
PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS, VOLUME 6, 114802 (2003)
Simulation codes for high brightness electron beam free-electron laser experiments
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The high brightness electron beam required by a short wavelength self-amplified spontaneous
emission free-electron laser (FEL) may be reached only with an accurate design of the beam dynamics
from the generation in the rf injector up to the undulator. The beam dynamics is affected by strong self-
consistent effects at injection, in the compression stage, and during the FEL process. The support of
numerical simulations is extensively used in the predictions of the beam behavior in these nonlinear
dynamical conditions. I present a review of available simulation techniques, currently exploited in the
design of short wavelength free-electron lasers.
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efficiently simulated in all its complexity, even in a state
of the art, parallel computer. The widely used solution is

ties of such distribution. This feedback loop, charge
distribution ! fields ! charge distribution, must be
I. INTRODUCTION

We usually refer to a high quality e beam as a beam
with large brightness

Bn �
2I

"nx"ny
; (1)

i.e., high current and small normalized emittances. From
a technical point of view, the quality of the electron beam
is the main limiting factor in reaching short wavelengths
with a self-amplified spontaneous emission (SASE) free-
electron laser (FEL). A proper understanding of the
dynamics is essential in the design of short wavelength
SASE FEL devices, where the constraints on the beam
‘‘quality’’ are very stringent. In this paper we review the
most common techniques developed to study the beam
behavior in strongly nonlinear conditions. In existing
SASE FEL projects, low emittance beams are obtained
within the present state of the art rf photocathode injec-
tors and the peak current is increased by longitudinal
compression. In these processes, as well as in the FEL
amplification process itself, the nonlinear interaction of
the beam with its self-fields plays a significant role.

The three dynamical regimes that will be analyzed are
(i) beam generation,
(ii) compression,
(iii) SASE FEL interaction.
In all these regimes we have to predict the behavior of

the same physical system, consisting of an ensemble of
charged particles which interacts with electromagnetic
fields. Despite these common roots, there is no unique
method for the solution of these problems and specialized
techniques have been developed. The main difficulty is a
common one and consists of the large number of electrons
contained in a single bunch of charge. The typical e-beam
charge is of the order of 10�9 C, corresponding to �1010

electrons. A multiparticle system of this size cannot be
1098-4402=03=6(11)=114802(17)$20.00 
that of simulating a reduced number of particles, with a
scaled charge, each representing a large number of real
electrons. The introduction of these macroparticles has
some unpleasant consequences that need to be properly
treated in a correct numerical implementation. This fact
can be shown with a simple example. Let us consider a
Gaussian bunch with rms 	beam, represented by a number
N of macroparticles. The charge density, defined as

��x;N� �
1

N

XN
j�1

�x� xj� (2)

in Fourier space becomes

��x;N� �
1

N

XN
j�1

eikxj (3)

that, in the limit of N ! 1, reduces to the Fourier trans-
form of the Gaussian distribution

��x� � exp

�
�
k2	2beam

2

�
: (4)

In Fig. 1, the spectrum of the distribution obtained from
Eq. (3), for N � 100 and N � 104, is shown. At low wave
vector k, the behavior is that of a smooth distribution,
correctly reproducing the Gaussian. At high k, the phase
factors in the exponent of Eq. (3) are uncorrelated and the
amplitudes of the corresponding Fourier components
scale as 1=

����
N

p
. The effect of a reduced number of macro-

particles in the representation of a charge distribution is
evident. In a real beam the amplitude of this high fre-
quency ‘‘noise,’’ commonly referred to as ‘‘shot noise,’’ is
orders of magnitude lower than in the case of a ‘‘simu-
lated’’ beam. A ‘‘noisy’’ charge distribution by itself
should not be considered as a problem. It becomes a
problem when the electromagnetic fields that are driving
the dynamics of the whole system depend on the proper-
2003 The American Physical Society 114802-1
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FIG. 1. Spectrum of charge distribution for an analytical
continuous distribution and for a distribution sampled with
102 and 104 macroparticles. The charge distribution is normal-
ized to unity.
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simulated only for those frequency components where
the distribution has the correct spectral behavior of the
physical distribution. The other frequencies must be sup-
pressed, otherwise the simulation will produce unphysical
results.

This frequency selection is one of the main distinguish-
ing features of the three regimes of operation mentioned
above. In an injector we have bunch lengths of a few
picoseconds, interacting at mm=sub mm wavelengths. In
a compressor the bunch length is reduced to a few tens of
microns, and the coupling wavelength can scale down to
the micrometer range. These are broad-band coupled
systems where the high frequency components should
be filtered for a correct numerical representation. In these
broad-band conditions, filtering is generally obtained by
giving a finite size to the macroparticles [1–3]. The
Fourier transform of a ‘‘Gaussian’’ particle of rms exten-
sion in space 	part is proportional to exp��k2	2part=2�. The
effect of a spatial extension is that of a low band filter. A
similar result may be accomplished for radiation fields in
the coherent synchrotron radiation (CSR) case by spread-
ing the particles in momentum space [4]. In a free-elec-
tron laser, the coupling fields may have very high
frequency components, but in a very narrow frequency
bandwidth, which is proportional to the Pierce parameter
[5]. The input phase space is prepared to reduce the
harmonic content in this spectral window with a ‘‘quiet
start’’ procedure (see Sec. IVA) and the narrowness of
the spectrum is exploited in simplifying the equations for
the fields and the particle dynamics.

The frequency responses typical of the various regimes
are exploited in the numerical implementations to obtain
correct results with a reduced number of macroparticles.
While all the most widely known numerical models are
based on macroparticles adopting different techniques to
reduce the associated numerical noise, not all the meth-
114802-2
ods have corresponding variables for the description of
the fields. We can indeed distinguish between:

Differential methods.—The fields are independent var-
iables of the problem. These methods require the simul-
taneous integration of the Maxwell’s equations and the
Lorentz force equation. Particles in cells (PIC) codes
belong to this family. The fields are known on a mesh
filling the simulation space-time with some boundary
conditions. Field sources are macroparticles which are
assigned to the cells of the mesh according to some
assignment procedure designed to limit the spectral con-
tent of pointlike macroparticles. Most of the codes de-
voted to FELs simulation are based on differential
methods. The limited bandwidth of the resonant process
allows in this case to cast the Maxwell’s equations in
terms of slowly varying components propagating with
the e beam (slowly varying envelope approximation).

Integral methods.—The electromagnetic fields are not
independent variables of the problem. The interaction
between particles is calculated according to ‘‘forces’’
derived from particle positions and velocities known at
earlier times. Effects of plane walls can be included with
the image charge method while radiative and retarded
effects may still be included by the Lienard-Wiechert
retarded potential formalism [6].

