefly described, devoting some emphasis to the Lienard-
Wiechert potentials approach followed to account for self-field effects and the covariant technique
devised to achieve regularization of electromagnetic fields. Some guidelines to the choice of the correct
parameters to be used in the simulation are also sketched. The predictions obtained for the reference
work point of the space-charge compensated SPARC photoinjector and a benchmark chicane designed
to study coherent synchrotron radiation effects in a magnetic compressor are compared to those of other

well-established simulation codes.
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L. INTRODUCTION

The main issue in the development of coherent ultra-
brilliant x-ray sources is the generation of ultrahigh peak
brilliance electron beams. One of the basic motivations of
the SPARC [1] experiment is the investigation of the
quality of the beam delivered at the undulator entrance.
The scheme proposed for the SPARC’s accelerating sys-
tem consists of a BNL/UCLA/SLAC type, 1.6 cell rf gun
operated at 2.856 GHz with high peak field (=
120 MV/m) on the cathode (Cu or Mg). The gun, sur-
rounded by a focusing solenoid, delivers a beam of =
6 MeV and is followed by a drift (up to 1.5 m from the
cathode) and two traveling wave linac sections operating
in an S band boosting the beam to the final 150 MeV
energy required to avoid further emittance growth due to
space-charge effects.

According to theoretical predictions [2] the working
point for high brightness rf photoinjectors and the veloc-
ity bunching technique [3] were chosen, in order to
achieve both longitudinal compression and emittance
preservation. The relevant parameters of this scheme are
summarized in Table L. In Fig. 1 are shown the profiles of
the rf gun (unnormalized) and solenoid fields.

For the above mentioned scheme, theory and simula-
tions (done typically with 2D axisymmetric codes
assuming instantaneous propagation of space-charge ef-
fects) nicely agree in predicting for transverse emittance
both compensation and a double minimum, mainly due to
a chromatic effect between the solenoid and the beam
energy spread. The region close to the local maximum
between the two minima is the optimal position
for the first linac section [2]. This choice, in fact, mini-
mizes the beam emittance on a slice basis, a concept
deeply connected to that of the cooperation length in
free-electron laser (FEL) dynamics.
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In this paper we essentially discuss and compare the
predictions mentioned above with those obtained with
TREDI, a fully 3D Monte Carlo program devoted to
simulations of charged beam dynamics by direct integra-
tion of particles trajectories, accounting for self-fields
through Lienard-Wiechert retarded potentials [4]. The
development of TREDI was originally motivated [5,6]
by the necessity of simulating, e.g., (i) rf injectors in
not-axisymmetric conditions (like those encountered
in the high aspect ratio injectors proposed for future
colliders); (ii) the effects on emittance compensation
schemes of axial symmetry breaking, possibly amplified
by nonlinearities of the system; (iii) emittance growth in
magnetic beam compressors due to radiative/acceleration
fields.

A detailed description of the simulation code and its
capabilities can be found in Ref. [7]. Notwithstanding,
it is worth remarking here that principia prima
Monte Carlo’s usually model the beam as a collection of
mutually interacting objects (‘““macroparticles’), whose
number, because of practical computer limitations, is
necessarily bounded to a few thousands or a few millions
at most. As a consequence, except perhaps for diluted
systems where self-fields can be neglected, suitable tech-
niques must be devised to cancel the effects of many
possible numerical artifacts, either leading to unreliable
results or posing stability concerns [8]. For example, since

TABLE I. Photoinjector parameters. The phase is relative to
the zero of the field.

Peak accelerating field 120-140 MV/m

Frequency 2.856 GHz
Phase (beam head) 30°
Charge 1.0 nC
Laser spot radius (homogeneous) 1.0 mm
Laser pulse length (flattop) 10 ps ( = 10 rf)
Solenoid peak field 3.09 kG
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FIG. 1. Electric (solid line, left scale, arbitrary units) and
magnetic (dashed line, right scale, in Tesla) longitudinal fields
for the BNL/SLAC/UCLA rf gun and focusing solenoid,
respectively.

in all practical cases each macroparticle mimics a fairly
large number ( > 10%) of “real life” electrons, one needs
to subtract the unphysical collisional contribution lurking
in the model because of the huge electromagnetic fields
that develop whenever macroparticles are close to each
other. While closeness poses a serious concern at low
energies, where static (velocity) fields dominate, colli-
nearity [see Eq. (9)] can well be a source of noise at fully
relativistic regimes, making difficult any prediction
about, e.g., coherent synchrotron radiation (CSR) effects
in magnetic compressors. In both cases numerical noise
appears to be concentrated essentially in the higher re-
gion of frequency domain, possibly limiting the code’s
capabilities to correctly reproduce genuine phenomena
occurring at smaller scales (e.g., microbunching). The
next section thoroughly describes the procedure adopted
in TREDI in order to achieve ‘“‘regularization” (smooth-
ing) of velocity dependent fields. Regularization of accel-
eration terms is also briefly sketched. In the third section
the problem of tuning this procedure will be discussed.
The fourth and fifth sections are devoted to the compari-
son of results with those obtained through other, well-
established numerical codes for photoinjectors and
magnetic compressors, respectively.

II. SMOOTHING OF EM FIELDS.

The smoothing approach followed in TREDI to regu-
larize the divergencies of electromagnetic (EM) fields
developing during simulations is that of dressing macro-
particles with a form factor, i.e., assuming the elemen-
tary dynamical objects to be extended rather than
pointlike charge distributions. This technique has proven
to be very effective at suppressing the high frequency
noise directly related to the well-known divergencies of
electrodynamics. Quite expectedly, it turns out that the
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choice of the form factor’s size and functional shape
(typically Gaussian or alike) largely determines the prop-
erties of the smoothing applied to the model. As a con-
sequence, a careful tuning is needed either to avoid
masquerading genuine effects or to weaken the depen-
dence on the number of macroparticles. It should be
noted—en passant—that also a suitable initialization
of the phase space [6] by sophisticated (quasi-)random
generators [9] or purposedly designed form factors [10]
may significantly help to speed up convergence. More-
over, while the working mechanism of this regularization
technique is not new [11] in a computational context and
dates back to the earliest models of the electron conceived
by Thomson, Poincare, Lorentz, Abraham, and Schott
[12], only recently have efforts been devoted to render the
smoothing procedure fully covariant (see [13], and refer-
ences therein). A covariant treatment is certainly prefer-
able for it gives more confidence in the overall validity of
the method. On the other hand, the procedure (as it will be
clear in the following) is devised on a particle-to-particle
basis in the reference frame where the source particle is at
rest. Since this is obviously not the frame where kine-
matical variables are directly available, a covariant for-
mulation presents at least two valuable properties such as
the following:

(i) Computational efficiency: the calculation can be
actually carried out wherever the dynamical variables
of the particles are directly available, namely, the accel-
erator (“‘lab”) reference frame, avoiding the necessity of a
huge number [ = O(N?)] of costly Lorentz transforma-
tions from one frame to another.

(i) Consistency/generality: in different reference
frames, the smoothing yields values of the fields con-
nected through Lorentz transformations, as they should
be. As a consequence, the regularization’s effects turn to
be naturally independent from the reference frame itself.

In order to explain how the mechanism of covariant
smoothing works, let us consider the expression of the
EM field strength tensor produced by a moving charge ¢
following a universe line r(7)[14]:

v _ q i (x = P)¥ VY — (x — r)?VH#
F _(x—r)'VdT[ x—r) -V } )

where 7 is the charge’s proper time; r and x are the 4-
positions (events) of field emission and observation, re-
spectively; V = (y, yB) is the 4-velocity (hereupon ¢ =
1). Note that r and x must fulfill the “‘retarded time”
condition:

(¢ = 1P = (= 1) — (= P2 =0,
Xo_r020

@)

(i.e., r must be on the past light cone of x. The strength
tensor is well known to separate into a ““velocity” and an
‘“acceleration” term
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{E_)‘_): EV+EA’ (3)

B=nXE,
usually expressed in a nonmanifestly covariant form [14].
The same result, however, can be devised carrying on the

derivative with respect to proper time 7 in (1) in a fully
covariant way, which can be shown to yield

d |:(x— PRV — (x — )P VH }: THY (W)

dr (x—1r-V S2(V)
T+ (V)
+[1 _S(W)]W’
where
v
SWU)=@x—-r-U, (5)
T*(U) = (x — n*U” — (x — r)"U* (6)

(where U is an arbitrary 4-vector). Hence, Eq. (3) can be
recast as follows:

acceleration term=F"%"

) S(W)
S(V)

velocity term=F},”
P
q
S (V)

q

FHY =
S2(V)

T*(V) }\

)

One can easily check that —FY and —F{ yield back Ei,
and E', as defined in (3).

Direct inspection of Eq. (7) suggests that both velocity
and acceleration fields become very large whenever

TV (V) + bw%wy—

SV)=(x—r-V=Ry(l—#a-B)—0. (8

It is clear that S(V) = O forR— Oor (1 — 7 - ,é) — 0, or
both. The velocity term describes nothing but the static,
Coulomb part of the field. Its e« 1/R* behavior poses
problems only at short distances, because of a “‘genuine”
divergence at R = 0. Acceleration field diverges at short
distances too, but with weaker grade than before because
of the typical o 1/R behavior. On the other hand, accel-
eration field can experience a dramatic growth for

B=n=(1—-4-B)—0. 9)

In fact, even though strictly speaking (1 — 7 - ) can
never vanish, for relativistic particles and 7 nearly par-
allel to B, it can get so close to zero to easily make the
fields change by several orders of magnitude. This ‘““col-
linear blazing” can extend at large distances from the
radiating charge because of the slow field’s falloff [ =
1/R, as compared to the = 1/(y?R?) behavior of the static
part].

The remarks made above show that the blowing up of
velocity and acceleration fields occurs in kinetic regions
inherently different. This must be taken into account
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when devising a procedure to regularize EM fields pro-
duced by macroparticles in a Monte Carlo simulation.
What seems most sensible in this respect is to put (in a
covariant fashion) in front of F{;” or F§"” “regularizing”
terms so that

Fy", Fi”"—0 forR—0, (10)
and
F —0 for B = h. (11)

In both cases preserving the tensor structure of the fields
requires resorting either to a Lorentz scalar either to a
2nd-rank tensor to be partially saturated with T#”(V) (for
velocity fields) or T#* (W) — [S(W)/S(V)]T#*(V) (for ac-
celeration fields). In order to control the divergence at
R = 0 the simplest and physically cogent choice seems to
introduce an “‘effective’” charge (i.e., a Lorentz scalar)

q— Q4 —r) (12)

(the V superscript stands for velocity) such that

WMy —
%—»0 for R — 0. (13)

It is easily seen from Eq. (7) that Eq. (13) implies regu-
larization of F%” and, a fortiori, of F}”. Note, however,
that acceleration terms need to be regularized as well in
the kinematical region singled out by Eq. (11).

In order to complete the program described above we
must devise an expression for the effective charge (12)
matching the requisites of covariance and fulfilling
Egs. (10) and (13). To this purpose, consider a macro-
particle described in its own rest frame by the static
charge density:

> q o o~ R
(%) = -O[AXT - 671 - AX] (14)
p v/deto
[do not confuse the function @ with the Heaviside’s func-
tion (‘“‘step” function) often indicated with the same
symbol] where

AF =3 — X

and

1
—_— O[AXT - 67 - AX]d?x = 1. 15
Tz Jo OLOF 07 00 (1

Here and in the following, the subscript S (’source”) will
be attached to quantities of the macroparticle generating
the fields, so that AX = X — X is the distance from the
macroparticle’s center. The shape and size of the macro-
particle’s form factor are described, respectively, by func-
tion ® and matrix &. For the latter, we only assume it to
be symmetric and positive definite. In other words, we
assume the charge density to be a convex function. As an
example, for a 3D Gaussian charge distribution