The first class of solvers allows the implementation of
rigorous physical models, including ‘‘in principle’’ almost
all the aspects of the problem, such as the interaction with
walls of any shape, any kind of retarded effects associ-
ated with the finite ‘‘time of flight’’ of signals, radiative
effects, etc. There is a price to be paid for this physical
accuracy, i.e., Maxwell’s equations are partial differential
equations and the solver must follow some important
prescriptions. The fields are indeed known on a mesh,
characterized by a given spacing (x, y, z). According
to the Nyquist theorem there is a limit in the highest wave
vector that can be represented by the mesh,

kx;y;z �
1

2x;y;z
; (5)

and consequently, in the highest frequency that can be
supported by the mesh,

!max � cmax�kx; ky; kz� �
c

2min�x; y; z�
: (6)

Higher frequencies will appear as low frequency compo-
nents. For the same reasons the time step size is limited
by this maximum frequency by the relation

t <
1

!max
: (7)

There are other limitations to the time step length that
are dependent on the order of the integration method, on
the integration scheme, that may be implicit or explicit,
on the dimensions of the problem (see Ref. [7], and
references therein for further details), but the basic
114802-2



TABLE I. Typical mesh sizes for the simulation of the beam dynamics at the injection,
compression, and FEL stages with PIC techniques.

Injector Compressor FEL

Simulation volume 300 cm3 100 cm3 1 mm2 
 1 �m
Cutoff wavelength 100 �m 10 �m 1 Å
No. of Mesh vertices (3D) 107 1011 1016

No. of Mesh vertices (2D) 105 107 1010

Integration time 16 ps 60 ps 330 ps
Maximum step length 0.3 ps 0.03 ps 3
 10�19 s
No. of time steps 3
 103 106 1012

-

FIG. 2. Typical layout of an ‘‘injector.’’
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condition (7) must be satisfied, longer time steps would
cause lack of accuracy and in some cases instability of the
solution. In Table I we have summarized typical numbers
for the mesh and time step requirements in the three
regimes of beam dynamics.

Assuming a limit of 106 mesh vertices for a numerical
implementation, only the simulation of a 2D injector
seems practicable. In the example of Table I we have
assumed typical numbers for a ‘‘short’’ wavelength
SASE FEL. The mesh size can be reduced in this case
by taking advantage of the narrow bandwidth of the FEL
gain, with the slow wave approximation used by most
FEL devoted codes. There have been however successful
attempts in the simulation of FELs with PIC codes de-
veloped for plasma dynamics, in the long wavelength
regime, and in conditions of reduced dimensions [8].

This paper is organized as follows. In the next section
we will review the techniques used in the simulation of
photoinjectors. According to the above discussion these
techniques have been classified in terms of differential
method and integral method based (Secs. II A and II B).
This distinction is not appropriate in the description of
the compressor stage considered in Sec. III. As shown in
Table I the simulation of magnetic compression with a
PIC code even in a 2D Cartesian mesh would require an
extremely large number of mesh vertices. Furthermore
the solution of the dynamics of highly relativistic charges
coupled by Maxwell’s equations in Cartesian geometry is
seriously affected by the ‘‘decoherence’’ problem de-
scribed in Sec. II A. For this reason the codes devoted
to the simulation of compressors are based on integral
methods. The formulation of the free-electron laser dy-
namics, on the other side, relays on the slow wave ap-
proximation and on the paraxial wave approximation, and
almost all the techniques implemented in the simulation
of free-electron lasers, which will be analyzed in Sec. IV,
are based on differential methods, where the Maxwell’s
equations and Lorentz force equation have been recast in
terms of slowly varying functions.

II. CODES FOR INJECTOR DESIGN

We consider an ‘‘injector’’ as all the elements required
to bring the beam from rest energy in the lab frame up to
114802-3
an energy that is large enough to neglect effects of self-
interaction in a uniform motion condition. A typical
layout of a ‘‘split’’ system is shown in Fig. 2.

An injector is characterized by
(i) a very high gradient, i.e., the beam becomes relativ-

istic in the first half cell of the rf gun.
(ii) The electron pulse length is much shorter than the

radio frequency period.
(iii) An rf injector is a ‘‘quasi’’-axially symmetric

device. Deviations from the axial symmetry may be due
to an inhomogeneity of the cathode quantum efficiency,
to dipolar terms in the accelerating fields, to an asymme-
try of the laser spot, and to misalignments of the struc-
ture. Unless the study of one of these aspects is required,
the assumption of axial symmetry greatly simplifies the
problem by reducing the required number of macropar-
ticles and (or) mesh points.

The dynamics of such a system has been extensively
described in [9]. The request of minimizing the induced
emittance growth is accomplished by tuning the fre-
quency of the first plasma oscillation that the beam ex-
ecutes according to the internal space charge fields and to
the focusing due to rf forces and to the solenoid.When this
frequency is correctly matched, the emittance has a mini-
mum at an energy high enough that the contribution of the
betatron motion associated with the thermal emittance
overcomes that of the laminar motion. In ideal condi-
tions, i.e., a beam which is flat transversally and longi-
tudinally, this ‘‘emittance compensation’’ procedure
brings the emittance at the end, almost to the same
114802-3
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order of the initial thermal emittance. This emittance
compensation concept originally introduced in [10] pro-
duced serious improvements in the beam brightness ob-
tained at the injector exit [11] and, from the simulation
point of view, substantially raised the requests in terms of
numerical accuracy and resolution.

A. Differential methods

Even though some details of the beam dynamics in an
rf injector may be affected by three-dimensional effects,
an injector is substantially an axisymmetric device.
Table I shows that the mesh size and time step length
relevant to a PIC simulation of the beam dynamics in
cylindrical symmetry make such a numerical implemen-
tation feasible. The restriction to cylindrical symmetry
provides an even larger extra advantage in the formulation
of the problem that goes beyond the simple reduction of
particles/mesh points. In axial symmetry a closed subset
of Maxwell equations, driven by the source [�; J], can be
fully described in terms of a scalar pseudopotential

� � r �H’�r; z; t� (8)

obeying the scalar wave equation�
@2

@z2
�
@2

@r2
�

1

@r

�
��

1

c2
@2�

@t2
� r

@Jz
@r

� r
@Jr
@z
: (9)

Electric and magnetic fields are recovered from the func-
tion � according to

dEr
cdt

� �
1

r
@�
@z

� Jr;
dEz
cdt

� �
1

r
@�
@r

� Jz: (10)

The advantage in this formulation goes beyond the fact
that the solution can be obtained solving a scalar wave
equation in place of vector equations. The main advantage
is that this formalism allows one to get around the deco-
herence problems associated with Maxwell’s equations in
a conventional leapfrog integration scheme. In Cartesian
geometry, the implementation of the method on a mesh
with vertices of coordinates �rk; zl� with k � 1 � � �K, l �
1 � � �L, assumes the form

~BBk;l�t� t� � ~BBk;l�t� t� � ~gg ~EEk�1=2;l�1=2�t��;

~EEk�1=2;l�1=2�t� t=2� � ~EEk�1=2;l�1=2�t� t=2�

� ~ff ~BBk�1;l�1�t�; ~JJk�1;l�1�t��;

(11)

where we used the notation Uk;l � U�rk; zl�, U � E;B,
and where the functions ~ff and ~gg are the linear summation
of the r
 ~BB� 4& ~JJ and r
 ~EE terms, respectively. It is
evident from Eq. (11) that magnetic and electric compo-
nents of the fields are not known at the same time and in
the same position. The error induced by this displacement
is critical because of the electric and magnetic field
cancellations in the transverse force, whose combined
114802-4
contributions scale with the particle’s energy, as 1='2.
A lack of cancellation brings longitudinally correlated
forces inducing a nonphysical emittance growth [12]. For
this reason 3D particle in cell codes developed for plasma
physics applications are not reliable in the simulation of
high brightness relativistic beams. Alternative 2D cylin-
drical codes such as ITACA [13] and SPIFFE [14] have been
developed and extensively used. The main limitations in
their application are still related to the size of the mesh
required in the simulation of short bunches. The mesh size
is indeed grown with the introduction of the emittance
compensation concept, both because of the larger spatial
extension where the space charge dynamics must be fol-
lowed and because of the increased numerical resolution
required by the brightness improvement. As a final re-
mark, we note that the frequency tuning and the field
balancing between cavities in a multicell gun are all an
integral part of the simulation and are affected by the
beam parameters. The problems related to the determi-
nation of ‘‘external fields’’ and ‘‘space charge’’ fields are
not fully separated as they are with integral methods, and
from the practical point of view, the setup of a simulation
may be in this case somewhat less handy.