120101-3
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_ _z
0(z) = Gor exp[ 2}, (16)

& is the covariance matrix, while for an upright “hard
spheroid”

if z=1,

elsewhere. an

0) = {ir

a is directly connected to the ellipsoid’s semiaxes (note

that v/detd = abc):

2
b= ( b? ) (18)
2

Now, charge density p(X) is well known to be the time
component of the charge density 4-vector J(x) = J(z, X)
which depends, in general, both on X and z. Moreover,
signals propagate at the speed of light, i.e., the fields
experienced by an “‘observer” at (¢, Xy) build up from
the sum of contributions generated by infinitesimal
“source” charges p(¥)dV centered at events (z, X) on the
observer’s (past) light cone:

c-(tp—t)=c-At=|A%| =1%o — 3. (19)

It must be stressed that retard condition (19) must be
fulfilled anyway, including the case of a fixed charge
distribution (that is, a distribution observed in its own
reference frame), where only the geometrical shape as
described by (14) matters and time delays are not relevant
because the contribution from any given infinitesimal
charge does not change over time. In the macroparticle’s
reference frame, where an observer at rest at X, experi-
ences a purely static electric field, an “effective charge”
can be defined as the total charge included in the isoden-
sity surface associated with the value of p at the observer
point Xo:

9 (o) = [ (@) dx

R2(H=R?,

q -
= . O[R2(%)]dx, 20
vdeto f R2()=R2, [RE®) (20)

where:

R2@) = AT - 671 Ai=F— %) -6 - (F— X),

R2, = R2(7,). @1)

On the other hand, consistency with special relativity
suggests the quantity defined in Eq. (20) to be a
Lorentz scalar (for it describes an electric charge), mak-
ing it desirable to cast it in a form which is manifestly
covariant. By standard manipulations (see Appendix A)
the effective charge can be reduced to the following one-
dimensional integral:
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R,
Q oii(X0) = Qepr(Rp) = 47751];) O[R*]R*dR,
(22)

so that for distributions (16) and (17) Q.4 reads (see
Fig. 2)

4ar Ro R2
fi(Rp) = g— - |R%R
QuRo) =420 [ x| =75 |
_ Ro _\/5_ ) R
_q[erf<$) ; RO eXp( T>:|,
(23)
and
min(1,R )
Qui(Ro) =3¢ [ BB
_ R3O if Rés 1, (24)
1 elsewhere,

respectively.

Note that the term +/detd in Eq. (14) has simplified in
Eq. (22), which is the rationale of explicitly factoring it
out in Egs. (14) and (15) where it must be present to make
charge density transform accordingly to prescriptions of
special relativity [see (35) and (36)]. Moreover, the result
(22) clearly shows that the heuristic requirement of effec-
tive charge’s covariance can be fulfilled assuming that
R in (22) be a Lorentz scalar. A closer inspection of
Eq. (21) strongly suggests to generalize both ’R%) and
R2(X) by casting them as completely saturated tensor
products,

R2H) =R =Ax"-37"-Ax, R} =RA3)

(25)

between (lightlike) space-time intervals Ax =
(c - |A%|, AX) and a 4D tensor ' that in the macro-
particle’s rest frame must reduce to the special form:

T
0.8

=0.6

L]

o
0.4

Gaussian

0.2r /S Hard sphere

0.25 0.5 0.75 1
R

1.25 1.5 1.75 2

FIG. 2. Fractional effective charge as a function of R [as
defined in (21)] for a macroparticle with Gaussian (solid line)
and “hard spheroid” (dashed line) form factors possessing the
same covariance matrix. Note that for a hard sphere of radius r
the following result holds: r* = o2, /5.
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R S\ o
$-1— (Q 0 ><m macroparticle’s ) 26)

0 4! rest frame

The vanishing of 37! time components explains why in
the rest frame of the distribution time delays are irrele-
vant to the value of charge density and fields. The require-
ment that Eq. (25) be invariant implies that the
generalized covariance matrix 3 (the inverse of 3 )
possesses the expected tensor properties with respect to
Lorentz transformations. In fact, in an arbitrary inertial
frame where the macroparticle moves at a constant speed
B (for instance, the lab frame) the following equality
holds:

R*(x) = R*(x),
that is

AxT - 37N Ax = AXT -3 AX.

Since (A)x and (A)x' are obviously connected by a
Lorentz boost

(A)x = L(B)(A)X,
it follows that

Sl=L(B)-37" L(B), 27)

or, equivalently
2=1LB) -2 LB (28)

Note that the symmetry of 37! and of Lorentz trans-
formations implies that of 3 (and S/ ) as well.

It can be shown (see Appendix B) that for the (inverse)
generalized covariance matrix 3/ the following relation
holds:

s =(PB BN o)

A—1.]13% 72 P AT
[1+—1+7,8®ﬂ i|
(30)

is the (inverse) | form factor in the laboratory frame while
v, 1, and ,8 ® ,8 are shorthands, respectively, for

1
Y= (3D
Ny
R 1 0 0
1=(0 1 0| (32)
0 0 1
and
120101-5

- Bi B BiB2 BiBs
BB =B |'(BiBB)=| B:B1 B3 BB |-

B3 BiBi BB B3
(33)
As a final consistency check, observe that
2
A Y > 2T
1+—8@® =
det[ T+ B®B }
which implies
deté’ = y? deto. (34)
On the other hand, since
p'(x') = yp(x), (35)
it follows
p) = 2L B[R ()] = —~—- B[R2(X)]. (36)
Jdeté vdeté’

that is, Egs. (25), (29), and (30) allow one to cast (14) in a
covariant form.

Equation (22) can be used to regularize the electric
field (in the macroparticle’s rest frame) by the formula:

. Qp(WE 6T 3)
Eeff(x) = E

3 - %o (37)
ol

(see Fig. 3). Note that the electric field as defined in
Eq. (37) is always radial, which is true only when the
charge distribution is spherical (so one can make use of
Gauss’s theorem). Since in numerical simulations the most
sensible choice seems to assume the macroparticles’ form
factor to be a down-scaled copy (i.e., same aspect ratio,
reduced size) of the whole beam, in general this is not
the case and Eq. (37) is only an approximation. Not-
withstanding the basic result (see, e.g., [15]) that for a
charge distribution of the form (14) the charge on the
outside of an isodensity surface does not contribute to the
fields on the inside suggests that the main concept of
effective charge as a key quantity to form the fields
remains valid. In a rigorous approach the effective charge

1
y; \
/ \
0.8 / \
Ve \
/ N\

“0.6 4 X
S s/ N\
M /

0.4 7

7/
/ Gaussian
0.2 Y d Hard sphere
/

0.25 0.5 0.75 1
R

1.25 1.5 1.75 2

FIG. 3. Relative effective field as a function of R for a
macroparticle with Gaussian and ‘“‘hard spheroid” (solid and
dashed lines, respectively) form factors.
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Q ¢ should be substituted by a tensor reflecting the form
factor’s anisotropy. Explicit evaluation of such a tensor,
however, can be an awkward task for most but the sim-
plest distributions [like (17)]. In Fig. 2 the effective
charge vs R as defined in Eqgs. (23) and (24) is shown.
Figure 3 shows the effective electric field E, vs R for a
spherically symmetric macroparticle (i.e., for R o« |%,|).
The approach followed in the regularization of accel-
eration fields is somehow different from that discussed
above. The remarks following Eqs. (7) and (9) provide a
hint on a possible strategy. The basic idea is that of giving
to macroparticles a spread in transverse momentum in
order to reduce the contribution of collinear effects as |

2 _ 2 + 2
G2(So) =9 SO Soyp P

S — 2832y — 1)p? + p*’

given by (9). From a practical point of view this is
equivalent to give a finite size to the target macroparticle
and translates in substituting the “bare” values of 1/S3
and I/Sg in (7) with “smoothed” versions. Assuming
again Gaussian-shaped macroparticles, the terms 1/5?
and 1/S> become

1 1 % p> }
—_-—— dpexp| — — |p*G,(Sy),
1 1 % p> }
—_— dpexp| — — |p>G5(Sy),
where

G5(Sy) =2

While this approach proved to be quite effective at sup-
pressing the effects of collinearity, it is not yet completely
satisfying, mainly for the lack of both relativistic cova-
riance and strong physical cogency. Moreover the consid-
eration about the particle size drawn in the following
section does not apply rigorously to this method and the
choice of a correct smoothing factor still remains an open
question.

IIL THE “IMPACT” PARAMETER

As mentioned above, a down-scaled copy of the whole
beam seems the most reasonable choice when deciding
the detailed structure of the form factor being assigned to
macroparticle’s charge distributions like (14). This state-
ment must be understood, however, only in a statistical
sense, for the shape of the beam becomes distorted during
time evolution with respect to the usually (but not nec-
essarily) simple geometries assumed at initial time.
Besides that, the use of different functional forms during
time evolution can be awkward mathematically and quite
unpractical. For this reason a fixed functional structure
has been chosen, assuming that macroparticles are three-
dimensional Gaussian distributions of the type (16).
Heuristically we will assume the “‘size’ of such a distri-
bution to be proportional to the rms values of the beam as
a whole multiplied by a scale factor 3VN, where N is
the number of macroparticles. This scaling law is consis-
tent with the expectation that the macroparticles are
homogeneously distributed over the beam volume. The
scale factor can be ““tuned” in order for the superposition
of the macroparticles (the ‘““discrete approximation’) to
reproduce the features of the continuous distribution rep-
resenting the beam. To this purpose, assume that the
whole beam is described by a continuous charge distri-
bution p(X¥) normalized to a total charge @, being
approximated by the superposition of IV identical “lo-

120101-6

S5 = 3ySgp + 285307 + 2y(2y* — 1)S3p3 — (4% — 1)Spp* + yp?
[S5 — 285(2y* — D)p* + p*P '

| calized” microdistributions (i.e., macroparticles) of the
type (14) centered at positions ¥, Xp, ..., Xar:

. o X . . .
p(X) = Wi; O[x—x)"-67'-x—x)] (38)

with the understanding that the approximation turns into
an equality in the limit /" — oco. Note that in Eq. (38) the
symbol p has been used to identify the charge density of
the macroscopic distribution, while in Eq. (14) the same
symbol was used to identify the microscopic charge dis-
tribution of the single macroparticle. For any given finite
value of N, however, one wants to ‘“‘tune” the form
factor’s parameters in such a way that Eq. (38) turns out
to be at least a reasonably good approximation. In order to
evaluate the accuracy (as a function of N'), it is useful to
take the Fourier transform of (38):

- 9 X
plo) = O[6] > exp(~ie - %), (39)
i=1

where

O[a]

CieDQXT - 67" - X]dPx.

1
 (2m)3deto ﬁm ¢

Assuming that ¥, X,, ..., X4 are distributed according to
the p(X), it turns out that

Q N
W;exp(—ia-z)z Qmip(@)  (40)

[with the same understanding as (38)]. Equations (39) and
(40) imply that the result

lim O[&] = (41)

(2m)’

120101-6
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must hold for (38) to turn into an equality as the number
of macroparticles becomes infinitely large, i.e., the mac-
roparticles’ form factor must converge to a 3D delta
function. Since in simulations one always deals with a
finite number of objects, so that (39) and (40) are affected
by numerical noise, the optimal form factor is somehow
different from the white spectrum choice represented by
(41). The reason for the fairly obvious last remarks is that
in some cases it is quite easy to evaluate the left-hand side
(1hs) of (40) as a function of N and extend the result to
other distributions for which one can guess the same form
factor to work equally well. Assume, in fact, that the lhs
of (40) can be cast in a closed form:

Q N
N ,=Zl exp(—io - x;) = V(w, N), (42)

then the problem of finding the optimal form factor can be
cast as follows:

Sllp(@) — Bla]¥ (@, NIl = o.