B. Integral methods

The analysis of the beam dynamics developed in
Ref. [9] has pointed out that a beam with a typical current
of 100 A may still be in the space charge dominated
condition even at quite high energies, exceeding
100 MeV. The request of such a high energy has extended
longitudinally the ‘‘simulation volume’’ to several meters.
At the same time the electron pulses of a few picoseconds
produced with photocathodes have increased the har-
monic content of space charge fields in the bunch, reduc-
ing the required step size of the mesh for a PIC code.
Simulation of a long system with a small mesh period
tends to become time consuming and less practical.
According to the example shown in Table I these consid-
erations are even more important in an extension to the
3D domain. Codes based on integral methods do not
suffer from this limitation. The evaluation of the fields
from the phase space coordinates of the particles is done
only in the positions instantaneously occupied by the
particles. Some codes, as TREDI [15] or ATRAP [16], take
into account the effects due to the finite propagation
velocity of signals by calculating the fields according to
the Lienard-Wiechert formalism,

~EE �
~nn� ~nn� ~((� ddt

~((�

�1� ~(( � ~nn�3j ~RRj
�

� ~nn� ~((�1� j ~((j2�

�1� ~(( � ~nn�3jRj2

�������ret
;

~BB � ~nn ~EE jret;

(12)

evaluated at the retarded time

t0 � t�
j ~RR�t0�j
c

: (13)
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FIG. 3. Electron beam longitudinal profile and slicing proce-
dure adopted in HOMDYN. The bunch shape is assumed cylin-
drical with length L and radius R. The longitudinal coordinate
of the ith slice is indicated with 0i spanning from the bunch tail
Zt to the bunch head Zh.
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This is accomplished in TREDI by storing in memory the
histories of the macroparticle trajectories and by tracking
the source coordinates back in time until the retarded
condition (13) is satisfied. The effects of boundaries can
be included only for flat walls by the image charge
method. In practice only the cathode wall is considered.
The fields used for the calculation of the dynamics are the
superposition of given external fields and the self-fields
from all the particles evaluated on a point to point basis.
This field evaluation procedure relies on the choice of a
‘‘screening radius,’’ the size of the macroparticles which
limits the high frequency components. From the example
of Fig. 1, we have a significant hint of the choice of this
screening radius. The ideal wave vector cutoff is the one
that leaves unchanged the global beam distribution at low
k and that efficiently cuts the noise in the high k region. In
this simple example based on a smooth Gaussian charge
distribution, the transition frequency is located at kcut �
�1=	beam�

������������
ln�N�

p
where N is the number of macropar-

ticles. A particle extended in space with rms 	part �
1=kcut shows the desired filtering properties. The situation
is practically complicated by the fact that the beam dis-
tribution is not in general a Gaussian. Optimized emit-
tance compensation is obtained with a charge distribution
which is a homogeneous cylinder oriented along the z
axis. In this case the desired cutoff wave vector scales
with the number of macroparticles as kcut /

������
N3

p
but the

shape of the charge distribution may also change in time
with the beam evolution, and the correct choice of the
screening radius remains somewhat arbitrary. The above
scheme still shows some other drawbacks. The backward
tracking procedure is time consuming, and in a point to
point interaction scheme the number of evaluations scales
as the square of the number of macroparticles. An im-
provement of the method consists of evaluating the fields
on a mesh surrounding the beam and by interpolating
these fields to the particle’s positions. This allows one to
simulate a larger number of macroparticles with a defined
mesh size, but still the major issue of the approach is
constituted by the computation time. A simplification is
obtained in the ‘‘static’’ approximation used, e.g., in
PARMELA [17], in GPT [18,19], in ASTRA [20], and in a
slightly different flavor, in TREDI also (run in static
mode). This approximation consists of the assumption
that the beam relative energy spread is small, and that a
reference frame where the beam may be considered at rest
exists. The effect is that of neglecting the finite velocity of
signal propagation within the bunch. The relative energy
spread �'=' scales with the bunch length �*, as [21]

�'
'

�
+�*

1� &+z=,rf
< 1; (14)

where + � �,rf=2&��d'=dz� � 1 is proportional to the
average accelerating gradient.
114802-5
In these conditions (as, e.g., in PARMELA ‘‘SCHEFF’’
and ‘‘SPCH3D’’ modes), the self-fields are calculated by
solving the Poisson equation for the electrostatic field in
this moving frame. The fields are then transformed back
to the laboratory frame where kicks to the particles are
applied. In a photoinjector the electron bunch is short
with respect to the rf period and when the beam becomes
relativistic the approximation (14) becomes fully satisfied.
The largest energy spread occurs in the proximity of the
cathode, where the beam is not yet relativistic and the
quasistatic approximation still works. The quasistatic ap-
proximation may be critical in the simulation of long
bunches as in the case of rf thermoionic guns, where the
longitudinal phase spread leads to a large energy spread at
the cathode. In ASTRA the quasistatic assumption may be
partially relaxed by considering macroparticles not com-
pletely at rest in the beam reference frame, but in non-
relativistic motion.With this approximation also magnetic
fields are generated in the rest frame in addition to the
electrostatic fields which are then transformed into the
lab frame. This option can be switched off. A comparison
of simulations obtained with this option on and off has
not shown significant differences [22].

A very efficient algorithm is obtained in HOMDYN

[23,24], by considering a multienvelope model based on
the time dependent evolution of a uniform bunch [25],

d2

dz2
	�z; -i� �

p0�z; -i�
p�z; -i�

	�z; -i� � K	�z; -i�

�
I�z; -i�g�z; -i�

2I0p�z; -i�3	�z; -i�
�

"3n;th
p�z; -i�2	�z; -i�3

;

i � 1 � � �N; (15)

where I0 � �ec=r0� is the Alfvén current, and where the
electron bunch is sliced along the direction of propaga-
tion, as shown in Fig. 3. The coordinate z in Eq. (15)
represents the evolution along the beam line, and the
coordinate 0i � zi � (icti indicates the position of a slice
of the beam along the bunch. We have indicated with
I�z; -i� the slice current, with p�z; -i� the slice longitu-
dinal momentum and with p0�z; -i� � �d=dz�p�z; -i� its
derivative in z. The function
114802-5
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FIG. 4. Comparison between ITACA, PARMELA, and HOMDYN

obtained in a standard split injector configuration as the one
shown in Fig. 2. The behaviors of the normalized emittance and
of the beam rms envelope versus the longitudinal coordinate
are shown in (a) and (b), respectively.
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g�z; 0i� �
1� 0i=L�z������������������������������������������������������

1� 0i=L�z��
2 � A�z; 0i�

2
p
�

0i=L�z���������������������������������������������
0i=L�z��2 � A�z; 0i�2

p ;

A�z; 0i� �
R�z; 0i�
'L�z�

(16)

represents the radial space charge interaction of a single
slice with the whole beam, depending on the instanta-
neous bunch length and aspect ratio A. The above expres-
sion has been derived for a cylindrical beam of
homogeneous density. The approximation in HOMDYN

consists of considering this shape of the beam distribution
unchanged along the beam line, except for the aspect
ratio and length. In the ideal case the beam is indeed
transversally uniform at the extraction, to preserve the
linearity of the transverse fields. This uniformity is not
preserved by the dynamics, but in the first stages of the
acceleration, where the space charge forces dominate the
modifications in the bunch shape are sufficiently small to
allow HOMDYN to correctly reproduce the dynamics of the
emittance compensation process. The beam emittances
are calculated at each step as the projected emittances of
all the slices of the beam,

�"corn �
1

N

����������������������������������������������������������������������������������������������XN
i�l

	�z;0i�2
XN
i�l

	0�z;0i�2�
�XN
i�i

	�z;0i�	0�z;0i�
�
2

vuut :

(17)

Despite the strong assumptions, HOMDYN allows a suffi-
ciently accurate determination of the working point
which usually depends on a large number of input pa-
rameters as input phase, solenoid field, solenoid position,
etc. Furthermore the simulation results show only a weak
dependence on the number of slices and a run with 40 sli-
ces of the first 10 m of the SLAC injector [25] lasts less
than 1 min on a 2 GHz Intel P-IV [26].

C. Comparison between codes

In Fig. 4 we have shown a comparison of simulations of
a split configuration similar to the one of Fig. 2, obtained
with ITACA, PARMELA, and HOMDYN. The dashed lines
represent the radial emittance and the continuous lines
represent the beam envelope. With the assumption of
unchanged beam shape, HOMDYN preserves the linearity
of transverse fields for each slice along the integration
path. For this reason it reaches the lowest emittance. The
behavior of the emittance relevant to ITACA was partially
affected by the size of the mesh. The trend observed has
shown an improvement of the agreement with a finer
mesh [27]. The differences in waist positions and emit-
tances minima suggest also that a slight difference in the
definition of the solenoid field may have played a role
(there is a strong sensitivity to the magnetic field first
integral). In Fig. 5 it is shown a comparison between
114802-6
PARMELA and HOMDYN for a split system including two
traveling wave (TW) linac sections, with the parameters
of Table II.

The approximation of a uniform bunch preserved along
the beam line on which HOMDYN rely produces a more
pronounced effect of emittance compensation. The agree-
ment is however reasonable and the position of the mini-
mum of the emittance before the linac is approximately
reproduced. A comparison of HOMDYN with ASTRA has
shown a similar behavior [28]. In Fig. 6 a comparison
between PARMELA and TREDI with the same parameters is
shown for the first 1.7 m. Despite the differences in
the models, the minimum projected emittance differs
by only 10%. The working point of Table II which has
been optimized with PARMELA and HOMDYN appears
as not perfectly optimized in the TREDI simulation.
Differences are probably due to the different algorithmic
representation of the fields (mapping and interpolation)
and, in part, to the retarded effects which are included in
TREDI. More details may be found in Ref. [29].
114802-6
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FIG. 5. Comparison between PARMELA and HOMDYN with the
parameters listed in Table II. The simulation with PARMELA has
been obtained with 104 macroparticles, a time step of 0.1�, and
a mesh of 20�r� 
 400�z� points (SCHEFF mode). The upper plot
represents the first 20 cm of the simulation.
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One of the targets of the analysis of Ref. [30], where
PARMELA (LANL and UCLA) has been compared to
other PIC codes, was the study of the limits of the
quasistatic approximation. The results have shown an
overestimation of the PARMELA versus PIC codes as
MAGIC2D [31] emittances, by about 20%. The conclusions
attributed part of this difference to the quasistatic ap-
proximation adopted in PARMELA. Another comprehen-
sive comparison between several codes including
HOMDYN, ASTRA, PARMELA, and TREDI has been presented
in Ref. [32] consisting of the simulation of an s-band rf
gun with an emittance compensation solenoid, 1 nC of
TABLE II. Set of parameters for the simulation shown in
Fig. 5.

Gun BNL, 1.6 cells
Charge 1 nC
Spot radius 1 mm
Laser pulse (flat) 10 ps
Peak field 140 MeV=m
Linac 2 TW sections
Linac gradient 25 MeV=m

114802-7
charge 10 ps pulse. The simulations have shown a good
agreement between all the codes, except for a shift of the
envelope minimum in the drift out of the gun and a slight
difference for the overall energy spread given by HOMDYN.

III. CODES FOR BUNCH COMPRESSOR DESIGN

The highest normalized beam brightness obtained in a
rf photoinjector is of the order of 1014 [33,34], while the
beam brightness required in the design parameters of
both LCLS [35] and TTF [36] SASE FELs projects is
approximately 4
 1015. Although an improvement in the
injector brightness at the injector output is expected with
the introduction of rf compression [37,38], the remaining
gap should be filled with an increase of the normalized
beam brightness obtained by a magnetic beam compres-
sion. The scheme is the following: a correlated energy
slope is induced by an off crest operation of the accelerat-
ing rf field. This correlation is exploited in a dispersive
magnetic chicane to produce longitudinal focusing. One
of the most challenging issues related to longitudinal
compression is due to the coherent spontaneous radiation
produced by the electrons in the tail of the bunch that
reaches the head along the bend and interacts with the
bunch itself.We have a broad-band longitudinal and trans-
verse coupling whose main effect is that of inducing an
energy spread that is transformed into an emittance in-
crease by the longitudinal-to-transverse coupling of the
chicane itself. We may distinguish two different regimes,
a low frequency regime where the coherent spontaneous
emission produces a correlated energy spread over the
whole bunch [39], and a higher frequency regime where
the microbunching instability [40–43] induces the
growth of uncorrelated energy spread and emittances.
This latter process resembles that of a free-electron laser
with a broad-band gain associated with the chicane mag-
netic field [42,43]. The peak frequency of the feedback
gain is located at a few tens of microns a typical scale
length which is much shorter than the bunch length itself.
114802-7
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It is indeed this high frequency broad-band coupling that
creates the most difficulties from the simulations point of
view. We may distinguish two different approaches in the
simulation of the processes falling under the name of
CSR effects. In the first case the codes have the typical
structure of TREDI and are based on first principles. The
algorithm consists of evaluating the interaction between
the macroparticles according to the Lienard-Wiechert
retarded potentials, building a field representation over
the particles positions, and advancing the particles of a
time step. The second approach is based on the ‘‘line
charge method,’’ i.e., based on the expression of the
longitudinal wake of a line charge distribution moving
in a curved path [39].