Here variational symbol 6 must be understood as differ-
entiation with respect to any relevant parameter charac-
terizing the form factor, namely, the &. Here we |

(43)

intentionally disregard the possibility of considering the
X1, Xy, ..., X5 as parameters. In tracking codes, the posi-
tions of macroparticles are rather an outcome of the
simulation, except perhaps at initial time, when a careful
“preparation” of phase space can preemptively suppress
the numerical noise at an early stage, preventing it from
fully developing and being amplified (as, e.g., the quiet
start in FEL simulations [16]). As an example consider a
box of charge of uniform density and sides equal to
S, S, S, (along x, y, z directions) and suppose one wants
to represent it as the superposition of a number of macro-
particles having one and the same Gaussian form factor.
Assume, for the sake of simplicity, that these macro-
particles are placed at equally spaced positions along
the three axes. In other words, we approximate a continu-
ous distribution

p.(7) = Q {1 if x,y,2) €0, S,1x[0, S,]1X[0,S.],

A-B-C|0 otherwise,
(44)

by the following “discrete” superposition of N = N, -
N, - N, localized macroparticles:

N, N, 2 — 2 2
) Q RS O = i) =) @ )
pa(®) = XZZZWP N'—zjw—zi} (45)
N\/(ZW)3U§ R R R P Ox gy oy
where
1\ S
o L e 46
Mx,lvx <lx 2 >Nx ( )
etc. Let us evaluate the Fourier transforms of (44) and (45). We obtain
S-& S S, S
p (@)= (2Q7r)3 exp(—i 2(0 >Sinc<wx2 x)sinc<w"2 z )sinc(wZ2 Z) 47)
[sinc(x) = sin(x)/x] and
Q oo 2.2 2.2 B
p (@) = 7exp[——(wxax + wlo? + wio )}X exp[—i(o,py; + 0o py; + oug; )] (48)
¢ NVQ@m)? 2 T =1 4=1i=1 ' " o
respectively. The sums in (48) can be readily evaluated:
jﬁ exp[—i ] exp(i S )% [exp( i S )T exp[ iwax }Sin[wXT&]
TLW My | T Wy Tlwy = - A o
=1 ot 2N i=1 N, 2 sin[wXTAx]
where A, = S,/IN, etc. The Fourier transform of the sampled distribution becomes
. expl— i (w20 + wick + wiod)] | .
pul@) = ———2 S (D). (49)
sinc[ 5=+ [sinc[ =5~ ]sinc[*5~]
Equation (49) clearly shows that the ideal result would be to manage things in such a way that
exp[— wlo?] exp[— lwlo?]exp[—1wio?] o 50)
sinc[5] sinc[“’#A'v sinc[#5>
120101-7 120101-7
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This is strictly true, of course, only when (along a given
axis, say x)

A,o,—0.

Equation (50) clearly suggests that one wants to “match”
the Fourier transforms of the macroparticle’s form factor
with that of the *“building blocks” tiling the macroscopic
distribution p(X), that is the N (microscopic) flat distri-
bution of sides A, X Ay X A_ (the average spacings of
macroparticles along the x, y, z direction). On the other
hand, the comparison takes place at a “local” (*“‘micro-
scopic”) level, which means that an optimal tuning of
(50) should work as well for a charge distribution differ-
ing from (44) only at boundaries (as a uniform distribu-
tion over a homogeneous cylinder), or for a distribution
not uniform at all, provided there is a large enough
number of macroparticles over a scale at which the dis-
tribution itself can be considered *“‘smooth.”

A closer inspection of (50) suggests that one is compar-
ing the Fourier transform of the macroparticle to that of a
uniform density distribution over a length scale equal to
A, i.e., the average spacing of macroparticles along a
given direction.

Given N (i.e., the A’s), finding the value of o ’s min-
imizing the distance of p, from p. in the sense of (43) isa
difficult task for which a number of workarounds can be
exploited:

(i) choose values of o’s that nullify the first nonzero
coefficient (apart from the Oth term) in the series expan-
sion of (50). To this aim, we define an (dimensionless)
“impact parameter’” P such that

A
o=P Nivh (51)
The rationale of +/12 in (51) is to define P to compare o
directly with the rms value of a flat distribution of width
A (the “building block™). Since

(U2 2.A2
X5 L pyazen
SWES 24
1
+——(5P* — 10P2 + DA*w*
5760 0 JAe
+ O(Aw?), (52)

it is easily seen that the value
P—1 (53)

not only nullifies the A?w? term in (52), but minimizes
the A*w*s coefficient (which is always positive) as well.
Equation (53) clarifies the remarks made about Eq. (50),
suggesting that one must choose the macroparticle’s o to
be the same as the rms value of a flat distribution of width
A (the building block).

(i1) choose a value of P that minimizes the functional
“distance” between the numerator and the denominator

120101-8

of (50), i.e., imposing that

a/YlD(P) — 0, (54)
aP
where
= [ (o] =255 Jrand] 5 )
= xp| — — —_— w,
X1D . P 24 )
(55)
or, more rigorously,
aXSD[P] — O, (56)
aP

where

Xon(P) = ] (€[, A] - S[@, ARda, =0, (57)
M3

. 2p2A2 2p2A2
Eo, Al = exp[— it }exp[— Oy S }

24 24
w2 P2A2
X _ z
e -5 ]
and
- A A , A
S[w, A] = sinc[w"2 o }sinc[wy2 ) }sinc[wzz z }
It can be shown that (54) is fulfilled for
1
P=—==~ 1201 (58)

Jlog2
The integral in Eq. (57) can be shown to yield

872 (33 3
=" V- 232 _ <1 N
oolP) =3 x|t 7 26“(\/2#)“’

and no value of P fulfilling (56) can be found in closed
form. It can be shown, however, that the numerical value
is very close to (58):

P =1.168. (59)

(ii1) A different approach consists of minimizing in
coordinate space the following functional distance:

mol] = [ [pad — piPdE (60)

This approach, while more rigorous than the ones above
has the drawback of yielding a value of impact parameter
P that depends, yet very weakly, on the number of macro-
particles used in the simulation. For the sake of simplic-
ity, the calculations will be made in the 1D case (the
extension to 3D being straightforward), for which
Eq. (60) reduces to

120101-8
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+oo where p.(x) is a homogeneous distribution normalized to
mp(P) = f_m [palx) = p(x)Fdx. ©1) Q with edges at x = (z)gand x=S:
_ Q1 ifxe(0 5]
In the case considered so far pelx) = S { 0 otherwise, (63)

+o00 N (x— A)2 2
Mi
Np(P)= f [WZ@(I(— 202 )‘Pc(x)} dx,  andthe u,’s are defined according to (46). After introduc-
- o= ing the impact parameter as in (51), Eq. (62) reduces
(62) | (taking apart the irrelevant normalization factor 9Q2) to

mD(P)=H [NZZ [#}—%ieﬁ[?(f—%)” (64)

i=1 j=

It is easily seen that the optimal value for P corresponds to the minimum of

]

ll]

which depends on N only through the sum. The “optimal value” of P turns out to be (see Fig. 4)

1.59 N = 36,
1.65 for N = 10?%, (65)
1.90 N =103

corresponding in 3D to N3 = 5 X 10%, 10%, and 10° particles, respectively. A similar approach can be followed for
other distributions. As a relevant example, consider a zero centered Gaussian macroscopic distribution

2
¢ -— 66
pelx) = fz p[ 222} (66)
that we decide to approximate by a superposition of N equally spaced Gaussian functions of standard deviation
1
N
centered at positions
1 6
—324—( 5)5, i=1...,N, 8=W2=60', (67)

and normalized to

e e

In other words, we assume that

2
pul) = Jz_—zf(z) e

It can be shown that the distance 7,p in this case is (neglecting as above the irrelevant normalization factor Q?)

o 1 11X X 9(i — j)? N + 1 — 2i)?
771D(P)_m{w+ﬁ;f(l);f(])exp[_ P2 :| \/}ﬁiZf(l)eX[ W:” (68)

In Fig. 5 Eq. (68) is plotted as a function of P. The |
minimum occurs at a value

(1) A close inspection of Fig. 4 suggests that a value of P
too small can lead to an overestimation of space-charge
effects much more dramatic than the underestimation

P =35 resulting from a value larger than the optimum, for the
steepness of the curves is much higher for small values
Some remarks are in order at this point. than for large values of P.
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[arbitrary units]
o o o o

N O N & O o N

1o —Palf

FIG. 4. Plots of y;p(P) as defined in Egs. (55) and (57) and of
71p(P) as defined in Eq. (64) (for N = 36, 102, and 10°). The
macroscopic distribution is assumed to be uniform, and macro-
particles are placed at equally spaced positions. The functions
have been rescaled to have the same value at the right edge of
the scale.

(i) One could think that the optimal values (53) and
(58) (or its 3D (59) variant) and (65) have been derived
from the somehow ad hoc assumption that the beam is a
continuous distribution of homogeneous density, and the
macroparticles are placed at equally spaced positions. It
turns out that this assumption is in fact very conservative
since it leads to a value of P much smaller than one would
need to describe accurately a beam as the superposition of
randomly distributed macroparticles, as can be seen in
Fig. 6. Since in a simulation the positions of particles
happen to be distributed at random, one would expect a
realistic value of P to be higher than the optimal values
obtained in the previous analysis.

(iii) It turns out that enlarging the impact parameter by
a factor of 2 or 3 around the value (65), with the caveats of
point (i), has almost no effect on the final results of
typical simulations. Quite remarkably, all the relevant
quantities (rms values, energy spread, etc., emittance)

(P) (Gaussian

(Gaussian

[arbitrary units]

IPc—Pal?

FIG. 5. Plots of 1p(P) as defined in Eq. (68) for N = 36
and N = 10? (corresponding in 3D to N3 =~ 35 X 10* and
N3 = 10° macroparticles). Macroparticles are equally spaced
and have a different normalization to reproduce the macro-
scopic distribution, which is assumed to be Gaussian. The
functions have been normalized to 1 at the right edge.
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FIG. 6. Plots of 1,p(P) (N = 36) [see Eq. (61)] for a flat and
a Gaussian distribution [Egs. (64) and (68) , respectively].
Macroparticles have been centered at random positions
sampled accordingly. The functions have been rescaled as in
Fig. 4. The minima occur at much higher values of P than for a
flat or Gaussian distributions with equispaced macroparticles
(see Figs. 4 and 5).

remain visually indistinguishable, except perhaps for
the very tiny emittances achieved in simulations of layout
as that described in Sec. I'V. In those cases, the modest
differences one observes at different values of P can be
ascribed more to the amplification effect of statistical
fluctuations (much stronger in a simulation than in real-
ity) on a slightly enhanced or suppressed self-field inter-
action than to the lack of validity of the approximation
itself.

The basic result of this section is that an “impact”
parameter tuning the strength of the self-field effects
must be introduced to suppress the numerical artifacts
described in the Introduction. It turns out that this pa-
rameter must only be not smaller than P = 1.6-1.7 and
can be larger by a factor of 2—3 without changing visu-
ally the results, even though much larger values would
be required to suppress fluctuations effectively. On the
other hand, fluctuations—to a certain degree—must be
present, for they exist in the real beam too: a macroscopic
electron beam is likely to exhibit features at scales much
larger than one would expect considering, e.g., the aver-
age distance between electrons in the beam. It seems
reasonable to allow a certain degree of ‘“‘spikiness” in
the simulations since this is likely to reproduce the real
physical system more faithfully than an artificially a
“flattened” version of the beam. For these reasons the
simulations described in Sec. IV have been run with
Gaussian macroparticles and a conservative value P =
1.7, although the effect of smaller and larger values is
briefly discussed.