A. Simulation of CSR effects

While TREDI has been developed for the simulation of
linacs and photoinjector dynamics, other codes such as
TRAFIC4 [44,45] developed by Dohlus, Limberg, and
Kabel, and a ‘‘not named’’ Li code [46] (will be identified
as ‘‘RL’’ in the following) have been specifically designed
for the simulation of CSR effects. Both are based on first
principles with noise suppression obtained by giving a
finite size to macroparticles. The procedure adopted for
the numerical noise suppression is the main difficulty and
the main source of differences between the predictions of
this class of codes. The relatively high frequencies in-
volved require a large number of macroparticles, espe-
cially for the simulation of the microbunching instability,
while the implementation of retarded effects and the
preservation of causality in the evaluation of the integral
over a finite dimension charge distribution is time con-
suming and severely limits the number of macroparticles
that can be practically simulated. According to the ex-
ample of a Gaussian bunch given in the introduction (see
Fig. 1), the microbunching gain spectrum falls within the
spectral region of amplitude 1=

����
N

p
, where N is the num-

ber of macroparticles. This process is seeded by a numeri-
cal shot noise and the seed amplitude scales unfavorably
with the root of the number of macroparticles. A possi-
bility to overcome this limitation is offered by the ‘‘pseu-
dorandom’’ number sequences [47]. These sequences of
apparently only random numbers have the characteristic
of filling the initial space more uniformly than random
numbers and producing reduced fluctuations whose am-
plitudes scale with 1=N in place of 1=

����
N

p
. This quiet start

method is implemented in ELEGANT and TREDI with the
Sobol sequences [47]. The noise reduction obtained with
pseudorandom sequences allows the simulation with a
lower number of macroparticles and constitutes a signifi-
cant advantage in three-dimensional simulations of the
rf-gun dynamics. In a ‘‘start to end’’simulation, the phase
space variables are passed from an injector/linac devoted
code to a CSR simulation code. For this reason pseudor-
andom generators are also implemented in the generation
of the initial phase space in PARMELA and ASTRA simu-
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lations which are then used, e.g., as input in TRAFIC4

simulations. Unfortunately the preservation of this con-
dition of reduced fluctuations of the phase space along the
dynamics remains an open problem. The beam modifica-
tions induced by nonlinear processes alter the uniformity
characteristics of the initial beam distribution and larger
fluctuations appear. The target of executing simulations
with a large number of particles remains fundamental.
For this reason the RL code is limited to two spatial
dimensions in the orbit plane. In TRAFIC4 the beam has
a twofold representation. It is represented as a continuous
charge distribution when it is considered as a source of
the electromagnetic fields, and an ensemble of pointlike
particles when the effects of the fields are evaluated. The
beam line is divided in slices and the ‘‘field generating’’
bunch is propagated along the beam line. The beam
parameters along the beam line are calculated and stored.
The field on ‘‘pointlike’’ particles following the beam
line is then evaluated according to the retarded conditions
and the information on the dynamics of the pointlike
particles is then used to advance a new field generating
bunch along the beam line. The iteration of this procedure
leads to the self-consistency of the method. TRAFIC4 is
capable of handling also boundary conditions of infinitely
extended, perfectly conducting flat walls by the image
charge method. The computation time grows in this case
and a few thousand particles require several days of CPU
time, depending on the chicane complexity and length. A
parallel implementation of the code is practically a must
in the simulation of these cases [48].

An alternative for the solution of this problem is the
line charge method. Several simulation codes are indeed
based on the formulation of the wake potential due to a
line charge distribution following an arc [39].
Expressions for the potential of the type

dE�s;*�
d�ct�

�
�2e2

�3R2�1=3

�
s�1=3l �s� sl� � ,�s� 4sl��

�
Z s

s�sl

1

�s� z�1=3
d,�z�
dz

dz
�
; (18)

which holds for a generic longitudinal charge distribution
, entering in a bending magnet with bending radius R and
bending angle*, and where sl � �R*3=24� is the slippage
length defined as the path difference of the curved tra-
jectory of the charged particle in the magnet and the
straight line followed by the light, have been derived
also for a bunch in steady state circular motion and
exiting the bending. The formulation has been extended
by Stupakov and Emma to include the postdipole region
and is the basis for the CSR implementation in ELEGANT

[49,50], CSR_CALC (Emma [51]), and the Dohlus line
charge program [52]. The main assumptions are the
following:

(i) The electron motion is assumed ultrarelativistic.
114802-8
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(ii) A one-dimensional beam is assumed for CSR field
calculations. The ‘‘real’’ beam is projected along the
curvilinear coordinate s.

(iii) Transverse internal forces are neglected.
(iv) Nondissipative interaction forces are not consid-

ered. Only radiative terms are retained.
(v) Any change in the charge distribution at retarded

time is neglected; the wake is calculated assuming that
the charge distribution has not changed according to
compression.

The advantage in terms of computational time is con-
sistent. In Fig. 7 is shown a plot of the microbunching gain
in the LCLS BC2 compressor [53] as a function of the
initial modulation wavelength (prior to compression).
The agreement with theory (continuous lines) [41,42] is
remarkable. It is even more remarkable in the fact that the
simulation, done with 2
 106 particles, finished in less
than 1 h on a 1 GHz PC [54].

The possibility of running such a large number of
macroparticles allows the simulation of microbunching
effects with a reasonably low numerical noise.
TABLE III. List of the four be

Chicane Parameters

Bend magnet length (projected)
Drift length B1! B2 and B3 ! B4 (projected)
Drift length B2! B3
Post chicane drift
Bend radius of each dipole magnet
Bending angle
Momentum compaction
2nd order momentum compaction
Total projected length of chicane
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B. Comparison between CSR devoted codes

A comparison between the results predicted by the
various mentioned programs has been obtained on a test
case based on a four bends magnetic chicane on occasion
of the ICFA Beam Dynamics mini workshop [55]. In
Fig. 8 is shown the layout of the four bend chicane which
served as a test case, with the parameters listed in
Table III.

The simulations were performed at electron beam en-
ergies of 0.5 and 5 GeV with electron pulse shapes both
Gaussian and stepwise, but a complete comparison be-
tween all codes was available only at 5 GeV with a
Gaussian longitudinal current profile. The other electron
beam parameters for the simulation are shown in Table IV.
The results of the comparison relevant to the Gaussian
distribution are summarized in TableV, where the relative
energy loss (E), the energy spread variation (	E), and
the normalized emittance in the orbit plane are given
after the chicane. The simulations, except the one ob-
tained with TREDI [4], have shown increments of the
normalized emittance between 30% and 50%. The codes
based on the line charge model have provided similar
results, showing a reasonable relative agreement. The
output from ‘‘first principles codes’’ is more scattered,
reflecting the existing difficulties in terms of noise sup-
pression and ‘‘resolution,’’ which is limited by the com-
plexity of the integration schemes and by the consequent
low number of particles that can be simulated. The
simulation done with TREDI was obtained with only
nds test chicane parameters.

Symbol Value

Lb 0.5 m
L0 5.0 m
Li 1.0 m
Lf 2.0 m
R 10.35 m
F 2:77�

R56 �25
T566 �37:5 mm
LTOT 13.0 m
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TABLE IV. e-beam parameters used in the benchmark.

Electron beam parameters Symbol Value

Nominal energy E 5 GeV
Bunch charge Q 1.0 nC
Incoherent energy spread �E 10 keV
Linear energy—z correlation A 36 m�1

Initial rms energy spread �E=E 0.72%
Initial rms bunch length 	i 200 �m
Final rms bunch length 	f 20 �m
Initial normalized rms emittances "x="y 1:0=1:0 mmmrad
Initial betatron functions at first bend (x=(y 40=13 m
Initial alpha functions at first bend entrance +x=+y �2:6=� 1

TABLE V. List of benchmarked codes and of the beam parameters at the end of the chicane.
We have indicated with E the relative energy loss and with 	E the change in the relative
energy spread.

Dimension Code Name E (%) 	E (%) "

3D TRAFIC4 �0:058 �0:002 1.4
3D TREDI �0:041 0.017 2.3
2D Program by Li �0:056 �0:006 1.32
1D line charge ELEGANT �0:045 �0:0043 1.55
1D line charge CSR_CALC (Emma) �0:043 �0:004 1.52
1D line charge Program by Dohlus �0:045 �0:011 1.62
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103macroparticles and was affected by a strong numerical
noise. Part of the noise was suppressed by discarding 15%
of the ‘‘worse’’ macroparticles. TREDI simulations done
after the workshop with up to 104 macroparticles [56]
have shown results similar to the ones obtained with the
other programs, with an emittance growth of about 70%
and with an energy loss along the chicane of about 0.02%.
In terms of accuracy of the results, the convergence of the
data provided by the line charge codes shows at least that
the line charge model is in general correctly imple-
mented. A margin for improvement exists in the conver-
gence of the predictions of first principles codes that
would give more reliability on the absolute correctness
of the models.
IV. CODES FOR FREE-ELECTRON LASER
DESIGN

The simulation of SASE free-electron lasers has been
obtained both with PIC codes [8] and with Lienard-
Wiechert based algorithms [57,58]. These methods, that
have the merit of allowing a verification of FEL physics
formulation from first principles, have been applied only
to a limited number of specific cases. They indeed do not
take any advantage of the fact that in a free-electron laser
the electron beam interacts with the periodic magnetic
field of the undulator and with the optical field of a
copropagating electromagnetic wave with a k vector ori-
114802-10
ented in the z direction. The FEL‘‘instability’’ is charac-
terized by a gain with a narrow bandwidth of the order of
the Pierce parameter � [5,59],

� �
1

4&'

�
2&2P
e

Ipeak
IA

KfB�-�,u�
2

�
1=3
; (19)

where

fB�-� � J0�-� � J1�-�; and where - �
1

4

K2

1� K2

2

: (20)

,u is the undulator period, ' the relativistic factor, K �
eBpeak,u=2&mc the undulator strength, Ipeak=IA is the
ratio between the peak current and the Alfvèn current
(17040 A), and 'e is the transverse electron beam cross
section. Typically, in the case of short wavelength FELs,
the Pierce parameter is smaller than 10�2. For this reason
almost all the codes devoted to FELs are based on the
paraxial wave approximation (i.e., k � kz) and on the
slow varying envelope approximation (SVEA), which
consists of assuming that the field may be written as the
product of a term oscillating at the resonant frequency of
the instability and propagating in the z direction, and a
slowly varying complex amplitude

~EE�z; ~rr; t� � �a�z; ~rr; t� exp�i�kZz�!Lt�� 0 0�; (21)

where the function a�z; ~rr; t� satisfies the following
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inequalities:�������@
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�������� k2La: (22)

This assumption leads to a significant simplification of
the wave equation. The second derivatives of a in
Maxwell’s equations may be neglected and the wave
equation for the field reduces to�
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�
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�
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�
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��������z;r;t�
;

(23)
where the function J�~rr; z; t� is a generalized beam current
that contains the macroscopic dependence of the e-bunch
profile on coordinates and time. The microscopic contri-
bution to the transverse current is contained on the aver-
age of over the electrons phases 0i � �kL � ku�zi �!Lt
for fi � 1; neg and with ku � 2&=,u on the right-hand
side (rhs) of (23), which is a ‘‘slow’’ function of position
and time. The average is indeed calculated on a scale
length which is larger than (or equal to) the laser wave-
length, but is smaller than the distance over which the
function a, satisfying Eq. (22), has significant changes.
Equation (23) depends only on slowly varying functions.
The transformation to a fields description based on slowly
varying variables allows a drastic reduction of the mesh
requirements and the solution of the Maxwell’s equations
in the form (23) may be numerically obtained with a
partial differential equation solver. This is done assuming
axial symmetry in TDA [60] and in GINGER [61,62] or in
three dimensions, in TDA3D [63] with a field decomposi-
tion into cylindrical modes, and in Cartesian geometry in
FELEX/N [64,65], and in GENESIS [66] using an alternating
direction implicit integration scheme [7]. In MEDUSA

[67,68] the source dependent expansion technique has
been implemented [69,70]. This technique consists of
the expansion of the field a�z; ~rr; t� in terms of Gauss-
Hermite functions with characteristic parameters de-
pending on the source term J�z; ~rr; t�. The expansion al-
lows an efficient solution of the wave equation,
representing the field with a reduced number of eigen-
functions.

The electron dynamics in MEDUSA is integrated by
directly solving the Lorentz force equations with a fourth
114802-11
order Runge-Kutta [7], with the fields given by the super-
position of the laser and undulator fields, respectively,

m
d�' ~;;�
dt

� �e
�
~EE�

~vv
c

 ~BB

�
;

d'
dt

� �
e

mc2
~EE � ~;;:

(24)

This ‘‘first principles’’ approach allows the possibility of
accepting 3D field maps which includes the undulators
and all additional field components (i.e., F0D0 lattices,
etc.). The integration of the 3D Lorentz force equations
facilitates the adaptation of MEDUSA to treat novel mag-
netic field configurations and beam distributions as, e.g.,
in the case of biharmonic undulators [71]. The drawback
is that MEDUSA does not take advantage of the periodicity
of the undulator magnetic fields, and several tens of
Runge-Kutta steps are required for the correct integration
of the trajectory along a single undulator period. Most of
the other FEL devoted codes (as, e.g., GINGER, FELEXN,
PROMETEO [72]) use the Kroll, Morton, and Rosenbluth
(KMR) approximation [73], consisting of assuming that
the wiggling amplitude is small and that the frequency of
any variation of the parameters entering in the FEL
process is large with respect to the frequency of oscilla-
tion due to the undulator magnetic field, i.e.,

(i) adiabatic change of undulator parameters as, e.g.,
magnetic errors, tapering,

1

,u

d,u
dz

� 1;
1

,u

dK
dz

� 1: (25)

(ii) The scale of variation of the e-beam parameters is
large, i.e., the betatron period ,( is much larger than the
undulator period ,( � ,uand changes in current, energy,
etc. occur on a scale of many undulator periods.

Under these assumptions the particle trajectory is aver-
aged over the undulator period and the required time step
length may be larger than the undulator period itself
consisting of a significant advantage from the CPU time
point of view. When the effects of the laser field on the
electron transverse motion can be neglected, the equa-
tions of motion can be furthermore simplified (as, e.g., in
GENESIS). In the specific case of a Linear undulator with
strength K � K� ~rr�, we have
d'
dt

� �ckL
fB�-�K� ~rr����

2
p
'

ja�z; ~rr; t�j sin�0 �*�z; ~rr; t��;

d0
dt

� cku � ckL
1� j ~pp?j

2 � K�~rr�2

2 �
���
2

p
K�~rr�ja�z; ~rr; t�j cos�0 �*�z; ~rr; t��

2'2
;

d ~pp?

dt
� �

c
4'
@K�~rr�2

@~rr
� c ~kkext ~rr;

d~rr
dt

� c
~pp?