IV. BENCHMARK RESULTS I: THE RF
PHOTOINJECTOR

In this section some results obtained on the SPARC
benchmark case mentioned in the Introduction will be

120101-10
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FIG. 7. Relative energy spread in the rf gun (top panel) and
ahead (bottom panel).

shown in comparison with those obtained by other nu-
merical codes. Figure 7 plots the energy spread behavior
obtained with TREDI (solid lines) and the HOMDYN [17]
simulation code (dotted lines). The results are almost
indistinguishable. In Fig. 8 the transverse envelope
(rms) dimension are shown. In this case the peak dimen-
sion falls between the values predicted by HOMDYN and
PARMELA [18] (dotted and dashed lines, respectively), the
situation being reversed for the waist (PARMELA has the
highest maximum and the lowest minimum and HOMDYN
the other way round). The overall agreement is fairly
good, and it is worth remarking that both the maximum
and the minimum of the envelope occur at the same
positions for all the codes. The same holds for the longi-
tudinal size and emittance (Figs. 9 and 11, respectively).

FIG. 8. Radial envelope (mm).

120101-11

FIG. 9. The rms bunch length.

The differences are much more relevant for the radial
emittance (Fig. 10), for both TREDI and PARMELA do not
exhibit a double-minimum effect as pronounced as
HOMDYN’s. It is worth remarking, however, that all the
codes considered more or less agree in predicting the
emittance compensation and the value of the minimum.
The double-minimum effect can be enhanced in TREDI
as well, by slightly changing the physical parameter set.

A final note on the effect of the impact parameter.
All the results in Figs. 7-10 have been obtained with
P = 1.7. Figure 12 shows the radial emittance obtained
for the four different values P =1, 1.7, 2, and 3. The
differences between P = 1.7 and P = 3 are negligible.

. . . .
g R 0NN 0w O

[mm mrad]

0.25

z[m]

FIG. 10. Radial emittance in the rf gun (top panel) and over
the full range (bottom panel).
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FIG. 11.

Longitudinal emittance (keV mm).

All other quantities except emittances at the minima are
indistinguishable.

V. BENCHMARK RESULTS II: THE MAGNETIC
CHICANE

Benchmarking of TREDI against other codes specifi-
cally designed for CSR calculation has been done on a test
case designed on occasion of the ICFA Beam Dynamics
mini-workshop of Zeuthen [19]. The test was based on an
idealized compressor composed by four bends as sketched
in Fig. 13. A list of the main compressor parameters is

w

- -
.........
.....

.........

N

€p [mmmrad]

[

rgrggg
TN
[RYNTEY

€p [mm mrad]

|

|

)
gy
nannn
W

FIG. 12. Radial emittance in the rf gun (top panel) and over
the full range (bottom panel) for four different values of impact
parameters. The solid lines correspond to the values of P used
in the simulations.
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Ly

FIG. 13. Layout of the test chicane.

given in Table II. The simulations have been performed at
electron beam energies of 0.5 and 5 GeV with electron
pulse shapes both Gaussian and stepwise. We report here
the main results concerning the 5 GeV, Gaussian beam
case. The input normalized emittances are | mm mrad in
both planes; other electron beam parameters for the
simulation are shown in Table III. Beam parameters at
the end of the chicane are summarized in Table IV. The
average projected emittance growth amounts to 62%.
Figure 14 shows the beam energy loss as a function of
the bunch coordinate along the beam line. The TREDI
output is compared to the simulations obtained by other
codes based on the Lienard-Wiecher approach as TRAFIC*
[20] and that by Li [21], as well as predictions from
ELEGANT [22] and a program by Emma [19] taking into
account CSR effects by means of semianalytical formulas
[23]. The total energy loss amounts to 0.045%. The sharp
energy increase at the entrance of the fourth magnet is
due to the beam interaction with the radiation emitted at
the exiting edge of the third dipole. The field produced in
the third dipole is indeed almost transverse with the
direction of motion between the third and the fourth
dipole, and it is oriented, for a negatively charged par-
ticle, toward the internal side of the chicane (see Fig. 15).
At the entrance of the fourth dipole the bending of
trajectories produces two effects: (i) the retarded condi-
tion between heading electrons and trailing electrons
from the end of the third magnet is suddenly fulfilled;
(i1) the bending itself induces a transverse velocity com-
ponent with opposite orientation with respect to the field

TABLE II. Compressor parameters.
Chicane parameters Symbol Value
Bend magnet length (projected) L, 0.5 m
Drift length B,/B,~B3/B, (projected) Ly 5.0 m
Drift length B,/B; L; 1.0 m
Postchicane drift Ly 2.0 m
Bend radius of each dipole R 10.35 m
Bending angle F 2.77°
Momentum compaction R56 =25
2nd order momentum compaction T566  +37.5 mm
Total projected length of the chicane LTOT 13.0 m
120101-12
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TABLE III. Beam parameters for the test chicane.

Electron beam parameters Symbol Value
Nominal energy E 5.0 GeV
Bunch charge (0] 1.0 nC
Incoherent energy spread AE 10 KeV
Linear energy-Z correlation A 36 1/m
Initial rms energy spread AE/E 0.72%
Initial rms bunch length ; 200 wm
Final rms bunch length o 20 pm
Initial normalized rms emittances &./8y 1.0/1.0 mm mrad
Initial betatron functions at first bend B/ By 40/13 m
Initial alpha functions at first bend a,/a, +2.6/ + 1

TABLE IV. Beam parameters at the end of the chicane for several different codes [19]. The
second column (AE/E,) refers to beam relative energy loss at the end of the chicane, while the
third (Aog/ og,) and fourth (€,) columns refer to the variation of the relative rms energy

spread and the final emittance, respectively.

Code Name AE/E, Aog/og, €, (mm mrad)
ELEGANT —4.5X 1074 —4.3x 1073 1.55
Program by Dolhus —4.5x 107 —1.1 X 1072 1.62
Program by EMMA —43Xx 1074 —4.0x 1073 1.52
Program by LI —-56X%x107* —6.0 X 1073 1.32
TRAFIC* —-58Xx107* -2.0x 1073 1.4
TREDI —45x107* —9.1x107* L61

emitted in the third dipole, which causes (for a charge of
the same sign) the energy gain. For positive particles, the
same is true, except that the electric field is reversed. A
similar, less pronounced effect, can be found also in
TRAFIC* [19] simulations. An analogous behavior is ob-
served in Fig. 16 where the beam energy spread versus the
average bunch coordinate along the beam line is shown.