'
; (26)

where *�z; ~rr; t� � arg�a�z; ~rr; t�� is the slowly varying phase of the laser field and ~kkext is the focusing strength relative to
additional focusing elements external to the undulator. The characteristic Colson’s pendulumlike equation [74] is readily
derived from Eq. (26) by neglecting the transverse dynamics terms and the term proportional to ku on the rhs of the
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second equation of (26). This assumption is very well
satisfied for FELs operating with high beam energy and
short wavelength ,u � ,L. The FEL pendulum equation
in the conjugate variables, 0; ; � d0==, with = �
(zct=Lu is the equation of motion corresponding to the
Hamiltonian

H �
1

2
;2 � a cos�0�; (27)

with the assumption of a steady state, uniform e-beam
distribution; the field a defined in Eq. (21) is dependent on
�=� only. Both the coupled electron equations of motion
derived from the Hamiltonian Eq. (27) and the field
Eq. (23) are periodic in 0 , with period 2&. The solution
in this 0-dimensional case is obtained by imposing peri-
odic boundary conditions to particles and fields [75]. The
solution of this simple case may be used as the basic
element for the extension to higher dimensional cases.

A. Quiet start and modeling of the shot noise

The approximations for fields (SVEA) and particles
(KMR) can be considered as mutually consistent assump-
tions. With the KMR formulation we neglect wide band-
width components in the field sources dynamics, while
with the SVEA approximation we assume that the FEL
gain is nonzero in the same narrow frequency window
centered around the lasing frequency !L � 2&c=,L. The
width of this window is proportional to the parameter �
defined in Eq. (19). The numerical representation of the
electron beam spectral distribution must resemble that of
the real distribution in this frequency interval. Randomly
distributed macroparticles, unless their number is com-
parable to the real number of electrons in the bunch,
provide a distribution with a much higher spectral content
than the physical one. The correct noise level is intro-
duced by exploiting the periodicity of the Hamiltonian
(27). The beam is indeed represented as an ensemble of
‘‘beamlets,’’ each one with macroparticles distributed as

0i � 00 � i
2&
np

� i; i � 0; 1; . . . ; np � 1; (28)

where the factors i are randomly distributed coefficients
used to introduce an artificial shot noise. At i � 0 the
harmonic content of such a beamlet is exactly zero at the
fundamental wavelength and at the higher order harmon-
ics h � 2; . . . ; np � 1 (see Fig. 9). The number of macro-
particles per beamlet should be larger than the
corresponding number suggested by the simple applica-
tion of the Nyquist theorem. With the definition (28), at
the beginning the particles are equally spaced and 2h
particles would be adequate for a noiseless quiet start of
the h harmonic. When the dynamics is applied, the con-
dition provided by the Nyquist theorem does not hold
anymore. First, the FEL couples bunching at a given
harmonic h with the field growth at harmonics h� 1
114802-12
[76]. Second, and this is even more critical, the particles
positions are shifted from equally spaced positions, and a
bunching contribution due to an insufficient original
sampling frequency, especially at the highest harmonics,
appears. At saturation the macroparticles are bunched,
and phase space discontinuities in the lower density re-
gions strongly affect the bunching estimation. This is
particularly critical for the higher order harmonics.

The effect of shot noise is introduced with the shifting
factors i. A shot noise of amplitude proportional to the
average macroparticles displacement is obtained. An al-
gorithm to produce these displacements with the correct
noise statistics in a 1D case is given by Penman and
McNeil [77]. Particular care must be taken in the genera-
tion of beamlets in multidimensional spaces to avoid
undesired interferences that may arise from the dynami-
cal effects (drifts, betatron motion etc.). An elegant de-
scription of the shot noise implementation in GINGER and
the problems related to the generalization to multidimen-
sional spaces are given in Ref. [78].
B. Time dependent simulations

At the resonant wavelength the radiation slips over the
electron bunch of one optical wavelength per undulator
period. After the propagation in an undulator of N peri-
ods, the radiation passes over a portion of length N,L of
the electron bunch. The ‘‘slippage length’’ is the name of
this causally connected region of length N,L. For typical
numbers, in the case of short wavelength FELs, the
slippage length is shorter than the electron bunch length.
The radiation field is not propagating in free space, but
in a gain medium (the electron beam) that is exponen-
tially amplifying the radiation. As a consequence the
phase information of the radiation is ‘‘lost’’ after the
propagation over the distance of the order of ,L=4&�
along the electron bunch, which is commonly indicated
as the ‘‘cooperation length’’ and is shorter than the slip-
page length if the FEL reaches saturation. For the same
114802-12
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reason the relative gain bandwidth is proportional to �. In
the implementation of time dependent simulations in
GINGER and in GENESIS a time window larger than a
cooperation length, that is enclosing the whole electron
beam or part of it, is defined. This time window is then
sampled and sliced as shown in Fig. 10. The slices have a
length of one optical wavelength (one of the beamlets
defined in the previous section) and are separated by a
distance �. In GINGER the simulation evolves at discrete
time steps of length �,u=�,Lc� and at each time step the
field relevant to one slice is shifted to the next slice. In
GENESIS the simulation for the first slice is done up to the
end of the undulator, and then the values of the fields are
used to execute the simulation for the second slice. The
procedure is repeated up to the end of all the slices. This
procedure allows one to keep in memory only one slice at
a time, but from the conceptual point of view it is essen-
tially the same as that adopted in GINGER. The parameter
� must satisfy some constraints. According to the
Nyquist theorem the cutoff frequency is given by twice
the sampling frequency, which is 1=�.

Imposing the condition that the band pass associated
with the sampling procedure must be larger than the FEL
gain bandwidth, we find the condition

�max �
,L
4&�

: (29)

In general the simulation is done with �< �max=8 to
ensure that the whole gain bandwidth is contained in
the numerical representation. The simulation time win-
dow should be larger than a slippage length. In GENESIS,
when only a portion of the beam is simulated, the first
slippage length may be ignored in the output, as it is used
as the source of the field for the following slices. It is
obviously retained in a simulation enclosing the whole
beam. The simulation of long bunches is obtained in
GINGER by assuming steady state parameters for the
electron beam distribution along the bunch and by setting
a periodicity condition on the time window.

C. Codes validation

The output of these codes provides much information
on the saturation length and other characteristics of the
e-bunch

Time window

λL ∆

FIG. 10. Slicing of the e bunch for time dependent
simulations.
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FEL, as sensitivity to e-beam parameters, stability, spec-
trum, pulse duration, coherence, etc. There are a number
of theoretical approaches that allow one to obtain analytic
estimates of some of these features [79–82]. These ana-
lytical formulations are useful in narrowing the range of
the input parameters for the simulation, but specific ef-
fects such as, e.g., magnetic errors or alignment errors or
the effects of specific distributions as, e.g., a folding of
the input 6D electrons phase space, are conveniently
analyzed with the numerical approach. For this reason
the codes are widely used in the design of future sources
and the ongoing interest in their validation against the
available experimental data and a cross comparison of
their results are justified. The program MEDUSA has been
extensively used in the prediction and the analysis of the
LEUTL experiment [83,84]. In Ref. [84] the most known
multidimensional FEL codes have been compared on
LEUTL parameters. The results have shown, in a steady
state mode, resonant wavelengths within 0.2% and satu-
ration lengths within 10%. The differences between the
codes increased in the simulation of a multisegmented
undulator with MEDUSA providing the largest saturation
length. The simulation of the LEUTL device is affected
by strong diffraction effects which become more pro-
nounced in the gaps between the undulators, where the
lack of gain guiding produces a rapid expansion of the
laser mode. The observed difference could be justified by
the different representation of the transverse fields, ob-
tained with an expansion on free space modes in MEDUSA,
and sampled on a mesh, in the other mentioned codes.
The agreement should be however considered satisfactory,
on the light of the quoted differences in the models, in the
algorithms, and the quite large number of parameters
entering in these simulations. The VISA 800 nm FEL
experiment has been reproduced in surprisingly good
detail with GENESIS [85,86].
D. Harmonics

When a SASE FEL approaches saturation, the modu-
lation of the longitudinal electron beam distribution
develops substantial Fourier components at higher har-
monics of the fundamental and emission at the corre-
sponding wavelengths occurs. There is widespread
interest in this process, because emission on high order
harmonics represents a significant resource to extend the
wavelength tunability of a free-electron laser [87–95].We
may distinguish two different cases:

(1) when the dynamics is driven by the fundamental
and the harmonic emission is a byproduct of the phase
space modulation.

(2) When the electron dynamics is self-consistently
modified by the radiation field of the harmonics.

In the first case the harmonics emission depends on the
histories of particles along the undulator. The bunching
coefficients, i.e., the Fourier components of the longitu-
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dinal electron beam distribution depending on the macro-
particles longitudinal coordinates 0i

bh � he�ih0iifig (30)

and the corresponding harmonic emission may be calcu-
lated in the postprocessing phase. The main required
precaution consists of a correct preparation of the beam
quiet start at the desired harmonic. This method is used
both in GINGER and in GENESIS. FELEXN has the capability
of operating at higher harmonics, but no coupling be-
tween the harmonics is included.

In MEDUSA, PROMETEO, and in PERSEO (1D, time de-
pendent [75]) the harmonics are treated self-consistently,
by solving the particle dynamics with the fields given by
the superposition of the fundamental and of the higher
order harmonics. This approach is the most appropriate in
the simulation of exotic undulator configurations [71] that
were proposed as tools to enhance the harmonic emission
in SASE FELs. The increased harmonic intensity in
saturated conditions is indeed large enough to affect the
electrons phase space trajectories and to show a different
behavior than the one expected in a single harmonic
simulation. An example of this effect is given in Fig. 11,
where a snapshot of the longitudinal phase space obtained
in a 1D simulation with PERSEO is shown. The undulator
considered is of a ‘‘biharmonic’’ type [71], with main
period ,u � 6 cm and strength K � 1:4. The enhance-
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FIG. 11. Longitudinal e-beam phase space (energy phase) in a
free-electron laser operating with a biharmonic undulator, at
saturation. The separatrices corresponding to the fundamental
(continuous line) to the 3rd (dashed line) and to the 5th
harmonic fields are shown.
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ment of the coupling on the third harmonic is obtained by
superimposing a second undulator, with the field oriented
in the orthogonal direction, with the same strength K and
period ,u;3 � ,u=3 � 2 cm. The beam energy considered
in this example is 1 GeV, which defines the resonance at a
wavelength of about 20 nm. The peak current is 140 A
with 1 mm mrad normalized emittance and a relative
energy spread of 0:5
 10�3. The phase space image of
Fig. 11 is taken at z � 40 m, at saturation. The separatrix
corresponding to the third harmonic (dashed line) is wide
enough to trap a large fraction of the macroparticles and
to modify the longitudinal beam dynamics. This behav-
ior, which affects both the energy conversion efficiency
into higher harmonics and the spectral features of the
radiated fields, is mainly relevant in conditions of en-
hanced harmonic emission, as those realized with bihar-
monic undulators. In this respect it should be investigated
in time dependent mode and with 3D codes including the
harmonic field in the dynamics, as MEDUSA, to under-
stand the implications on the spatial and temporal coher-
ence of the emitted field. MEDUSA has been extensively
used [96] in the prediction of the performances on higher
order harmonics of the LEUTL experiment. Comparisons
between the predictions of MEDUSA, PROMETEO, and
GINGER in conditions similar to those of the LCLS FEL
and of LEUTL FEL are given in Refs. [97,98] respec-
tively. The sensitivity of the harmonic generation process
to the beam quality has been analyzed. In both cases the
electron’s longitudinal dynamics and the harmonic emis-
sion are mainly driven by the laser field on the funda-
mental harmonic. For this reason the comparison was not
apparently affected by the lack of self-consistency on the
harmonic fields of GINGER.
V. CONCLUSIONS

There are several other sources of intrabeam coupling
and nonlinear collective effects that play an important
role in the design of short wavelength free-electron la-
sers, as wake field effects, beam loading, etc. The three
regimes analyzed in this review: beam generation, beam
compression, and the FEL process were characterized by
quite well-established families of investigation tools de-
voted to the simulation of the specific regimes.We had the
opportunity to analyze, from the spectral point of view,
the constraints posed by the numerical representation,
which is the main reason why, in the considered condi-
tions, the simulation of charged particles interacting with
electromagnetic field cannot be accomplished by a single
code. In general we may distinguish between codes based
on first principles and codes based on semianalytic mod-
els. The first include most of the physical aspects of the
problem. This completeness is usually paid in terms of
complexity of the implementation and in terms of calcu-
lation time. In the second case the numerical implemen-
tation follows a theoretical approach which, according to
114802-14
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some physical approximations, allows one to point to
some specific relevant issue with a fast relaxation of the
usually large number of parameters involved. An example
is provided by the line charge method in the calculation of
the CSR microbunching. The number of particles simu-
lated with this method is large enough to reduce to an
acceptable level the numerical noise in the wide band
spectrum of the CSR impedance. The approximations
considered may be quite stringent, but the large number
of macroparticles allows a much better representation of
the beam statistics than the one obtainable with a first
principle approach. In general these two families of codes
can be considered both necessary and complementary.

The modeling aspects of the codes have been privi-
leged, but several other features have great importance.
An example is provided by the interface. The amount of
data produced when 6D phase spaces with 104=106 mac-
roparticles are considered, is huge. The interface is meant
not only in terms of a simple human interface for the
analysis and visualization of the results. The necessity of
different codes handling different regimes means that the
exchange of phase spaces in a compatible format between
different programs is a practical, but still essential prob-
lem. Significant effort in this direction has been done
with the SDDS [99] and HDF5 [100] data exchange format.
Several examples of start to end simulations can be found
in the literature [101,102].

The last, but not least, aspect is the documentation and
the sources availability. The sources availability is of
great importance for the peer review possibility offered
when the user is not faced by a ‘‘black box,’’ but has the
opportunity to analyze directly the sources and the equa-
tion he is dealing with. When the documentation or/and
sources were available, we referenced the link to the web
pages where this information can be retrieved from the
network.
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