-0.01
—~ -0.02
— -0.03
Z|»~-0.04
-0.05
-0.06

—— TREDI .
________ .o N
- -- Elegant T

— — R. Li
— —P. Emma

2.5 5 7.5 10 12.5 15

z [m]

FIG. 14. Relative beam energy versus average bunch longitu-
dinal coordinate along the beam line. The vertical lines mark
the positions of each bending edge. All results obtained with
codes other than TREDI are from the ICFA Zeuthen Workshop
web site [19]. Some manipulation was required to adapt the data
to be shown in the same plot.

120101-13

The agreement between TREDI and the other codes on
energy loss and projected emittance seems qualitatively
reasonable (with TREDI on the lower end for the energy
loss and on the higher end for the latter). The discrep-
ancies on the relative energy spread, where TREDI
only partially reproduce the sharp decrease at the en-
trance of the fourth bending may well be an effect of the
different field regularization procedures and require fur-
ther investigation.

End of 3% magnet

acceleration induced by the 4 magnet

Electron

E field from the 3™ magnet

Beginning of 4" magnet
FIG. 15. Sketch of the energy gain process at the entrance of

the fourth magnet by concurrent radiation from the end of the
third one.
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0.72
o= /
— 0.718; || || ==
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o ~0.716 T Trafic4 - - \/,
- —- Elegant V==
0.714f|— — R. Li
— —P. Emma N -
2.5 5 7.5 10 12.5 15

FIG. 16. Relative beam energy spread versus average bunch
longitudinal coordinate along the beam line. All results ob-
tained with codes other than TREDI are from the ICFA
Zeuthen Workshop web site [19]. Results obtained with the
different codes were shifted to make the initial values to equal
the nominal relative energy spread required for the Workshop
benchmark (0.72%).

VL. CONCLUSIONS

In this paper the TREDI Monte Carlo program is
described, which is based on retarded potentials to ac-
count for self-field effects and a covariant smoothing
technique to control the numerical artifacts associated
with the model. The only free parameter is the impact
parameter P discussed in Sec. III, which turns out to
be—for Gaussian macroparticles—a number P = 1.6.
The simulations discussed in Sec. IV have been obtained
with these assumptions. A noncovariant, essentially phe-
nomenological procedure to regularize the acceleration
fields is also briefly discussed. The predictions obtained
for the reference work point of the space-charge compen-
sated SPARC photoinjector seems to be in quantitative
agreement with those from other codes, while for a bench-
mark chicane designed to study coherent synchrotron
radiation effects in a magnetic compressor the agreement
is less satisfactory and in some cases mainly qualitative.
In a forthcoming paper the effect of finite propagation
speed of signals in rf photoinjectors will be addressed by
comparisons with results obtained assuming instanta-
neous interactions. A ‘‘static”’ version of the screening
mechanism described in Sec. II will be discussed, along
with a novel approach to the problem of covariant
smoothing of acceleration fields based on renormalization
group techniques.
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APPENDIX A

In order to show how Eq. (22) follows from (20) ob-
serve first that & and 6! have the same eigenvectors,
with the associated eigenvalues in one-to-one correspon-
dence by inversion. Let )\j(/\;l) be the jth eigenvalue of
(67 1), and vV (j = 1,2, 3) the associated (normalized)
eigenvector. Symmetry and positiveness of & imply that
A;’s must be all real and strictly positive, eigenvectors
orthogonal and real valued. Let then

I

A= VA ,
NN
and
B=A-A,
where
v(ll) v(12) U(13)
A= v(21) v<22) U<23)

A
It is readily seen that
B"-67'-B=1

Let us now make the change of variable (choosing the
name with a look ahead):

R=B"'"-3o%i=B R (A1)
We obtain then

RXF) =%F-6""-3=R"-BT67'B-R

(which is a tautology only in appearance). By the change
of variable (A1) integral (20) transforms to

Qui(Fo) = —

\/méhr

Ro R
40 f O[R?]| detB|R2dR.
0

Since
AT A=1=detA = +1

and
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detA =

3
[[A = Vdets,
i=1 1Le.,
it follows that
| detB| = | detA - detA| = +/detd,

S

0=y@+o"p),

(B8)

Equations (B7) and (BS8) together with (30) [following

which completes the proof.

APPENDIX B

In this section we derive the explicit form of 3~ in a
generic inertial frame where the macroparticle moves at a
constant speed 8. Let

S0 (5/ = )

gl 0’\./* 1

(1]
(2]

In order to obtain ¢/, € Eq. (27) or (28) must be exploited.
Let us recast (27) as follows:

ST =I7'P)-
L(-p)-

(31

=1

I
~N
M
N~

(B
Sl z(_,é), [4]

(5]

2T\ . 2T
r-p-(& g )Eeh=(3 2) @y
Since
i (Y +yB" [7]
Fep (g 1 nlies) ™

(8]

then (B1) reads 9]

0=9yX+2¢-B+p"-67"P),
0=[v+758 67" B+ G+ v)E - BB

[10]
2y a1 f [11]
+y(€ + 671 B). (B3) (2]
Extraction of ¢’ from the first equation in (B3) [13]
éf/:_Zg/.lé_'éT.arl.,éy (B4)
and substitution into the vector equation of (B3) yields [14]
b=V @B B
0= (€-p+p -6 BB [15]
y+1
+ y(€ + 61 p). (B5) [16]
From left multiplication by 8 (i.e., 87 - ) follows that [17]
> 5 s [18]
¢ -p=-g"-6" 8 (B6)
[19]
According to (B4) we obtain
{=pB"-6"5B (B7)

while (BS5) collapses to
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directly from (28) and inspection of (B2)], prove Eq. (30).
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